

Date:- 9th May, 2013

Data Sheet Issue:- A1

Provisional Data **Rectifier Diode** Types W5139T#420 to W5139T#480 Development Type No.: WX377T#480

Absolute Maximum Ratings

	VOLTAGE RATINGS	MAXIMUM LIMITS	UNITS
V _{RRM}	Repetitive peak reverse voltage, (note 1)	4200-4800	V
V _{RSM}	Non-repetitive peak reverse voltage, (note 1)	4300-4900	V

	OTHER RATINGS	MAXIMUM LIMITS	UNITS
I _{F(AV)M}	Maximum average forward current, T _{sink} =55°C, (note 2)	5139	А
I _{F(AV)M}	Maximum average forward current. T _{sink} =100°C, (note 2)	3650	А
I _{F(AV)M}	Maximum average forward current. T _{sink} =100°C, (note 3)	2000	А
I _{F(RMS)M}	Nominal RMS forward current, T _{sink} =25°C, (note 2)	9365	А
I _{F(d.c.)}	D.C. forward current, T _{sink} =25°C, (note 4)	8510	А
I _{FSM}	Peak non-repetitive surge t_p =10ms, V_m =60% V_{RRM} , (note 5)	55.0	kA
I _{FSM2}	Peak non-repetitive surge t _p =10ms, V _m ≤10V, (note 5)	60.5	kA
l²t	$I^{2}t$ capacity for fusing t_{p} =10ms, V_{m} =60% V_{RRM} , (note 5)	15.1×10 ⁶	A ² s
l²t	$I^{2}t$ capacity for fusing t_{p} =10ms, V_{m} ≤10V, (note 5)	18.3×10 ⁶	A ² s
T _{j op}	Operating temperature range	-40 to +160	°C
T _{stg}	Storage temperature range	-55 to +160	°C

Notes:-

1) De-rating factor of 0.13% per °C is applicable for T_j below 25°C.

2) Double side cooled, single phase; 50Hz, 180° half-sinewave.

3) Cathode side cooled, single phase; 50Hz, 180° half-sinewave.

4) Double side cooled.

5) Half-sinewave, 160°C T_j initial.

Characteristics

	PARAMETER	MIN.	TYP.	MAX.	TEST CONDITIONS (Note 1)	UNITS	
V _{FM}	Maximum peak forward voltage	-	-	1.25	I _{FM} =3000A	V	
V_{FM}	Maximum peak forward voltage	-	-	2.62	I _{FM} =15400A	V	
V _{T0}	Threshold voltage	-	-	0.826		V	
r _T	Slope resistance	-	-	0.136	Valid from 2000A to 6000A	mΩ	
I _{RRM}	Peak reverse current	-	-	100	Rated V _{RRM}	mA	
Q _{rr}	Recovered charge	-	12400	13500		μC	
Q _{ra}	Recovered charge, 50% Chord	-	8250	-	I _{TM} =2000A, t₀=2000µs, di/dt=10A/µs,	μC	
l _{rm}	Reverse recovery current	-	290	-	V _r =100V	А	
t _{rr}	Reverse recovery time, 50% chord	-	57	-		μs	
		-	-	0.008	Double side cooled	K/W	
R _{thJK}	Thermal resistance, junction to heatsink	-	-	0.013	Anode side cooled	K/W	
		-	-	0.020	Cathode side cooled	K/W	
F	Mounting force	60	-	70	Note 2	kN	
14/		-	1.15	-	Outline option TJ	Ka	
Wt	Weight	-	1.70	-	Outline option TE	Kg	

Notes:-

1) Unless otherwise indicated $T_j=160^{\circ}C$.

2) For other clamp forces, please consult factory.

Notes on Ratings and Characteristics

1.0 Voltage Grade Table

Voltage Grade	V _{RRM} V	V _{RSM} V	V _R DC V
42	4200	4300	2190
46	4600	4700	2400
48	4800	4900	2500

2.0 Extension of Voltage Grades

This report is applicable to other voltage grades when supply has been agreed by Sales/Production.

3.0 De-rating Factor

A blocking voltage de-rating factor of 0.13%/°C is applicable to this device for T_j below 25°C.

