Half Controlled
 Single Phase Rectifier Bridge

Including Freewheeling Diode and Field Diodes

$\mathbf{V}_{\text {RSM }}$	$\mathbf{V}_{\text {RRM }}$	Type
$\mathbf{V}_{\text {DSM }}$	$\mathbf{V}_{\text {DRM }}$	
V	V	
900	800	VHFD 29-08io1
1300	1200	VHFD 29-12io1
$\mathbf{1 7 0 0}$	$\mathbf{1 6 0 0}$	VHFD 29-16io1

Bridge and Freewheeling Diode

Symbol	Conditions		Maximum Ratings	
$\mathrm{I}_{\mathrm{dAV}}$	$\mathrm{T}_{\mathrm{H}}=85^{\circ} \mathrm{C}$, modu		28	A
$\mathrm{I}_{\text {dAVM }}$ *	module		32	A
$\mathrm{I}_{\text {frms }}, \mathrm{I}_{\text {TRMS }}$	per leg		25	A
$\mathrm{I}_{\text {FSM }}, \mathrm{I}_{\text {TSM }}$	$\mathrm{T}_{\mathrm{V} \mathrm{J}}=45^{\circ} \mathrm{C}$;	$\mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz})$, sine	300	A
	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$	$\mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz})$, sine	330	A
	$\mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\text {VJM }}$	$\mathrm{t}=10 \mathrm{~ms} \mathrm{(50} \mathrm{Hz)}$,	270	A
	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$	$\mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz})$, sine	300	A
$1^{2} \mathrm{t}$	$\mathrm{T}_{\mathrm{vj}}=45^{\circ} \mathrm{C}$	$\mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz})$, sine	440	$A^{2} \mathrm{~S}$
	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$	$\mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz})$, sine	455	$\mathrm{A}^{2} \mathrm{~s}$
	$\mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\text {VJM }}$	$\mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz})$, sine	365	$A^{2} \mathrm{~s}$
	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$	$\mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz})$, sine	370	$\mathrm{A}^{2} \mathrm{~s}$
(di/dt) ${ }_{\text {cr }}$	$\begin{array}{ll}T_{V J}=125^{\circ} \mathrm{C} \\ \mathrm{f}=50 \mathrm{~Hz}, \mathrm{t}_{\mathrm{P}}=200 \mu \mathrm{~s} \\ \mathrm{~V}_{\mathrm{D}}=2 / 3 \mathrm{~V}_{\text {DRM }} & \text { repetitive, } \mathrm{I}_{\mathrm{T}}=50 \mathrm{~A} \\ \end{array}$		150	A/ $/ \mathrm{s}$
	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=2 / 3 \mathrm{~V}_{\mathrm{DRM}} \\ & \mathrm{I}_{\mathrm{G}}=0.3 \mathrm{~A}, \\ & \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=0.3 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	non repetitive, $\mathrm{I}_{\mathrm{T}}=0.5 \mathrm{I}_{\mathrm{dAV}}$	500	A/ $/ \mathrm{s}$
(dv/dt) ${ }_{\text {cr }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{(\mathrm{vj)})} ; \mathrm{V}_{\mathrm{DR}}=2 / 3 \mathrm{~V}_{\mathrm{DRM}} \\ & \mathrm{R}_{\mathrm{GK}}=\infty ; \text { method } 1 \text { (linear voltage rise) } \end{aligned}$		1000	V/us
$\mathrm{V}_{\text {RGM }}$			10	V
P_{GM}	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}} \\ & \mathrm{I}_{\mathrm{T}}=0.5 \mathrm{I}_{\mathrm{dAVM}} \end{aligned}$	$\mathrm{t}_{\mathrm{p}}=30 \mu \mathrm{~s}$	≤ 10	W
		$\mathrm{t}_{\mathrm{p}}=500 \mu \mathrm{~s}$	≤ 5	W
		$\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$		W
$\mathrm{P}_{\text {GAvM }}$			0.5	W
$\begin{aligned} & \overline{\mathbf{T}_{\mathrm{v} \mathrm{~J}}} \\ & \mathbf{T}_{\mathrm{vJM}} \\ & \mathbf{T}_{\mathrm{stg}} \end{aligned}$			-40...+125	${ }^{\circ} \mathrm{C}$
			125	${ }^{\circ} \mathrm{C}$
			-40...+125	${ }^{\circ} \mathrm{C}$
$\bar{V}_{\text {ISOL }}$	$\begin{aligned} & 50 / 60 \mathrm{~Hz}, \mathrm{RMS} \\ & \mathrm{I}_{\text {ISol }} \leq 1 \mathrm{~mA} \end{aligned}$	$\mathrm{t}=1 \mathrm{~min}$	3000	V
		$\mathrm{t}=1 \mathrm{~s}$	3600	V~
$\begin{aligned} & d_{\mathrm{d}} \\ & d_{\mathrm{A}} \\ & \mathrm{a} \end{aligned}$	Creep distance on surface Strike distance in air Max. allowable acceleration		12.7	mm
			9.4	mm
			50	$\mathrm{m} / \mathrm{s}^{2}$
M_{d}	Mounting torque	(M5)	2-2.5	Nm
		(10-32 UNF)	18-22	lb.in.
Weight			35	g

