

JOHANSON DDD

X2Y ${ }^{\circledR}$ Filter \& Decoupling Capacitors

The $X 2 Y^{\circledR}$ Design - A Capacitive Circuit

$X 2 Y^{\circledR}$ components share many common features with standard multi-layer ceramic capacitors (MLCC) for easy adoption by end-users.

- Same component sizes (0603, 0805, 1206, etc.)
- Same dielectric, electrode and termination materials
- Same pick and place equipment
- Same industry test standards for component reliability

A standard multi-layer ceramic capacitor (MLCC) consists of opposing electrode layers A \& B. The X2 ${ }^{\circledR}$ design adds another set of electrode layers (G) which effectively surround each existing electrode of a two-terminal capacitor. The only external difference is two additional side terminations, creating a four-terminal capacitive circuit, which allows circuit designers a multitude of attachment options.

X2Y ${ }^{\circledR}$ Circuit 1: Filtering

When used in circuit 1 configuration the $X 2 Y^{\circledR}$ filter capacitor is connected across two signal lines. Differential mode noise is filtered to ground by the two Y capacitors, $A \& B$. Common mode noise is cancelled within the device.

Experts agree that balance is the key to a "quiet" circuit. $X 2 Y ®$ is a balanced circuit device with two equal halves, tightly matched in both phase and magnitude with respect to ground. Several advantages are gained by two balanced capacitors sharing a single ceramic component body.

- Exceptional common mode rejection
- Effects of aging \& temperature are equal on both caps
- Effect of voltage variation eliminated
- Matched line-to-ground capacitance

InAmp Input Filter Example

In this example, a single Johanson $X 2 Y^{\circledR}$ component was used to filter noise at the input of a DC instrumentation amplifier. This reduced component count by 3-to-1 and costs by over 70% vs. conventional filter components that included 1\% film Y-capacitors.

Parameter	$\mathrm{X} 2 \mathrm{Y}^{\circledR}$ 10 nF	Discrete $10 \mathrm{nF}, 2 @ 220 \mathrm{pF}$	Comments
DC offset shift	$<0.1 \mu \mathrm{~V}$	$<0.1 \mu \mathrm{~V}$	Referred to input
Common mode rejection	91 dB	92 dB	

Source: Analog Devices, "A Designer's Guide to Instrumentation Amplifiers (2nd Edition)" by Charles Kitchin and Lew Counts

Common Mode Choke Replacement

In this example, a $5 \mu \mathrm{H}$ common mode choke is replaced by an $0805,1000 \mathrm{pF}$ $\mathrm{X} 2 \mathrm{Y}^{\circledR}$ component acheiving superior EMI filtering by a component a fraction of the size and cost.

DC Motor EMI Reduction: A Superior Solution

One $X 2 Y^{\circledR}$ component has successfully replaced 7 discrete filter components while achieving superior EMI filtering.

X2Y ${ }^{\text {® }}$ Filter \& Decoupling Capacitors

X2Y ${ }^{\circledR}$ Circuit 2: Decoupling

When used in circuit 2 configuration, A \& B capacitors are placed in parallel effectively doubling the apparent capacitance while maintaining an ultra-low inductance. The low inductance advantages of the X2Y® Capacitor Circuit enables high-performance bypass networks at reduced system cost.

Power

Ground

- Low ESL (device only and mounted)
- Broadband performance
- Effective on PCB or package
- Lower via count, improves routing
- Reduces component count
- Lowers placement cost

Component Performance

The $\mathrm{X} 2 \mathrm{Y}^{\circledR}$ has short, multiple and opposing current paths resulting in lower device inductance.

Mounted Performance

SYSTEM PERFORMANCE

1:5 MLCC Replacement Example

$\mathrm{X} 2 \mathrm{Y}^{\prime}{ }^{\circledR}{ }^{\circledR}$ proven technology enables end-users to use one X2Y capacitor to replace five conventional MLCCs in a typical high performance IC bypass design. Vias are nearly cut in half, board space is reduced and savings are in dollars per PCB.

