

 $V_n = 400 \text{ V} 3 \sim$

 $f_T = 15 \text{ kHz}$ $T_C = 80^{\circ}\text{C}$

Typ. Rectified Mains Power

P_n = **15 kW** at

Rectifier Module for Three Phase Power Factor Correction

Preliminary data

Part name (Marking on product)

VUI30-12N1

Features:

- NPT IGBT with low saturation voltage
- Fast recovery epitaxial diodes (FRED)

Application:

Three phase rectifier with power factor correction, set up as follows:

- input from three phase mains
- wide range of input voltage
- mains currents approx. sinusoidal
- in phase with mains voltage
- topology permits to control overcurrent such as in case of input voltage peaks
- output
- direct current link
- buck type converter reduced output voltage
- possibility to supply boost converter, inverter etc.
- required components
- one power semiconductor module per phase
- one inductor and one capacitor per
- phase on mains side
- output inductor, depending on supplied circuit

Package:

- High level of integration
- Solder terminals for PCB mounting
- Isolated DCB ceramic base plate
- Large creepage and strike distances

IXYS reserves the right to change limits, test conditions and dimensions.

LIXYS

Transistor T

					Ratings				
Symbol	Definitions	Conditions		min.	typ.	max.	Unit		
V _{CES}	collector emitter voltage	$T_{VJ} = 25^{\circ}$	C to 150°C			1200	V		
V _{GES}	DC gate voltage	continuous		-20		+20	V		
I _{C25} I _{C80}	collector current	DC T DC T	$\Gamma_{\rm c} = 25^{\circ}{\rm C}$ $\Gamma_{\rm c} = 80^{\circ}{\rm C}$			95 65	A A		
V _{CE(sat)}	collector emitter saturation voltage	$I_{\rm C} = 20$ A; $V_{\rm GE} = 15$ V T	Γ _{vJ} = 25°C Γ _{vJ} = 125°C		1.7 1.9	2.0	V		
V _{GE(th)}	gate emitter threshold voltage	$I_{\rm C}$ = 2 mA; $V_{\rm GE}$ = $V_{\rm CE}$ 7	$\Gamma_{VJ} = 25^{\circ}C$	4.5		6.5	V		
I _{CES}	collector emitter leakage current	$V_{CE} = V_{CES}; V_{GE} = 0 V $	Γ _{vJ} = 25°C Γ _{vJ} = 125°C		1.8	1.6	mA mA		
I _{GES}	gate emitter leakage current	$V_{CE} = 0 \text{ V}; V_{GE} = \pm 20 \text{ V}$				400	nA		
$\begin{array}{c} t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ E_{on} \\ E_{off} \end{array}$	turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse	inductive load T $V_{CE} = 600 \text{ V}; \text{ I}_{C} = 20 \text{ A}$ $V_{GE} = \pm 15 \text{ V}; \text{ R}_{G} = 22 \Omega; \text{ L} = 100 \mu\text{H}$	Г _{vJ} = 125°С		100 70 500 70 3.0 2.2		ns ns ns mJ mJ		
C _{ies}	input capacitance	$V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; f = 1 \text{ MHz}$			3.3		nF		
\mathbf{Q}_{Gon}	total gate charge	V_{ce} = 600 V; V_{ge} = 15 V; I_c = 50 A			240		nC		
I _{см} V _{сек}	reverse bias safe operating area	$\begin{array}{ll} RBSOA; \ V_{GE} = \pm 15 \ V; \ R_{G} = 22 \ \Omega; \ L = 100 \ \muH \\ clamped \ inductive \ load; & T_{VJ} = 125^{\circ}C & \leq \end{array}$			100 _{CES} -L _S -d	/dt	A V		
t _{sc} (SCSOA)	short circuit safe operating area	$V_{CE} = V_{CES}; V_{GE} = \pm 15 V;$ $R_G = 22 \Omega;$ non-repetitive	Γ _{vJ} = 125°C			10	μs		
R _{thJC}	thermal resistance junction to case					0.3	K/W		
R _{thJH}	thermal resistance case to heatsink	with heat transfer paste, see mounting	g instructions		0.6		K/W		