4.0 Snubber Components

When selecting snubber components, care must be taken not to use excessively large values of snubber capacitor or excessively small values of snubber resistor. Such excessive component values may lead to device damage due to the large resultant values of snubber discharge current. If required, please consult the factory for assistance.

and:

 $W_{AV} = \frac{\Delta T}{R_{th}}$

 $\Delta T = T_{j \max} - T_K$

5.0 Computer Modelling Parameters

5.1 Device Dissipation Calculations

$$I_{AV} = \frac{-V_{T0} + \sqrt{V_{T0}^{2} + 4 \cdot ff^{2} \cdot r_{T} \cdot W_{AV}}}{2 \cdot ff^{2} \cdot r_{T}}$$

Where V_{T0} =0.826V, r_T=0.136m Ω ,

 R_{th} = Supplementary thermal impedance, see table below and

ff = Form factor, see table below.

Supplementary Thermal Impedance						
Conduction Angle	6 phase (60°)	3 phase (120°)	½ wave (180°)	d.c.		
Square wave Double Side Cooled	0.00866	0.00847	0.00832	0.00800		
Square wave Cathode Side Cooled	0.02118	0.02101	0.02086	0.02000		
Sine wave Double Side Cooled	0.00855	0.00837	0.00813			
Sine wave Cathode Side Cooled	0.02108	0.02091	0.02068			

Form Factors					
Conduction Angle	6 phase (60°)	3 phase (120°)	½ wave (180°)	d.c.	
Square wave	2.449	1.732	1.414	1	
Sine wave	2.778	1.879	1.57		

5.2 Calculating VF using ABCD Coefficients

The on-state characteristic I_F vs. V_F, on page 6 is represented in two ways;

- (i) the well established V_{T0} and r_T tangent used for rating purposes and
- a set of constants A, B, C, D, forming the coefficients of the representative equation for V_F in terms of I_F given below:

$$V_F = A + B \cdot \ln(I_F) + C \cdot I_F + D \cdot \sqrt{I_F}$$

The constants, derived by curve fitting software, are given below for both hot and cold characteristics. The resulting values for V_F agree with the true device characteristic over a current range, which is limited to that plotted.

	25°C Coefficients		160°C Coefficients	
Α	0.7293242	А	0.5126757	
В	0.01451644	В	5.428726×10 ⁻³	
С	3.95906×10⁻⁵	С	5.50772×10⁻⁵	
D	5.37387×10 ⁻³	D	9.689679×10 ⁻³	

5.3 D.C. Thermal Impedance Calculation

$$r_t = \sum_{p=1}^{p=n} r_p \cdot \left(1 - e^{\frac{-t}{\tau_p}}\right)$$

Where p = 1 to *n*, *n* is the number of terms in the series and:

- t = Duration of heating pulse in seconds.
- $r_t =$ Thermal resistance at time t.

 r_p = Amplitude of p_{th} term.

 τ_p = Time Constant of r_{th} term.

The coefficients for this device are shown in the tables below:

D.C. Double Side Cooled						
Term	1	2	3	4		
rр	3.81150×10 ⁻³	1.89558×10 ⁻³	1.71360×10⁻³	5.24282×10 ⁻⁴		
τρ	1.01434	0.34872	0.08992	0.01065		

