AC Controller Modules

$\mathrm{V}_{\text {RSM }}$	$\mathrm{V}_{\text {RRM }}$	Type
$\mathrm{V}_{\text {DSM }}$	$\mathrm{V}_{\text {DRM }}$	
V	V	
1200	1200	VW2x45-12io1
1400	1400	VW2x45-14io1
1600	1600	VW2x45-16io1

$I_{\text {RMS }}=\quad 2 \times 45 \mathrm{~A}$
 $V_{\text {RRM }}=1200-1600 \mathrm{~V}$

Symbol Conditions
Maximum Ratings,

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
\(\mathrm{I}_{\text {RMS }}\) \\
\(\mathrm{I}_{\text {trms }}\) \\
\(\mathrm{I}_{\text {tavm }}\)
\end{tabular} \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& \mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C} ;(\text { per phase }) \\
\& \mathrm{T}_{\mathrm{V},}=\mathrm{T}_{\mathrm{VJM}} \\
\& \mathrm{~T}_{\mathrm{C}}=85^{\circ} \mathrm{C} ;\left(180^{\circ} \text { sine } ; \text { per thyristor }\right)
\end{aligned}
\]} \& 45
32
20 \& \begin{tabular}{l}
A \\
A \\
A
\end{tabular} \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {TSM }}\)} \& \[
\begin{aligned}
\& \mathrm{T}_{\mathrm{VJ}}=45^{\circ} \mathrm{C} \\
\& \mathrm{~V}_{\mathrm{R}}=0
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz}) \text {, sine } \\
\& \mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz}) \text {, sine }
\end{aligned}
\] \& \& \\
\hline \& \[
\begin{aligned}
\& \mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}} \\
\& \mathrm{~V}_{\mathrm{R}}=0
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz}), \text { sine } \\
\& \mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz}) \text {, sine }
\end{aligned}
\] \& \[
\begin{array}{r}
270 \\
290
\end{array}
\] \& \[
\begin{aligned}
\& \mathrm{A} \\
\& \mathrm{~A}
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{12t} \& \[
\begin{aligned}
\& \mathrm{T}_{\mathrm{VJ}}=45^{\circ} \mathrm{C} \\
\& \mathrm{~V}_{\mathrm{R}}=0
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz}), \text { sine } \\
\& \mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz}) \text {, sine }
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 450 \\
\& 430
\end{aligned}
\] \& \[
\begin{aligned}
\& A^{2} \mathrm{~S} \\
\& \mathrm{~A}^{2} \mathrm{~S}
\end{aligned}
\] \\
\hline \& \[
\begin{aligned}
\& \mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\text {VJM }} \\
\& \mathrm{V}_{\mathrm{R}}=0
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz}), \text { sine } \\
\& \mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz}) \text {, sine }
\end{aligned}
\] \& \[
\begin{aligned}
\& 360 \\
\& 350
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{A}^{2} \mathrm{~S} \\
\& \mathrm{~A}^{2} \mathrm{~S}
\end{aligned}
\] \\
\hline (di/dt) \({ }_{\text {cr }}\) \& \[
\begin{aligned}
\& \mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\text {VJM }} \\
\& \mathrm{f}=50 \mathrm{~Hz}, \mathrm{t}_{\mathrm{P}}=20 \\
\& \mathrm{~V}_{\mathrm{D}}=2 / 3 \mathrm{~V}_{\text {DRM }} \\
\& \mathrm{I}_{\mathrm{G}}=0.45 \mathrm{~A} \\
\& \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=0.45 \mathrm{~A} / \mathrm{H}
\end{aligned}
\] \& \& 100
500 \& A/ \(/ \mathrm{s}\)