X2Y ${ }^{\bullet}$ Fliter \＆Decoupling Capacitors

Equivalent Circuits
$\mathrm{X} 2 \mathrm{Y}^{\circledR}$ filter capacitors employ a unique，patented low inductance design featuring two balanced capacitors that are immune to temperature，voltage and aging performance differences．
These components offer superior decoupling and EMI filtering performance，virtually eliminate parasitics， and can replace multiple capacitors and inductors saving board space and reducing assembly costs．

Advantages

－One device for EMI suppression or decoupling
－Replace up to 7 components with one X2Y
－Differential and common mode attenuation
－Matched capacitance line to ground，both lines
－Low inductance due to cancellation effect

Applications

－FPGA／ASIC／μ－P Decoupling
－DDR Memory Decoupling
－Amplifier Fllter \＆Decoupling
－High Speed Data Filtering
－Cellular Handsets

Dimensional View

	Circuit 1 （Y Cap．）		$\stackrel{\text { L }}{\text { ¢ }}$	$\begin{array}{\|l\|l\|l} \hline \stackrel{\rightharpoonup}{\circ} \\ \hline \stackrel{y}{c} \end{array}$	$\stackrel{\text { 닌 }}{ }$	咅	亮	哀	年	$\begin{aligned} & \hline \text { 능 } \\ & \hline \end{aligned}$	$$	$\begin{aligned} & \hline \frac{4}{\circ} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { 닝 } \\ \text { o } \end{array}$	$\begin{array}{\|l\|l} \hline \text { 닝 } \\ \hline \text { 皿 } \end{array}$			$\begin{aligned} & \hline \text { 님 } \\ & \text { 安 } \end{aligned}$		$\begin{array}{\|l\|l} \hline \frac{u}{E} \\ \text { Nod } \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { 首 } \\ \hline \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \frac{u}{\underline{E}} \\ \vdots \\ \hline 0 \end{array}$	$\begin{array}{\|l\|l} \hline \stackrel{u}{E} \\ \stackrel{N}{0} \end{array}$	宸 N 	莶 ．	宸 子	宸
SIZE	Circuit 2 （2＊Y Cap．）		$\begin{array}{\|l\|l\|} \hline \stackrel{\rightharpoonup}{\mathrm{c}} \\ \hline \end{array}$	$\begin{array}{\|l\|l\|l\|l\|} \hline \stackrel{u}{4} \\ \end{array}$	悥	単	$\begin{array}{\|l\|l\|} \hline \frac{1}{6} \\ \hline \frac{1}{2} \end{array}$	$\begin{aligned} & \text { 능 } \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{4}{2} \\ & \hline \stackrel{y}{\circ} \end{aligned}$	$\begin{aligned} & \hline \stackrel{4}{0} \\ & \text { a } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { u } \\ \text { 号 } \end{array}$	$\begin{aligned} & \text { 蒿 } \\ & \text { 答 } \end{aligned}$					$\begin{aligned} & \text { ㄴ⿳亠口冋口 } \\ & \text { 高 } \end{aligned}$		$\begin{array}{\|l\|l\|} \hline \text { 崖 } \\ \text { 年 } \end{array}$	$\begin{array}{\|l\|l} \hline \begin{array}{l} \text { u } \\ \vdots \\ \text { on } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \stackrel{u}{E} \\ \stackrel{y}{c} \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \frac{1}{e} \\ \text { a } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { 崖 } \\ \text { 年 } \end{array}$	$\begin{array}{\|l\|l} \hline \stackrel{u}{E} \\ \stackrel{y}{0} \\ \hline \end{array}$		害
$\begin{aligned} & \text { EIA } \\ & \text { (JDI) } \end{aligned}$	Order Code		$\stackrel{\text { 깐 }}{ }$	$\stackrel{\square}{5}$	안	ํㅡㄴ	읏	\％	？	후	ㅊ	乭	깐	～		※	N	$\stackrel{\square}{\square}$	푸	等	¢	$\underset{\sim}{\text { T }}$	菻	痛	夺	寺
$\begin{gathered} 0402 \\ \mathrm{X} 07 \end{gathered}$	X7R	50																								
		6.3																								
$\begin{gathered} 0603 \\ \text { X14 } \end{gathered}$	NPO	50																								
	X7R	100																								
		50																								
		25																								
		10																								
		6.3																								
$\begin{gathered} 0805 \\ \text { X15 } \end{gathered}$	NPO	100																								
		50																								
	X7R	100																								
		50																								
$\begin{aligned} & 1206 \\ & \mathrm{X} 18 \end{aligned}$	NPO	50																								
	X7R	100																								
		50																								
$\begin{gathered} 1210 \\ \times 41 \\ \hline \end{gathered}$	X7R	100																								
		50					HS	NPO																		
$\begin{gathered} 1410 \\ \times 44 \end{gathered}$	X7R	100																								
		50																								
$\begin{gathered} 1812 \\ \mathrm{X} 43 \end{gathered}$	X7R	100																								
		50																								

