

Three Phase Rectifier Bridge

 $I_{dAV} = 70 A$ $V_{RRM} = 1600 V$

V _{RSM}	V _{RRM}	Types
1700	1600	VUO 70-16NO7

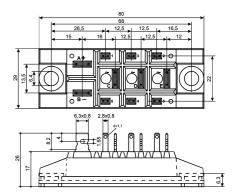
Symbol	Conditions	Conditions				
I _{dAV}	T _C = 100°C, mod	lule (for resistive load at bridge outpu	it) 70	Α		
I _{FSM}	$T_{VJ} = 45^{\circ}C$ $V_{R} = 0$	t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine	550 600	A A		
	$ \overline{T_{VJ} = T_{VJM}} $ $ V_{R} = 0 $	t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine	500 550	A		
l²t	$T_{VJ} = 45^{\circ}C$ $V_{R} = 0$	t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine	1520 1520	A ² s A ² s		
	$ \overline{T_{VJ} = T_{VJM}} $ $ V_{R} = 0 $	t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine	1250 1250	A ² s A ² s		
T _{VJ} T _{VJM} T _{stg}			-40+150 150 -40+125	°C °C °C		
V _{ISOL}	50/60 Hz, RMS I _{ISOL} ≤ 1 mA	t = 1 min t = 1 s	2500 3000	V~ V~		
M _d	Mounting torque	(M5) (10-32 UNF)	5 ±15% 44 ±15%	Nm		
lb.in.						
Weight	typ.		110	g		
Symbol	Conditions	Conditions Characteristic Values				
I _R	$V_{R} = V_{RRM}$	$T_{\text{VJ}} = 25^{\circ}\text{C}$	≤ 0.5	mA		

Symbol	mbol Conditions			Characteristic Values		
I _R	$V_{R} = V_{RRM}$ $T_{VJ} = 25^{\circ}C$	<u><</u>	0.5	mA		
	$V_{R}^{T} = V_{RRM}^{TWM}$ $T_{VJ}^{VJ} = T_{VJM}^{VJ}$	<u>≤</u>	10	mA		
V _F	$I_{\rm F} = 150 \text{A}$ $T_{\rm vd} = 25^{\circ} \text{C}$	<u><</u>	1.7	V		
V _{T0}	For power-loss calculations only		0.8	V		
r _T			8	$m\Omega$		
R _{thJC}	per diode; DC current		1.45	K/W		
	per module		0.242	K/W		
R_{thJH}	per diode, DC current		1.9	K/W		
uiori	per module		0.317	K/W		
$\overline{d_{s}}$	Creeping distance on surface		16.1	mm		
d _A	Creepage distance in air		7.5	mm		
a	Max. allowable acceleration		50	m/s ²		
Data a security	- t- IEO 00747 t					

Data according to IEC 60747 refer to a single diode unless otherwise stated

Features

Package with copper base plate Isolation voltage 3000 V~ Planar passivated chips Low forward voltage drop ¼" fast-on power terminals


Applications

Supplies for DC power equipment Input rectifiers for PWM inverter Battery DC power supplies Field supply for DC motors

Advantages

Easy to mount with two screws Space and weight savings Improved temperature and power cycling capability Small and light weight

Dimensions in mm (1 mm = 0.0394")

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

IXYS reserves the right to change limits, test conditions and dimensions.

20200625c

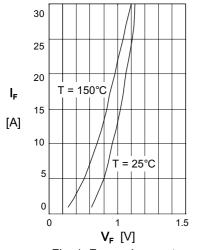


Fig. 1 Forward current vs. voltage drop per diode

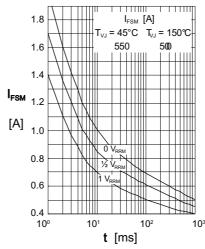


Fig. 2 Surge overload current per diode. t = duration I_{FSM} = Crest value

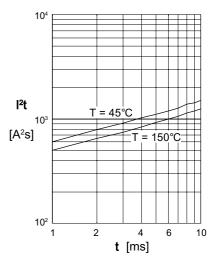


Fig. 3 I²t vs. time (1-10 ms) per diode/thyristor

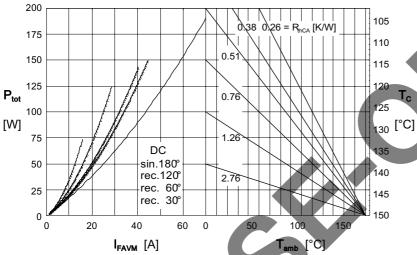


Fig. 4 Power dissipation versus direct output current and ambient temperature

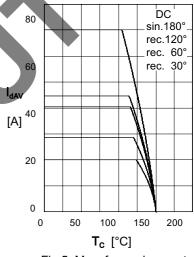


Fig.5 Max. forward current at case temperature

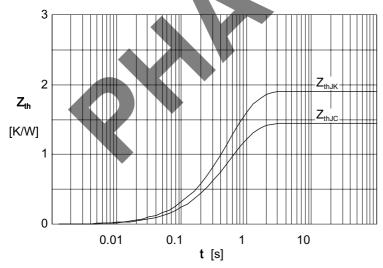


Fig. 6 Transient thermal impedance per diode/thyristor, calculated

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bridge Rectifiers category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

MB2510 MB252 MB356G MB358G GBJ1504-BP GBU15J-BP GBU15K-BP GBU4A-BP GBU6B-E3/45 GSIB680-E3/45 DB101-BP DF01 DF10SA-E345 BU1508-E3/45 KBPC50-10S RS405GL-BP G5SBA60-E3/51 GBU10J-BP GBU6M GBU8D-BP GBU8J-BP 2KBB10 36MB140A TB102M MB1510 MB258 MB6M-G MB86 TL401G MDA920A2 TU602 TU810 MP501W-BP MP502-BP BR101-BP BR84DTP204 BU2008-E3/51 KBPC10/15/2501WP KBPC25-02 VS-2KBB60 DF06SA-E345 DF1510S VS-40MT160PAPBF W02M GBL02-E3/45 GBU4G-BP GBJ2506-BP GBU6B-E3/51 GSIB15A80-E3/45 DB104-BP