$\mathrm{V}_{\text {RRM }}=800-1600 \mathrm{~V}$

$I_{\mathrm{dAVm}}=32 \mathrm{~A}$

Features

- Package with DCB ceramic base plate
- Isolation voltage 3600 V~
- Planar passivated chips
- Blocking voltage up to 1600 V
- Low forward voltage drop
- Leads suitable for PC board soldering
- UL registered E 72873

Applications

- Supply for DC power equipment
- DC motor control

Advantages

- Easy to mount with two screws
- Space and weight savings
- Improved temperature and power cycling

Dimensions in mm ($1 \mathrm{~mm}=0.0394^{\prime \prime}$)

Symbol
Conditions
Characteristic Values

Field Diodes

Data according to IEC 60747 and refer to a single thyristor/diode unless otherwise stated.

* for resistive load

Fig. 1 Gate trigger range

Fig. 2 Gate controlled delay time t_{gd}

Fig. 3 Forward current vs. voltage drop per diode

Fig. 6 Power dissipation vs. direct output current and ambient temperature

Fig. $51^{2 t}$ versus time per diode

Fig. 7 Max. forward current vs. heatsink temperature

Constants for $Z_{\text {thJH }}$ calculation:

i	$\mathrm{R}_{\text {thi }}(\mathrm{K} / \mathrm{W})$	$\mathrm{t}_{\mathrm{i}}(\mathrm{s})$
1	0.007	0.008
2	0.266	0.05
3	1.127	0.06
4	0.6	0.25

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for SCR Modules category:
Click to view products by IXYS manufacturer:
Other Similar products are found below :
DT430N22KOF T1401N42TOH T1851N60TOH T390N14TOF T420N12TOF T470N16TOF T901N36TOF TD140N18KOF TD142N16KOF TD162N16KOF-A TD250N12KOF TD330N16AOF TT215N22KOF TZ310N20KOF TZ425N12KOF TZ500N12KOF T300N14TOF T3710N06TOF VT T390N16TOF T420N16TOF T460N24TOF T501N70TOH T560N16TOF T590N16TOF T640N14TOF TD250N14KOF TT600N16KOF TZ500N16KOF TT210N12KOF NTE5710 TD180N16KOF TT240N28KOF TZ425N14KOF T1081N60TOH TT61N08KOF TD251N18KOF TT162N08KOF TZ430N22KOF TT180N12KOF T2001N34TOF TT122N22KOF TD140N22KOF MDMA200P1600SA TT180N16KOF VS-ST333C08LFM0 VS-ST180C14C0L T1080N02TOF T360N22TOF TZ810N22KOF T2563NH80TOH