Circuit 1 （Balanced Filtering）$=A($ or $B)$ to $G \quad$ Circuit 2 （Decoupling）$=A+B$ to $G \quad[A$ to B capacitance $=1 / 2 \mathrm{C} 1$ ］
Rated voltage is for A or B to ground．A to B rating is $2 X$ Vrated Contact the factory for other voltage ratings and capacitance values．
www．johanson dielectrics．com

X2Y ${ }^{\ominus}$ Filter \& Decoupling Capacitors

Additional test data and related information available at www.johansondielectrics.com/x2y/

Mechanical Characteristics

	0402 (X07)		0603 (X14)		0805 (X15)		1206 (X18)		1210 (X41)		1410 (X44)		1812 (X43)	
	IN	mm												
L	$\begin{aligned} & 0.045 \pm \\ & 0.003 \end{aligned}$	$\begin{aligned} & 1.143 \pm \\ & 0.076 \end{aligned}$	$\begin{aligned} & 0.064 \pm \\ & 0.005 \end{aligned}$	$\begin{aligned} & 1.626 \pm \\ & 0.127 \end{aligned}$	$\begin{aligned} & 0.080 \pm \\ & 0.008 \pm \end{aligned}$	$\begin{aligned} & 2.032 \pm \\ & 0.203 \end{aligned}$	$\begin{aligned} & 0.124 \pm \\ & 0.010 \end{aligned}$	$\begin{aligned} & 3.150 \pm \\ & 0.254 \end{aligned}$	$\begin{aligned} & 0.125 \pm \\ & 0.010 \end{aligned}$	$\begin{aligned} & 3.175 \pm \\ & 0.254 \end{aligned}$	$\begin{aligned} & 0.140 \pm \\ & 0.010 \end{aligned}$	$\begin{aligned} & 3.556 \pm \\ & 0.254 \end{aligned}$	$\begin{aligned} & 0.174 \pm \\ & 0.010 \end{aligned}$	$\begin{aligned} & 4.420 \pm \\ & 0.254 \end{aligned}$
W	$\begin{aligned} & 0.024 \pm \\ & 0.003 \end{aligned}$	$\begin{aligned} & 0.610 \pm \\ & 0.076 \end{aligned}$	$\begin{aligned} & 0.035 \pm \\ & 0.005 \pm \end{aligned}$	$\begin{aligned} & 0.889 \pm \\ & 0.127 \end{aligned}$	$\begin{aligned} & 0.050 \pm \\ & 0.008 \end{aligned}$	$\begin{aligned} & 1.270 \pm \\ & 0.203 \end{aligned}$	$\begin{aligned} & 0.063 \pm \\ & 0.010 \end{aligned}$	$\begin{aligned} & 1.600 \pm \\ & 0.254 \end{aligned}$	$\begin{aligned} & 0.098 \pm \\ & 0.010 \end{aligned}$	$\begin{aligned} & 2.489 \pm \\ & 0.254 \end{aligned}$	$\begin{aligned} & 0.098 \pm \\ & 0.010 \end{aligned}$	$\begin{aligned} & 2.490 \pm \\ & 0.254 \end{aligned}$	$\begin{aligned} & 0.125 \pm \\ & 0.010 \end{aligned}$	$\begin{aligned} & 3.175 \pm \\ & 0.254 \end{aligned}$
