

JW5361/JW5361M JW5361F/JW5361FM

18V/3A

Sync. Step-Down Converter

Preliminary Specifications Subject to Change without Notice

DESCRIPTION

The JW[®]5361, JW[®]5361M, JW[®]5361F and JW[®]5361FM are monolithic buck switching regulators based on I2 architecture for fast transient response. Operating with an input range of 4.5V~18V, JW5361, JW5361M, JW5361F and JW5361FM deliver 3A of continuous output current with two integrated N-Channel MOSFETs. The internal synchronous power switches provide high efficiency without the use of an external Schottky diode. At light load, JW5361 and JW5361M operate in low frequency to maintain high efficiency.

JW5361, JW5361M, JW5361F and JW5361FM guarantee robustness with output short protection, thermal protection, current run-away protection and input under voltage lockout.

JW5361, JW5361M, JW5361F and JW5361FM are available in SOT23-6 package, which provides a compact solution with minimal external components.

Company's Logo is Protected, "JW" and "JOULWATT" are Registered Trademarks of JoulWatt technology Inc.

FEATURES

- 4.5V to 18V operating input range 3A output current
- Up to 95% efficiency
- FCCM at light load (JW5361F / JW5361FM)
- PFM at light load (JW5361 / JW5361M)
- 600kHz switching frequency
- Internal soft-start
- Input under-voltage lockout
- Current run-away protection
- Output short protection
- Thermal protection
- Available in SOT23-6 package

APPLICATIONS

- Distributed Power Systems
- Networking Systems
- FPGA, DSP, ASIC Power Supplies
- Green Electronics/ Appliances
- Notebook Computers

TYPICAL APPLICATION

ORDER INFORMATION

DEVICE ¹⁾	PACKAGE	TOP MARKING ²⁾	ENVIRONMENTAL ³⁾	
	SOT22 6	JWN9	Groop	
JM23012019#14	30123-0	YW□□□	Green	
	SOT22 6	JWPC		
JM2301M201B#1K	50125-0	YW□□□	Green	
	SOT22 C	JWPA Green		
JM2301E2018#1K	50123-0	YW□□□	Green	
	COT22 C	JWPD		
JW230TEMISOTB#TK	50123-6	YW□□□	Green	

Notes:

3) All Joulwatt products are packaged with Pb-free and Halogen-free materials and compliant to RoHS standards.

DEVICE INFORMATION

DEVICE	Operation Mode at light load	Package	MSL	STATUS
JW5361SOTB#TR	PFM	SOT23-6	MSL1	Available
JW5361MSOTB#TR	PFM	SOT23-6	MSL3	Available
JW5361FSOTB#TR	FCCM	SOT23-6	MLS1	Contact the factory
JW5361FMSOTB#TR	FCCM	SOT23-6	MLS3	Contact the factory

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATING¹⁾

VIN, EN Pin	0.3V to 20V
SW Pin	0.3V(-5V for 10ns) to 20V(22V for 10ns)
BST Pin	SW-0.3V to SW+4V
All other Pins	0.3V to 4V
Junction Temperature ²⁾	150°C
Lead Temperature	
Storage Temperature	65°C to +150°C

RECOMMENDED OPERATING CONDITIONS

Input Voltage V _{IN}	
Output Voltage V _{OUT}	0.765V to V_{IN} *D _{max}
Operation Junction Temperature Tj	40°C to 125°C

THERMAL PERFORMANCE

SOT23-6 ³⁾	220	.130ºC/W
SOT23-6 ⁴⁾	140.	75°C/W

Note:

- 1) Exceeding these ratings may damage the device. These stress ratings do not imply function operation of the device at any other conditions beyond those indicated under RECOMMENDED OPERATING CONDITIONS.
- 2) The JW5361, JW5361M, JW5361F and JW5361FM include thermal protection that is intended to protect the device in overload conditions. Continuous operation over the specified absolute maximum operating junction temperature may damage the device.
- **3)** Measured on JESD51-7, 4-layer PCB.
- 4) Measured on a two-layer JW5361/JW5361M/JW5361F/JW5361FM Evaluation Board at TA=25 $^\circ\!\!{\rm C}.$

