Standard Rectifier Module

3~ Rectifier
$\mathrm{V}_{\text {RRM }}=800 \mathrm{~V}$
$\mathrm{I}_{\text {DAV }}=60 \mathrm{~A}$
$\mathrm{I}_{\text {FSM }}=350 \mathrm{~A}$

3~ Rectifier Bridge

Part number

VUO52-08NO1

Features / Advantages:

- Package with DCB ceramic
- Improved temperature and power cycling
- Planar passivated chips
- Very low forward voltage drop
- Very low leakage current

Applications:

- Diode for main rectification
- For three phase bridge configurations
- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Package: V1-A-Pack

- Isolation Voltage: 3600 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Height: 17 mm
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Terms and Conditions of Usage

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office.
Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office.
Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

- to perform joint risk and quality assessments;
- the conclusion of quality agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

VUO52-08NO1

Rectifier				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
$\mathrm{V}_{\text {RSM }}$	max. non-repetitive reverse blocking voltage		$\mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C}$			900	V
$\mathrm{V}_{\text {RRM }}$	max. repetitive reverse blocking voltage		$\mathrm{T}_{\mathrm{v} \mathrm{s}}=25^{\circ} \mathrm{C}$			800	V
I_{R}	reverse current	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=800 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{R}}=800 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v} \nu}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v} \nu}=150^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} 40 \\ 1.5 \end{gathered}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$
$\overline{\mathrm{V}}$	forward voltage drop	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=60 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{v} \mathrm{J}}=25^{\circ} \mathrm{C}$			$\begin{aligned} & 1.13 \\ & 1.44 \end{aligned}$	V V
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=60 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{v} \mathrm{s}}=125^{\circ} \mathrm{C}$			$\begin{aligned} & 1.07 \\ & 1.50 \end{aligned}$	V
$\overline{\text { Iav }}$	bridge output current	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C} \\ & \text { rectangular } \quad d=1 / 3 \end{aligned}$	$\mathrm{T}_{\mathrm{v} \mathrm{J}}=150^{\circ} \mathrm{C}$			60	A
$\begin{aligned} & \overline{V_{\mathrm{F} 0}} \\ & \mathbf{r}_{\mathrm{F}} \end{aligned}$			$\mathrm{T}_{\mathrm{v} \mathrm{J}}=150^{\circ} \mathrm{C}$			$\begin{aligned} & 0.83 \\ & 11.5 \end{aligned}$	V $m \Omega$
$\mathrm{R}_{\text {thJc }}$	thermal resistance junction to case					1.3	K/W
$\mathbf{R}_{\text {thCH }}$	thermal resistance case to heatsink				0.3		K/W
$\mathrm{P}_{\text {tot }}$	total power dissipation		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			95	W
$\mathrm{I}_{\text {FSM }}$	max. forward surge current	$\begin{aligned} & t=10 \mathrm{~ms} ;(50 \mathrm{~Hz}), \text { sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V} J}=45^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 350 \\ & 380 \end{aligned}$	A
		$\begin{aligned} & \hline \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}) \text {, sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V} J}=150^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 300 \\ & 320 \end{aligned}$	A
$\mathbf{1}^{\mathbf{2}} \mathbf{t}$	value for fusing	$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}), \text { sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V} J}=45^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 615 \\ & 600 \end{aligned}$	$A^{2} \mathrm{~S}$ $\mathrm{~A}^{2} \mathrm{~S}$
		$\begin{aligned} & \hline \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}), \text { sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V} J}=150^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 450 \\ & 425 \end{aligned}$	$A^{2} \mathrm{~S}$ $\mathrm{~A}^{2} \mathrm{~S}$
C	junction capacitance	$\mathrm{V}_{\mathrm{R}}=400 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{T}_{\mathrm{v} J}=25^{\circ} \mathrm{C}$		10		pF

Data Matrix: Typ (1-19), DC+Prod.Index (20-25), FKT\# (26-31)
leer (33), Ifd.\# ($33-36$)