Term	1	2	3
r _p	0.01653	3.37618×10⁻³	5.93598×10 ⁻⁴
τρ	5.31595	0.15120	0.01207

6.0 Reverse recovery ratings

(i) Q_{ra} is based on 50% Irm chord as shown in Fig. 1

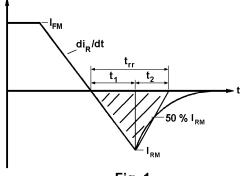


Fig. 1

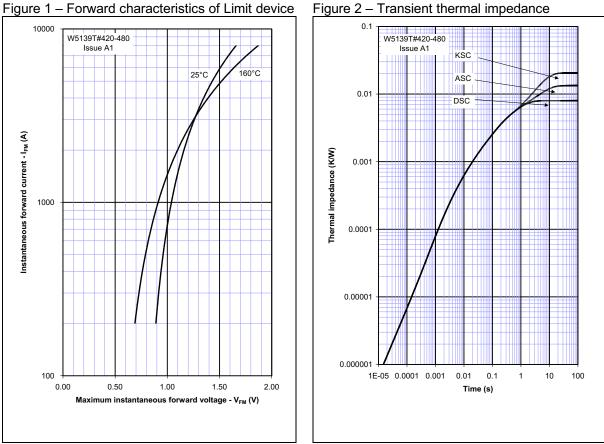
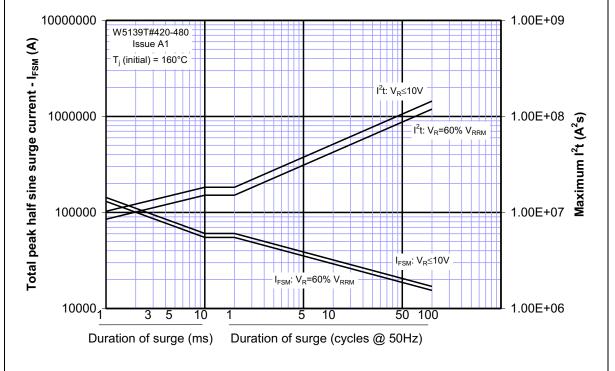
(ii) Q_{rr} is based on a 150µs integration time i.e.

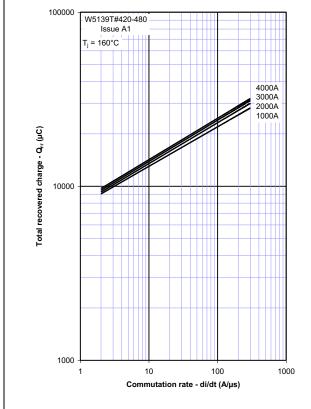
$$Q_{rr} = \int_{0}^{150\,\mu s} i_{rr}.dt$$

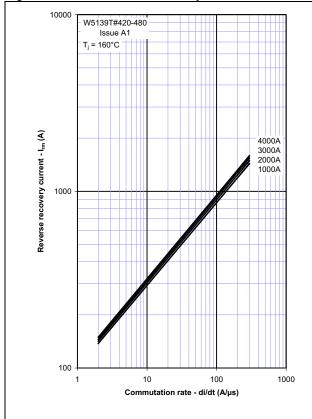
(iii)

$$K Factor = \frac{t_1}{t_2}$$

Curves


Figure 2 – Transient thermal impedance



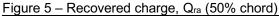


Figure 4 – Total recovered charge, Qrr

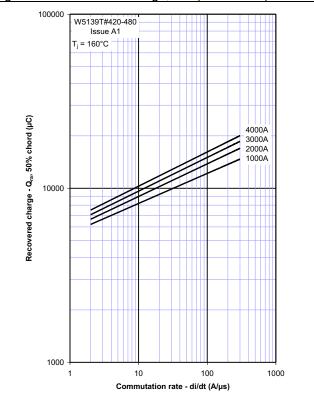
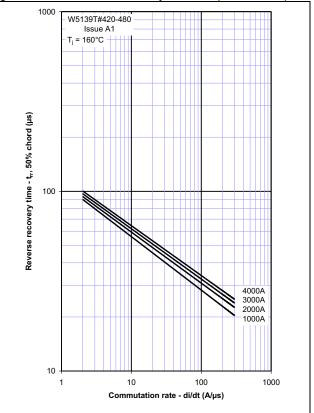
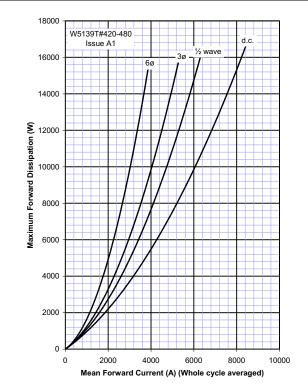




Figure 7 – Maximum recovery time, trr (50% chord)

