k

Polymer PTC Resettable Fuse For Battery Protection JK-P Series

Features:

- ♦ Strap devices, Axial leaded
- ♦ Protection for NiCd/NiMH rechargesble battery packs,Li-ion/Polymer Li-ion battery
- ♦ Available in lead-free version
- ♦ Agency recognition:UL、CSA、TUV

TÜVRheinland[®] Precisely Right. No. R 50324498

TÜVRheinland[®] Precisely Right. No. R 50080891

Product Dimensions

Unit : mm

JK-P Series

Model	I	4	I	В		С		D		Е	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
JK-P070	17.0	22.1	4.9	5.5	0.4	1.0	3.5	6.0	3.8	4.2	
JK-P100	17.0	22.1	4.9	5.5	0.4	1.0	3.5	6.0	3.8	4.2	
JK-P120	17.0	22.1	4.9	5.5	0.4	1.0	3.5	6.0	3.8	4.2	
JK-P175	20.9	23.1	4.6	5.5	0.4	1.0	3.5	6.0	3.8	4.2	
JK-P180	20.9	23.1	4.6	5.5	0.4	1.0	3.5	6.0	3.8	4.2	
JK-P190	20.9	23.1	4.6	5.5	0.4	1.0	3.5	6.0	3.8	4.2	
JK-P200	20.9	23.1	4.6	5.5	0.4	1.0	3.5	6.0	3.8	4.2	
JK-P210	20.9	23.1	4.6	5.5	0.4	1.0	3.5	6.0	3.8	4.2	
JK-P260	20.9	23.1	4.6	5.5	0.4	1.0	3.5	6.0	3.8	4.2	
JK-P300	24.0	27.5	6.9	7.5	0.4	1.0	4.0	7.5	4.8	5.2	
JK-P350	24.0	27.5	6.9	7.5	0.4	1.0	4.0	7.5	4.8	5.2	
JK-P380	24.0	27.5	6.9	7.5	0.4	1.0	4.0	7.5	4.8	5.2	


```
JK-P Series
```

JK-P420	24.0	27.5	9.8	10.5	0.4	1.0	4.0	7.5	4.8	5.2
JK-P450	24.0	27.5	9.8	10.5	0.4	1.0	4.0	7.5	4.8	5.2
JK-P550	24.0	27.5	9.8	10.5	0.4	1.0	4.0	7.5	4.8	5.2
JK-P600	27.1	29.1	13.9	14.5	0.4	1.0	4.1	5.5	5.9	6.6
JK-P730	27.1	29.1	13.9	14.5	0.4	1.0	4.1	5.5	5.9	6.6
JK-P900	45.4	47.6	7.9	8.5	0.4	1.0	4.6	6.2	5.9	6.1
JK-P1410	58.0	60.0	13.4	14.0	0.4	1.0	4.2	5.8	5.9	6.1

Thermal Derating Chart-IH (A)

JK-P Series

Madal			Max	imum amb	oient opera	ating tempo	eratures (°C)		
Widdel	-40	-20	0	25	40	50	60	70	80	85
JK-P070	1.1	1.0	0.8	0.7	0.5	0.4	0.3	0.2	0.2	0.1
JK-P100	1.8	1.6	1.4	1.0	0.8	0.7	0.6	0.4	0.3	0.2
JK-P120	1.9	1.7	1.5	1.2	1.0	0.9	0.8	0.6	0.5	0.4
JK-P175	2.5	2.2	2.0	1.75	1.4	1.3	1.2	1.0	0.9	0.8
JK-P180	2.6	2.3	2.1	1.8	1.4	1.3	1.2	1.0	0.9	0.8
JK-P190	2.8	2.5	2.3	1.9	1.5	1.4	1.3	1.1	0.9	0.8
JK-P200	3.1	2.8	2.5	2.0	1.7	1.5	1.4	1.2	1.0	0.9
JK-P210	3.3	3.0	2.7	2.1	1.8	1.6	1.5	1.3	1.1	1.0
JK-P260	3.8	3.4	3.1	2.6	2.2	2.0	1.9	1.7	1.4	1.3
JK-P300	5.1	4.4	3.7	3.0	2.3	1.9	1.6	1.2	0.9	0.7
JK-P350	5.3	4.8	4.3	3.5	3.0	2.7	2.5	2.1	1.8	1.7
JK-P380	5.4	4.9	4.4	3.8	3.3	3.0	2.8	2.5	2.3	2.1
JK-P420	6.3	5.7	5.1	4.2	3.6	3.3	3.0	2.6	2.2	2.1
JK-P450	6.5	5.8	5.3	4.5	3.9	3.6	3.3	2.9	2.6	2.4
JK-P550	7.6	6.9	6.2	55	4.7	4.3	4.0	3.6	3.2	3.0
JK-P600	8.7	7.8	7.1	6.0	5.2	4.7	4.4	3.9	3.4	3.2
JK-P730	10.5	9.5	8.6	7.3	6.3	5.7	5.4	4.7	4.2	4.0
JK-P900	12.7	11.4	10	9.0	7.5	6.8	6.2	5.5	4.9	4.5
JK-P1410	19.9	17.8	15.7	14.1	11.8	10.8	9.7	8.7	7.7	7.2