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	VUO52-08NO1	VUO52-08NO1	Blister	24	461164

Similar Part	Package	Voltage class
VUO52-12NO1	V1-A-Pack	1200
VUO52-14NO1	V1-A-Pack	1400
VUO52-16NO1	V1-A-Pack	1600
VUO52-18NO1	V1-A-Pack	1800
VUO52-20NO1	V1-A-Pack	2000
VUO52-22NO1	V1-A-Pack	2200
VUO34-16NO1	V1-A-Pack	1600
VUO34-18NO1	V1-A-Pack	1800

Equivalent Circuits for Simulation *on die level $\quad \mathrm{T}_{\mathrm{v},}=150^{\circ} \mathrm{C}$

$\mathrm{I} \rightarrow \mathrm{~V}_{0}-\mathrm{R}_{0}$		Rectifier	
$\mathrm{V}_{0 \text { max }}$	threshold voltage	0.83	V
$\mathbf{R}_{0 \text { max }}$	slope resistance *	10.2	$\mathrm{m} \Omega$

Remarks / Bemerkungen:

1. Nominal distance mounting screws on heat sink: 52 mm / Nennabstand Befestigungsschrauben auf Kühlkörper: 52 mm
2. General tolerance / Allgemeintoleranz: DIN ISO 2768 -T1-c
3. Surface treatment of pins: tin plated (Sn) in hot dip / Oberflächenbehandlung der Pins: verzinnt (Sn) im Tauchbad
4. Detail $X:^{\llcorner }$
EJOT PT® self-tapping screws (dimension K25) to be recommended for mounting on PCB
selbstschneidende Schraube (Größe K25) empfohlen für die PCB-Montage
Take care on the maximum screw length according to board thickness and the maximum hole depth of $6 \mathrm{~mm}^{\mathrm{L}}$
Bei der Wahl der Schraubenlänge die PCB-Dicke und die maximale Lochtiefe von 6 mm beachten
Recommended mounting torque: 1.5 Nm / Empfohlenes Drehmoment: 1.5 Nm

Detail "X" M2:1

Detail "Y" M5:1

Rectifier

Fig. 1 Forward current vs. voltage drop per diode

Fig. 2 Surge overload current vs. time per diode

Fig. 4 Power dissipation vs. forward current and ambient temperature per diode

Fig. 6 Transient thermal impedance junction to case vs. time per diode

Fig. $3 \mathrm{I}^{2} \mathrm{t}$ vs. time per diode

Fig. 5 Max. forward current vs. case temperature per diode

Constants for $\mathrm{Z}_{\text {thJc }}$ calculation:

i	$\mathrm{R}_{\mathrm{th}}(\mathrm{K} / \mathrm{W})$	$\mathrm{t}_{\mathrm{i}}(\mathrm{s})$
1	0.06070	0.008
2	0.173	0.05
3	0.3005	0.06
4	0.463	0.3
5	0.3028	0.15

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bridge Rectifiers category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :
G3SBA60-E351 GBJ1504-BP GBU10B-BP GBU15J-BP GBU15K-BP GBU4A-BP GBU4D-BP GBU6B-E3/45 GSIB680-E3/45 DB101BP DBA100G DBA150G DBA20G DBA250G DBA40G DBD10G-TM-E DBF10G DBF250G DBG150G DBG250G DF10SA-E345 RMB2S RCG APT30DF100HJ APT60DF20HJ B2S-E3/80 BU1506-E351 BU15085S-E345 BU1508-E3/45 BU1510-E3/45 RS404GL-BP RS405GL-BP G3SBA20-E3/51 G5SBA20-E3/51 G5SBA60-E3/51 GBJ1502-BP GBL02-E351 GBL10-E3/45 GBU10J-BP GBU4J-BP GBU4K-BP GBU8B-E3/45 GBU8D-BP GBU8J-BP GSIB1520-E3/45 MB1510 MB352W MB6M-G B2M-E345 B40C7000A B500C7000A

