ECO-PAC ${ }^{\text {тм }}$
 Three Phase Rectifier Bridge with Fast Recovery Epitaxial Diodes (FRED)

$V_{\text {RSM }}$ V	$V_{\text {RRM }}$ V	Type
1200	1200	VUE 35-12NO7

Symbol	Conditions			Maximum R	
$\begin{aligned} & \hline \mathrm{I}_{\mathrm{dAV}}(1) \\ & \mathrm{I}_{\mathrm{dAVM}} \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$, module			$\begin{aligned} & 40 \\ & 90 \\ & \hline \end{aligned}$	A
$\mathrm{I}_{\text {FSM }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=45^{\circ} \mathrm{C} ; \\ & \mathrm{V}_{\mathrm{R}}=0 \end{aligned}$	$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} \\ & \mathrm{t}=8.3 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & \hline(50 \mathrm{~Hz}) \\ & (60 \mathrm{~Hz}) \end{aligned}$	$\begin{array}{r} 90 \\ 100 \\ \hline \end{array}$	A
	$\begin{array}{ll} \hline \mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C} ; & \mathrm{t} \\ \mathrm{~V}_{\mathrm{R}}=0 & \mathrm{t} \\ \hline \end{array}$	$\begin{aligned} & t=10 \mathrm{~ms} \\ & t=8.3 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & \hline(50 \mathrm{~Hz}) \\ & (60 \mathrm{~Hz}) \\ & \hline \end{aligned}$	75 85	A
$1^{2} \mathbf{t}$	$\begin{array}{ll} \hline \mathrm{T}_{\mathrm{V}}=45^{\circ} \mathrm{C} ; & \mathrm{t} \\ \mathrm{~V}_{\mathrm{R}}=0 & \mathrm{t} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} \\ & \mathrm{t}=8.3 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & \hline(50 \mathrm{~Hz}) \\ & (60 \mathrm{~Hz}) \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & \hline \end{aligned}$	A ${ }^{2} \mathrm{~S}$ $\mathrm{~A}^{2} \mathrm{~S}$
	$\begin{array}{ll} \hline \mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C} ; \mathrm{t} \\ \mathrm{~V}_{\mathrm{D}}=0 & \mathrm{t} \end{array}$	$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} \\ & \mathrm{t}=8.3 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & \hline(50 \mathrm{~Hz}) \\ & (60 \mathrm{~Hz}) \\ & \hline \end{aligned}$	30 30	A ${ }^{2} \mathrm{~S}$ $\mathrm{~A}^{2} \mathrm{~S}$
T_{v}				-40...+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {vJM }}$				150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$				-40...+125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ISOL }}$	$\begin{aligned} & 50 / 60 \mathrm{~Hz}, \mathrm{RMS} \\ & \mathrm{I}_{\text {ISol }} \leq 1 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & t=1 \mathrm{~min} \\ & t=1 \mathrm{~s} \end{aligned}$		3000	V
				3600	V~
M_{d}	Mounting torque (M4)			1.5-2	Nm
Weight	typ.			19	g

Symbol Conditions
Characteristic Values
($\mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Data according to IEC 60747 and refer to a single diode unless otherwise stated.
(1) for resistive load at bridge output.
$I_{\text {dAV }}=40 \mathrm{~A}$
$V_{\text {RRM }}=1200 \mathrm{~V}$
$t_{\text {rr }}=40 \mathrm{~ns}$

Features

- Package with DCB ceramic base plate in low profile
- Isolation voltage 3000 V~
- Planar passivated chips
- Low forward voltage drop
- Leads suitable for PC board soldering

Applications

- Supplies for DC power equipment
- Input and output rectifiers for high frequency
- Battery DC power supplies
- Field supply for DC motors

Advantages

- Space and weight savings
- Improved temperature and power cycling capability
- Small and light weight
- Low noise switching

Fig. 1 Forward current I_{F} vs. V_{F}

Fig. 4 Dynamic parameters $Q_{r}, I_{R M}$ versus T_{v}

Fig. 2 Reverse recovery charge Qr versus - $-\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$

Fig. 5 Recovery time t_{tr} vs. $-\mathrm{di}_{\mathrm{F}} / \mathrm{dt}$

Fig. 7 Transient thermal resistance junction to case
IXYS reserves the right to change limits, test conditions and dimensions.
Constants for $\mathrm{Z}_{\mathrm{thJC}}$ calculation:

i	$R_{\text {thi }}(\mathrm{K} / \mathrm{W})$	$\mathrm{t}_{\mathrm{i}}(\mathrm{s})$
1	0.5464	0.0052
2	0.2104	0.0003
3	0.0432	0.0004
4	0.8	0.0092

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bridge Rectifiers category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :
MB2510 MB252 MB356G MB358G GBJ1504-BP GBU15J-BP GBU15K-BP GBU4A-BP GBU6B-E3/45 GSIB680-E3/45 DB101-BP DF01 DF10SA-E345 BU1508-E3/45 KBPC50-10S RS405GL-BP G5SBA60-E3/51 GBU10J-BP GBU6M GBU8D-BP GBU8J-BP 2KBB10 36MB140A TB102M MB1510 MB258 MB6M-G MB86 TL401G MDA920A2 TU602 TU810 MP501W-BP MP502-BP BR101-BP BR84DTP204 BU2008-E3/51 KBPC10/15/2501WP KBPC25-02 VS-2KBB60 DF06SA-E345 DF1510S VS-40MT160PAPBF W02M GBL02-E3/45 GBU4G-BP GBJ2506-BP GBU6B-E3/51 GSIB15A80-E3/45 DB104-BP

