3~ Rectifier
$\mathrm{V}_{\text {RRM }}=1800 \mathrm{~V}$
$\mathrm{I}_{\text {DAV }}=6$
$\mathrm{I}_{\text {FSM }}=$

3~ Rectifier Bridge

Part number

VUO55-18NO7

Features / Advantages:

- Package with DCB ceramic
- Improved temperature and power cycling
- Planar passivated chips
- Very low forward voltage drop
- Very low leakage current

Applications:

- Diode for main rectification
- For three phase bridge configurations
- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Package: PWS-B

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Easy to mount with two screws
- Base plate: Aluminium internally DCB isolated
- Advanced power cycling

Recommended replacement: VUO82-18NO7

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

Rectifier				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
$\mathrm{V}_{\text {RSM }}$	max. non-repetitive reverse blocking voltage		$\mathrm{T}_{\mathrm{v} \mathrm{J}}=25^{\circ} \mathrm{C}$			1900	V
$\mathrm{V}_{\text {RRM }}$	max. repetitive reverse blocking voltage		$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$			1800	V
$\mathrm{I}_{\text {R }}$	reverse current	$\begin{aligned} & V_{R}=1800 \mathrm{~V} \\ & V_{R}=1800 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v} j}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v} v}=150^{\circ} \mathrm{C} \end{aligned}$			$\begin{array}{r} 100 \\ 1.5 \end{array}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$
V_{F}	forward voltage drop	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=60 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{v} \jmath}=25^{\circ} \mathrm{C}$			$\begin{aligned} & 1.03 \\ & 1.23 \end{aligned}$	V V
		$\begin{aligned} & I_{F}=20 \mathrm{~A} \\ & I_{F}=60 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{v} \mathrm{s}}=125^{\circ} \mathrm{C}$			$\begin{aligned} & 0.92 \\ & 1.18 \end{aligned}$	V
Idav	bridge output current	$\begin{array}{ll} \mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C} & \\ \text { rectangular } & \mathrm{d}=1 / 3 \end{array}$	$\mathrm{T}_{\mathrm{vs}}=150^{\circ} \mathrm{C}$			60	A
$\begin{aligned} & V_{\mathrm{F} 0} \\ & \mathbf{r}_{\mathrm{F}} \end{aligned}$	$\left.\begin{array}{l}\text { threshold voltage } \\ \text { slope resistance }\end{array}\right\}$ for power loss calculation only		$\mathrm{T}_{\mathrm{vs}}=150^{\circ} \mathrm{C}$				
$\mathbf{R}_{\text {thJc }}$	thermal resistance junction to case					2.7	K/W
$\mathbf{R}_{\text {thCH }}$	thermal resistance case to heatsink				0.4		K/W
$\mathrm{P}_{\text {tot }}$	total power dissipation		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			46	W
$\mathrm{I}_{\text {FSM }}$	max. forward surge current	$\begin{aligned} & t=10 \mathrm{~ms} ;(50 \mathrm{~Hz}) \text {, sine } \\ & t=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V} J}=45^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 750 \\ & 810 \end{aligned}$	A A
		$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}) \text {, sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V},}=150^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 640 \\ & 690 \end{aligned}$	A A
12t	value for fusing	$\begin{aligned} & t=10 \mathrm{~ms} ;(50 \mathrm{~Hz}), \text { sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}), \text { sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V} J}=45^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 2.82 \\ & 2.73 \end{aligned}$	$\begin{aligned} & \mathrm{kA}^{2} \mathrm{~S} \\ & \mathrm{kA}^{2} \mathrm{~S} \end{aligned}$
		$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}) \text {, sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=150^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 2.05 \\ & 1.98 \end{aligned}$	$\begin{aligned} & k^{2} \mathrm{~S} \\ & k A^{2} \mathrm{~S} \end{aligned}$
C	junction capacitance	$\mathrm{V}_{\mathrm{R}}=400 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$		10		pF

PHASE OU'T

VUO55-18NO7

Package	PWS-B		Ratings			
Symbol	Definition Conditions		min.	typ.	max.	Unit
$\mathrm{I}_{\text {RMS }}$	RMS current per terminal				100	A
T_{vj}	virtual junction temperature		-40		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	operation temperature		-40		125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature		-40		125	${ }^{\circ} \mathrm{C}$
Weight				203		g
$\begin{aligned} & \mathbf{M}_{\mathrm{D}} \\ & \mathbf{M}_{\mathrm{T}} \end{aligned}$	mounting torque terminal torque		$\begin{array}{r} 4.25 \\ 2.5 \end{array}$		5.75 3.5	Nm Nm
$\begin{aligned} & \mathbf{d}_{\text {Spp/App }} \\ & \mathbf{d}_{\text {spb/Apb }} \end{aligned}$	creepage distance on surface / striking distance through air	terminal to terminal terminal to backside	$\begin{array}{r} 11.0 \\ 7.5 \\ \hline \end{array}$			$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm} \end{aligned}$
$\mathrm{V}_{\text {ISOL }}$	isolation voltage $t=1$ second $t=1$ minute	$50 / 60 \mathrm{~Hz}, \mathrm{RMS}$; $\mathrm{lsol} \leq 1 \mathrm{~mA}$	$\begin{aligned} & 3000 \\ & 2500 \end{aligned}$			V V

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	VUO55-18NO7	VUO55-18NO7	Box	10	456705

Equivalent Circuits for Simulation \quad *on die level $\quad T_{v J}=150^{\circ} \mathrm{C}$

Rectifier

$\mathbf{V}_{0 \text { max }}$ threshold voltage $0.76 \quad \mathrm{~V}$
$\mathbf{R}_{0 \text { max }}$ slope resistance * $5.7 \quad \mathrm{~m} \Omega$

Outlines PWS-B

Rectifier

Fig. 1 Forward current vs. voltage drop per diode

Fig. 2 Surge overload current vs. time per diode

Fig. 4 Power dissipation vs. forward current and ambient temperature per diode

Fig. 6 Transient thermal impedance junction to case vs. time per diode

Fig. $3 I^{2} t$ vs. time per diode

Fig. 5 Max. forward current vs. case temperature per diode

Constants for $Z_{\text {thJc }}$ calculation:

i	$\mathrm{R}_{\mathrm{th}}(\mathrm{K} / \mathrm{W})$	$\mathrm{t}_{\mathrm{i}}(\mathrm{s})$
1	0.040	0.010
2	0.150	0.030
3	0.610	1.350
4	1.900	14.00

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bridge Rectifiers category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :
MB2510 MB252 MB356G MB358G GBJ1504-BP GBU15J-BP GBU15K-BP GBU4A-BP GBU6B-E3/45 GSIB680-E3/45 DB101-BP DF01 DF10SA-E345 BU1508-E3/45 KBPC50-10S RS405GL-BP G5SBA60-E3/51 GBU10J-BP GBU6M GBU8D-BP GBU8J-BP 2KBB10 36MB140A TB102M MB1510 MB258 MB6M-G MB86 TL401G MDA920A2 TU602 TU810 MP501W-BP MP502-BP BR101-BP BR84DTP204 BU2008-E3/51 KBPC10/15/2501WP KBPC25-02 VS-2KBB60 DF06SA-E345 DF1510S VS-40MT160PAPBF W02M GBL02-E3/45 GBU4G-BP GBJ2506-BP GBU6B-E3/51 GSIB15A80-E3/45 DB104-BP