Typical Time-to-Trip Charts at 25°C

AJK-P070
BJK-P100
CJK-P120
DJK-P175
EJK-P180
FJK-P190
GJK-P200
HJK-P210
IJK-P260
JJK-P300

Electrical Characteristic

M . 1.1	Ihold	Itrip	V_{max}	I _{max}	\mathbf{P}_{d}	Itrip	T_{trip}	R_{min}	R _{max}	R_{1max}
Model	(A)	(A)	(V)	(A)	(W)	Current(A)	Time(S)	(Ω)	(Ω)	(Ω)
JK-P070	0.70	1.45	16	100	1.60	3.5	5.0	100	200	400
JK-P100	1.00	2.50	16	100	1.60	5.0	5.0	70	130	260
JK-P120	1.20	2.70	16	100	1.60	6.0	5.0	60	120	240
JK-P175	1.75	3.80	16	100	1.60	8.5	5.0	30	65	130
JK-P180	1.80	3.80	16	100	1.60	9.0	5.0	30	60	120
JK-P190	1.90	4.20	16	100	1.60	9.5	5.0	25	45	90
JK-P200	2.00	4.40	16	100	1.60	10.0	5.0	20	40	80
JK-P210	2.10	4.40	16	100	1.60	10.5	5.0	20	35	70
JK-P260	2.60	5.20	16	100	1.60	13.0	5.0	15	30	60
JK-P300	3.00	6.30	24	100	2.40	15.0	5.0	15	31	62
JK-P350	3.50	7.00	24	100	2.40	17.5	5.0	17	31	62
JK-P380	3.80	7.60	24	100	2.40	19.0	5.0	13	22	44
JK-P420	4.20	8.30	24	100	2.00	21.0	5.0	12	24	48
JK-P450	4.50	9.00	20	100	2.00	22.5	5.0	11	20	40
JK-P550	5.50	10.50	20	100	2.00	27.5	5.0	9	16	32
JK-P600	6.00	11.70	20	100	2.80	30.0	5.0	7	14	28
JK-P730	7.30	14.10	20	100	3.30	36.5	5.0	5	12	24
JK-P900	9.00	16.70	20	100	3.80	45.0	5.0	6	10	20
JK-P1410	14.10	26.20	20	100	6.00	70.5	5.0	3	5	10

Test Procedures And Requirements

Test	Test Conditions	Accept/Reject Criteria
Resistance	In still air @ 25°C	$R_{min} \leq R \leq R_{max}$
Time to Trip	Specified current, V_{max} , $25^{\circ}C$	Tmaximum Time to Trip
Hold Current	30min, at I _H	No trip
Trip Cycle Life	Vmax, Imax, 1000cycles	No arcing or burning
Trip Endurance	Vmax, 24hours	No arcing or burning

Physical Characteristics and Environmental Specifications

Physical	Characteristics
----------	-----------------

Lead material	0.125mm nominal hickness,quarter-hard nickel	
Tape material	Polyester	
Environmental Specification	ons	
Test	Conditions	Resistance Change
Passive aging	70°C,1000hours	±10%
Humidity aging	85°C/85%RH.7days	±5%
Vibration	MIL-STD-883C, Test Condition A	No chage

Electrical Specifications:

 I_{hold} =Hold current: maximum current device will not trip in 25 °C still air.