$\mathrm{A} / \mu \mathrm{s}$

\hline (dv/dt) ${ }_{\text {cr }}$ \& \[
$$
\begin{aligned}
& \mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}} \\
& \mathrm{R}_{\mathrm{GK}}=\infty ; \text { method }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DR}}=2 /_{3} \mathrm{~V}_{\mathrm{DRM}} \\
& \text { linear voltage rise) }
\end{aligned}
$$
\] \& 1000 \& V/ $/ \mathrm{s}$

\hline $\overline{\mathbf{P G M}^{\text {g }}}$ \& \[
$$
\begin{aligned}
& \mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}} \\
& \mathrm{I}_{\mathrm{T}}=\mathrm{I}_{\mathrm{TAVM}}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& t_{\mathrm{p}}=30 \mu \mathrm{~s} \\
& \mathrm{t}_{\mathrm{p}}=300 \mu \mathrm{~s}
\end{aligned}
$$
\] \& 10

5 \& $$
\begin{aligned}
& \hline W \\
& W
\end{aligned}
$$

\hline $\mathbf{P}_{\text {Gavm }}$ \& \& \& 0.5 \& W

\hline $\mathrm{V}_{\text {RGM }}$ \& \& \& 10 \& V

\hline T_{vj} \& \& \& -40...+125 \& ${ }^{\circ} \mathrm{C}$

\hline $\mathrm{T}_{\text {vju }}$ \& \& \& 125 \& ${ }^{\circ} \mathrm{C}$

\hline $\mathrm{T}_{\text {stg }}$ \& \& \& -40...+125 \& ${ }^{\circ} \mathrm{C}$

\hline \multirow[t]{2}{*}{$\mathrm{V}_{\text {ISOL }}$} \& 50/60 Hz, RMS \& $\mathrm{t}=1 \mathrm{~min}$ \& 3000 \& V

\hline \& $\mathrm{l}_{\text {ISoL }} \leq 1 \mathrm{~mA}$ \& $\mathrm{t}=1 \mathrm{~s}$ \& 3600 \& V

\hline $\mathrm{M}_{\text {d }}$ \& Mounting torque \& \& 2-2.5/18-22 \& /lb.in.

\hline
\end{tabular}

Weight typ.
35
g
Data according to IEC 60747 refer to a single thyristor/diode unless otherwise stated.

Features

- Thyristor controller for AC (circuit W2C acc. to IEC) for mains frequency
- Soldering connections for PCB mounting
- Isolation voltage 3600 V ~
- Planar passivated chips
- UL applied

Applications

- Switching and control of
three phase AC circuits
- Softstart AC motor controller
- Solid state switches
- Light and temperature control

Advantages

- Easy to mount with two screws
- Space and weight savings
- Improved temperature and power cycling

Symbol
Conditions
Characteristic Values

Fig. 1 Gate trigger characteristics

Fig. 2 Gate trigger delay time

Fig. 4 Rated RMS current vs. time (360° conduction)

Fig. 5 Load current capability for two phase AC controller

Fig. 6 Surge overload current

Fig. 7 Power dissipation vs. direct output current and ambient temperature cyclo converter, four quadrant operation

Fig. 9 Transient thermal impedance junction to heatsink (per thyristor)
Fig. $81^{2} \mathrm{t}$ vs. time (per thyristor)

Fig. 10 Maximum forward current at case temperature

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Discrete Semiconductor Modules category:
Click to view products by IXYS manufacturer:

Other Similar products are found below :

M252511FV	DD260N12K-A	DD380N16A	DD89N1600K	APT2X21D	C60J APT58M	80J B522F-2-Y	EEC MSTC90-16	1625.163	3.0653
25.163.2453.0	25.163.4253.0	25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1	25.330.1	1653.1
25.330.4753.1	25.330.5253.1	25.334.3253.1	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	T483C T484C	T485F	T485
T512F-YEB	T513F T514F	T554 T612FSE	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1	25.330.0	0953.1
25.332.4353.1	25.350.1653.0	25.350.2453.0	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0	25.602.4	4053.0
25.640.5053.0									