T	$\begin{aligned} & 0.020 \\ & \max \end{aligned}$	$\begin{aligned} & 0.508 \\ & \max \end{aligned}$	$\begin{aligned} & 0.026 \\ & \max \end{aligned}$	$\begin{aligned} & 0.660 \\ & \max \end{aligned}$	$\begin{aligned} & 0.040 \\ & \max \end{aligned}$	$\begin{aligned} & 1.016 \\ & \max \end{aligned}$	$\begin{aligned} & 0.050 \\ & \max \end{aligned}$	$\begin{aligned} & 1.270 \\ & \max \end{aligned}$	$\begin{aligned} & 0.070 \\ & \max \end{aligned}$	$\begin{aligned} & 1.778 \\ & \max \end{aligned}$	$\begin{aligned} & 0.070 \\ & \max \end{aligned}$	$\begin{aligned} & 1.778 \\ & \max \end{aligned}$	$\begin{aligned} & 0.090 \\ & \max \end{aligned}$	$\begin{aligned} & 2.286 \\ & \max \end{aligned}$
EB	$\begin{aligned} & 0.008 \pm \\ & 0.003 \end{aligned}$	$\begin{aligned} & 0.203 \pm \\ & 0.076 \end{aligned}$	$\begin{aligned} & 0.009 \pm \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.229 \pm \\ & 0.102 \end{aligned}$	$\begin{aligned} & 0.009 \pm \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.229 \pm \\ & 0.102 \end{aligned}$	$\begin{aligned} & 0.009 \pm \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.229 \pm \\ & 0.102 \end{aligned}$	$\begin{aligned} & 0.009 \pm \\ & 0.005 \end{aligned}$	$\begin{aligned} & 0.229 \pm \\ & 0.127 \end{aligned}$	$\begin{aligned} & 0.009 \pm \\ & 0.005 \end{aligned}$	$\begin{aligned} & 0.229 \pm \\ & 0.127 \end{aligned}$	$\begin{aligned} & 0.009 \pm \\ & 0.005 \end{aligned}$	$\begin{aligned} & 0.229 \pm \\ & 0.127 \end{aligned}$
CB	$\begin{aligned} & 0.010 \pm \\ & 0.003 \pm \end{aligned}$	$\begin{aligned} & 0.305 \pm \\ & 0.076 \end{aligned}$	$\begin{aligned} & 0.018 \pm \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.457 \pm \\ & 0.102 \end{aligned}$	$\begin{aligned} & 0.022 \pm \\ & 0.005 \pm \end{aligned}$	$\begin{aligned} & 0.559 \pm \\ & 0.127 \end{aligned}$	$\begin{aligned} & 0.040 \pm \\ & 0.005 \end{aligned}$	$\begin{aligned} & 1.016 \pm \\ & 0.127 \end{aligned}$	$\begin{aligned} & 0.045 \pm \\ & 0.005 \end{aligned}$	$\begin{aligned} & 1.143 \pm \\ & 0.127 \end{aligned}$	$\begin{aligned} & 0.045 \pm \\ & 0.005 \end{aligned}$	$\begin{aligned} & 1.143 \pm \\ & 0.127 \end{aligned}$	$\begin{aligned} & 0.045 \pm \\ & 0.005 \end{aligned}$	$\begin{aligned} & 1.143 \pm \\ & 0.127 \end{aligned}$