Diodes D1 - D4

Symbol	Conditions				Ratings		
				min.	typ.	max.	
V _{RRM}	repetitive reverse voltage		$T_{VJ} = 25^{\circ}C$			1200	V
I _{F25}	collector current		$T_c = 25^{\circ}C$			40	A
I _{F80}			$T_c = 80^{\circ}C$			25	A
I _R	reverse current	$V_{\rm R} = V_{\rm RRM}$	$T_{vJ} = 25^{\circ}C$			0.75	mA
		$V_{R} = 0.8 \cdot V_{RRM}$	$T_{VJ} = 125^{\circ}C$		2		mA
V _F	forward voltage	I _F = 20 A	$T_{VJ} = 25^{\circ}C$		2.2	2.4	V
			$T_{VJ} = 125^{\circ}C$		1.9		V
I _{RM}	reverse recovery current	$I_{\rm F} = 30 \text{ A}; \text{di}_{\rm F}/\text{dt} = -250 \text{ A}/\mu\text{s}$			16		A
t _{rr}	reverse recovery time	∫ V _B = 540 V	$T_{VJ} = 125^{\circ}C$		400		ns
R _{thJC}	thermal resistance junction to case	per diode	$T_{VJ} = 25^{\circ}C$			1.3	K/W
R _{thJH}	thermal resistance case to heatsink	with heat transfer paste	$T_{VJ} = 25^{\circ}C$		2.6		K/W

LIXYS

Module							
			Ratings				
Symbol	Definitions	Conditions	min.	typ.	max.	Unit	
I _{VJ} T _{sta}	operating temperature storage temperature		-40 -40		150 125	°C °C	
VISOL	isolation voltage	I _{ISOL} ≤ 1 mA; 50/60 Hz;	t = 1 min		3600	٧~	
M _d	mounting torque	(M5)	2		2.5	Nm	
d _s ; d _A	creep distance on surfac	e / through air	5			mm	
Weight				35		g	
Outline D	rawing		Dimensions in m	m (1 mm	n = 0.039	94")	
0,25		- "X" "X" \$\$`07 \$`07 \$`0			9.2±0,5		
4x4 £'07 11 £'07 11 £'07 11 £'07 11	5° 14 14 5° 25,75 ±0	$50 \pm 0,2$ $38,6$ $\pm 0,3 14 \pm 0,3$ $R1$ $R1$ S	Detail "X"	M	2:1		
Broduct M	"						
FIGULELIM							

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	VUI30-12N1	VUI30-12N1	Box	10	487554

IXYS reserves the right to change limits, test conditions and dimensions.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by IXYS manufacturer:

Other Similar products are found below :

FERD15S50SB-TR D91A DA24F4100L DD89N1600K-A DD89N16K-K RL252-TP DLA11C-TR-E DSA17G JANTX1N4148UB JANTX1N5634A 1N4005-TR BAV199-TP UES1306HR2 UF4003-TP UFS120Je3/TR13 JANS1N6640US DD89N16K DD89N16K-A 481235F DSP10G-TR-E RRE02VS6SGTR 067907F MS306 ND104N08K SPA2003-B-D-A01 VS-80-6193 VS-66-9903 VGF0136AB US2JFL-TP UFS105Je3/TR13 A1N5404G-G ACGRA4007-HF ACGRB207-HF RF301B2STL RF501B2STL 1SS355 RR UES1306 UES1302 BAV199E6433HTMA1 ACGRC307-HF ACEFC304-HF DZ-1380 JANTXV1N5637A JANTX1N5555 JANTXV1N5660A JAN1N5555 JANTX1N5822US MUH1PCHM389A UES1106 GS2K-LTP