 I_{trip} = Trip current: minimum current device will always trip in 25°C still air.

V_{max}=Maximum voltage device can withstand without damage at rated current(I_{max}).

 I_{max} =Maximum fault current device can withstand without damage at rated voltage(v_{max}).

 $P_{d max}$ = Power dissipated when device is in the tripped state in 25 °C still air environment at rated voltage.

Max Time-to-trip=Maximum time to trip(s) at assigned current.

 R_{min} =Minimum device resistance prior to tripping at 25 °C.

 R_{max} =Maximum device resistance prior to tripping at 25 °C.

 $R_{1max}\mbox{=}Maximum$ device resistance one hour after it is tripped at 25 $^\circ\!{\rm C}$

Packaging and Storage

Packaging

Bulk,500/1000pcs per bag

Storage

The maximum ambient temperature shall not exceed 40°C. Storage temperatures higher than 40°C couldresult in the deformation of packaging materials. The maximum relative humidity recommended for storage is70%. High humidity with high temperature can accelerate the oxidation of the solder plating on the termination and reduce the solderability of the components. Sealed plastic bags with desiccant shall be used to reduce the oxidation of the termination and shall only be opened prior to use. The products shall not be stored inareas where harmful gases containing sulfur or chlorine are present.

Warning:

Operation beyond the maximum ratings or improper use may result in device damage and possibleelectrical arcing and flame. The devices are intended for protection against occasional overcurrent or overtemperature faultconditions and should not be used when repeated fault conditions or prolonged trip events are anticipated. Contamination of the PPTC material with certain silicon based oils or some aggressive solvents canadversely impact the performance of the devices. Device performance can be impacted negatively if devices are handled in a manner inconsistent with recommended electronic, thermal and mechanical procedures for electronic components. Operation in circuit with a large inductance can generate a circuit voltage (L di/dt) above the rated voltage of the resettable device.

Notes:

The specification is intended to present application, product and technical data to assist the user in selecting PPTC circuit production devices, However, users should imdependently evaluate and test the suitability of each product. JinRui makes on warranties as to the acduracy or completeness of the information and disclaims any liatility resulting form its use, JinRui's only obligations are those im the JinRui Standard Rerms and Conditions of Sale and in no case will JinRui be liable for any incidental, imdirect, or consequential damages arising from the sale, resale, or misues of its products. Jinrui reserves the right to change of update, without notice, any information contained in this specification.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Resettable Fuses - PPTC category:

Click to view products by Jinrui Electronic Materials manufacturer:

Other Similar products are found below :

 RF0077-000
 RF2534-000
 RF3256-000
 RF3281-000
 RF3301-000
 RF3382-000
 SMD125-2
 RF2171-000
 RF2531-000
 RF2873

 000
 RF3060-000
 TR600-150Q-B-0.5-0.130
 RXE090
 5E4795/04-1502
 TRF250-080T-B-1.0-0.125
 SMD100-2
 NIS5452MT1TXG

 NIS5431MT1TXG
 SMD250-2
 0ZCM0001FF2G
 0ZCM0003FF2G
 0ZCM0004FF2G
 BK60-017-DZ-E0.6
 F95456-000
 LVR100S
 RS30-090

 RS30-600
 RS30-700
 RS30-800
 RS30-900
 RS60RB-005
 RS60RB-010
 RS60RB-025
 RS60RB-050
 RS60RB-075
 RS60RB

 160
 SMD1206-300C-12V
 SB250-145
 SB250-030
 SB250-200
 SB250-600
 SMD0805-005-24V
 SMD0805-050-16V
 SMD1210

 005-60V
 SMD0805-005
 R60-375
 SMD0805K110SF6V
 SMD1210