How to Order X2Y ${ }^{\circledR}$ EMI Filter Capacitors

P/N written: 500X18W473MV4E

X2Y ${ }^{\circledR}$ Filter \& Decoupling Capacitors

Solder Pad Recommendations

	0402 (X07)		0603 (X14)		0805 (X15)		1206 (X18)		1210 (X41)		1410 (X44)		1812 (X43)	
	IN	mm												
X	0.020	0.51	0.035	0.89	0.050	1.27	0.065	1.65	0.100	2.54	0.100	2.54	0.125	3.18
Y	0.020	0.51	0.025	0.64	0.035	0.89	0.040	1.02	0.040	1.02	0.040	1.02	0.040	1.02
G	0.024	0.61	0.040	1.02	0.050	1.27	0.080	2.03	0.080	2.03	0.100	2.54	0.130	3.30
V	0.015	0.38	0.020	0.51	0.022	0.56	0.040	1.02	0.045	1.14	0.045	1.14	0.045	1.14
U	0.039	0.99	0.060	1.52	0.080	2.03	0.120	3.05	0.160	4.06	0.160	4.06	0.190	4.83
Z	0.064	1.63	0.090	2.29	0.120	3.05	0.160	4.06	0.160	4.06	0.180	4.57	0.210	5.33

Use of solder mask beneath component is not recommended.

Good Layout

Poor Layout

Figure 1

Optimizing X2Y Performance with Proper Attachment Techniques

X2Y ${ }^{\circledR}$ capacitors excel in low inductance performance for a myriad of applications including EMI/RFI filtering, power supply bypass / decoupling. How the capacitor is attached to the application PCB is every bit as important as the capacitor itself. Proper attention to pad layout and via placement insures superior device performance. Poor PCB layouts squander performance, requiring more capacitors, and more vias to do the same job. Figure 1 compares the $X 2 Y^{\circledR}$ recommended layout against a poor layout. Because of its long extents from device terminals to vias, and the wide via separation, the poor layout shown performs badly. It exhibits approximately 200% L1 inductance, and 150% L2 inductance compared to recommended X2Y layouts.

For further details on via placement and it's effect on mounted inductance, please refer to X2Y Attenuators, LLC. application note "Get the Most from X2Y Capacitors with Proper Attachment Techniques" at www.x2y.com/bypass.htm
$\mathrm{X} 2 \mathrm{Y}^{\circledR}$ technology patents and registered trademark under license from X2Y ATTENUATORS, LLC
Johanson Dielectrics, Inc. reserves the right to make design and price changes without notice. All sales are subject to the terms and conditions printed on the back side of our sales order acknowledgment forms, including a limited warranty and remedies for non-conforming goods or defective goods. We will be pleased to provide a copy of these terms and conditions for your review.

Unit E, 11/F., Phase 1, Kaiser Estate 41 Man Yue Street
Hunghom, Kowloon, Hong Kong
Tel: (852) 23346310 • Fax: (852) 23348858

15191 Bledsoe Street Sylmar, California 91342 Tel (818) 364-9800 • FAX (818) 364-6100 http://www.johansondielectrics.com

JOHANSON EUROPE LTD.
Acorn House, Old Kiln Road Flackwell Heath, Bucks HP10 9NR United Kingdom
Tel +44-162-853-1154 • Fax +44-162-853-2703

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Johanson manufacturer:
Other Similar products are found below :
S-X2Y-MTR 502R29W331KF3E--SC L603DC L/C-402DS 502R30W681KF3E--SC S805TS S805DS S-0805 502R29W331KF3E-****-SC
251R14S100FV4T RWCSG4Q006R0FS RWCSG3U040R0FS RHXH1N001R0F4 0868AT43A0020-EB1SMA S-X15-EMI 5500L/C402D S-500 250R05L101GV4T S-SY2 RWCSG4U020R0FS 1720BL15B0050E 6R3R14X475MV4T S402DS S111DVE S-X07CBK L/C-603DS 9702-2 S-2KV S111TVE 102R18N471JV4E RWCSG1U020K0FS RWCSG4Q002R0FS S-X2Y-AEC 2450L/C603D S201TL S-X14-PBP S-X14CBK L/C-805DS S603TS S-1KV RWCSG4U001K0FS RWCSG4Q00R25FS 2450FB15L0001E L201DC L402W S-PLY-2 S603DS S-0603 1200BP44A575E L603W