Figure 8 – Forward current vs. Power dissipation – Double Side Cooled

Figure 10 – Forward current vs. Power dissipation – Cathode Side Cooled

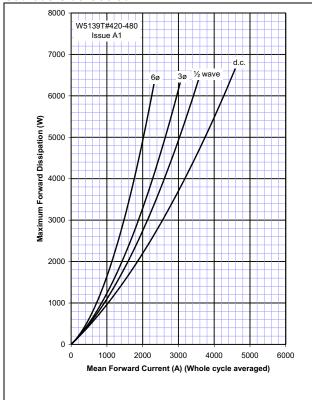


Figure 9 – Forward current vs. Heatsink temperature – Double Side Cooled

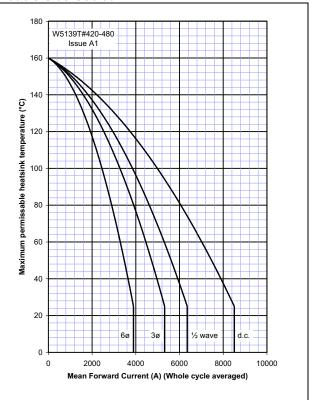
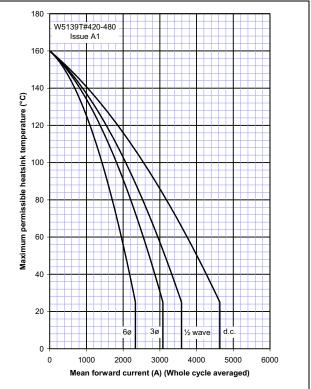
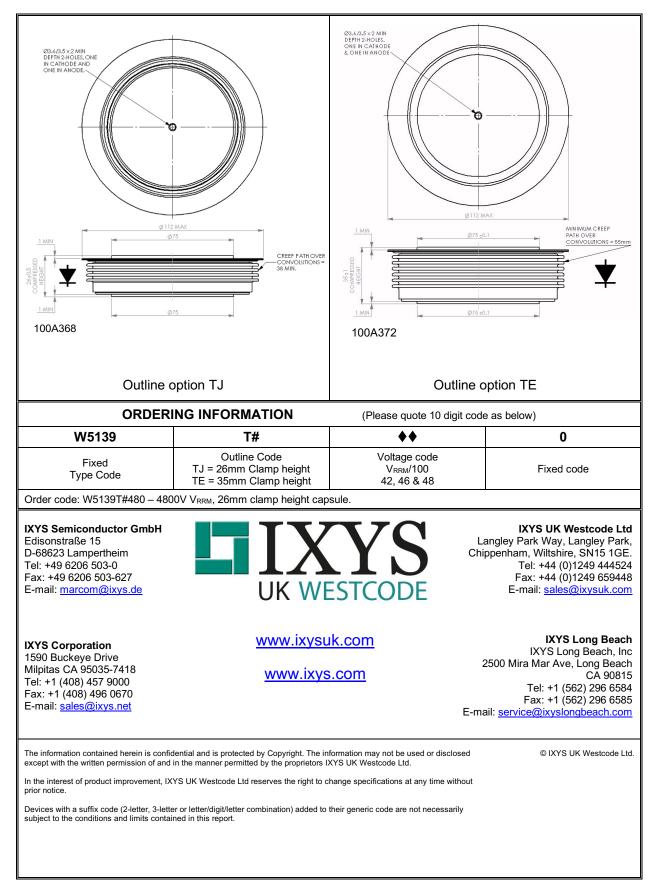




Figure 11 – Forward current vs. Heatsink temperature – Cathode Side Cooled

Outline Drawing & Ordering Information

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by IXYS manufacturer:

Other Similar products are found below :

 70HFR40
 RL252-TP
 150KR30A
 1N5397
 NTE5841
 NTE6038
 SCF5000
 1N4002G
 1N4005-TR
 JANS1N6640US
 481235F

 RRE02VS6SGTR
 067907F
 MS306
 70HF40
 T85HFL60S02
 US2JFL-TP
 A1N5404G-G
 ACGRA4007-HF
 ACGRB207-HF

 CLH03(TE16L,Q)
 ACGRC307-HF
 ACEFC304-HF
 NTE6356
 NTE6359
 NTE6002
 NTE6023
 NTE6077
 85HFR60
 40HFR60

 VS-88-7272PBF
 70HF120
 85HFR80
 D126A45C
 SCF7500
 D251N08B
 SCHJ22.5K
 SM100
 SCPA2
 SCH10000
 SDHD5K
 VS

 12FL100S10
 ACGRA4001-HF
 D1821SH45T
 PR
 D1251S45T
 NTE5990
 NTE6162
 NTE5850