JW5361/JW5361M/JW5361F/JW5361FM Rev.0.2

 θ_{Jc}

 θ_{JA}

ELECTRICAL CHARACTERISTICS

V_{IN} =12V, T_A =25 C_F Unless otherwise stated.						
Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
VIN Under Voltage Lockout Threshold	V _{IN_MIN}	V _{IN} rising	4.0	4.2	4.5	V
VIN Under voltage Lockout Hysteresis	VIN_MIN_HYST			300		mV
Shutdown Supply Current	I _{SD}	V _{EN} =0V		0.2	1	μA
Supply Current	lq	V _{EN} =5V, V _{FB} =1V		150	220	μA
Feedback Voltage		Tj=25 ⁰C	757	765	773	mV
	v ⊢B	Tj=-40 ⁰C~125 ⁰C	750	765	780	mV
FB Leakage Current	I _{FB}	V _{FB} =0.85V			100	nA
Top Switch Resistance	Rds(on)t			80		mΩ
Bottom Switch Resistance	Rds(on)b			50		mΩ
Top Switch Leakage Current	ILEAK_TOP	V _{IN} =18V, V _{EN} =0V, V _{SW} =0V			1	μA
Bottom Switch Leakage Current	ILEAK_BOT	V _{IN} =18, V _{EN} =0V, V _{SW} =18V			1	μA
Bottom Switch Current Limit	I _{LIM_BOT}		3	3.5	5.2	А
Negative Current Limit	I _{LIM_Neg}	JW5361F/JW5361FM		-1.5		А
Minimum On Time ⁵⁾	TON_MIN			120		ns
Minimum Off Time	TOFF_MIN	V _{FB} =0.4V		150		ns
Maximum On Time	TON_Max			4		us
EN Rising Threshold	Ven_h	V _{EN} rising	1.1	1.2	1.3	V
EN Falling Threshold	V _{EN_L}	V _{EN} falling	0.98	1.05	1.12	V
Soft-Start Period ⁵⁾⁶⁾	tss		0.9	1.3	1.9	ms
Frequency	fsw		480	600	720	kHz
Thermal Shutdown ⁵⁾	T _{TSD}			160		°C
Thermal Shutdown Hysteresis ⁵⁾	TTSD_HYST			20		°C

Note:

- 5) Guaranteed by design.
- 6) Soft-Start Period is tested from 10% to 90% of the steady state output voltage.

PIN DESCRIPTION

SOT23-6	Name	Description
1	GND	Ground pin.
0.000		SW is the switching node that supplies power to the output. Connect the output LC filter
2	300	from SW to the output load.
		Input voltage pin. VIN supplies power to the IC. Connect a 4.5V to 18V supply to VIN and
3 VIN	bypass VIN to GND with a suitably large capacitor to eliminate noise on the input to the	
		IC.
4 FB		Output feedback pin. FB senses the output voltage and is regulated by the control loop
		to 0.765V. Connect a resistive divider at FB.
5	EN	Drive EN pin high to turn on the regulator and low to turn off the regulator.
6	BST	Connect a 0.1μ F capacitor between BST and SW pin to supply voltage for the top switch
0		driver.

BLOCK DIAGRAM

JW5361/JW5361M/JW5361F/JW5361FM Rev.0.2

JoulWatt® Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.

TYPICAL PERFORMANCE CHARACTERISTICS (JW5361/JW5361M)

 V_{IN} =12V, V_{OUT} = 3.3V, L = 3.3µH, C_{OUT} = 22µF*2, TA = +25°C, unless otherwise noted

Steady State Test

V_{IN}=12V, V_{OUT}=3.3V I_{OUT}=3A

Startup through Enable V_{IN}=12V, V_{OUT}=3.3V I_{OUT}=3A (Resistive load)

Shutdown through Enable V_{IN}=12V, V_{OUT}=3.3V I_{OUT}=3A (Resistive load)

Heavy Load Operation

3A LOAD

Medium Load Operation 0.3A LOAD

Light Load Operation 0 A LOAD

Short Circuit Protection

 V_{IN} =12V, V_{OUT} =3.3V I_{OUT} =3A- Short

Short Circuit Recovery

 V_{IN} =12V, V_{OUT} =3.3V I_{OUT} = Short-3A

Load Transient

C5=51pF 0.3A LOAD \rightarrow 3A LOAD \rightarrow 0.3A LOAD

7

JW5361/JW5361M/JW5361F/JW5361FM Rev.0.2

JoulWatt® Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.

TYPICAL PERFORMANCE CHARACTERISTICS (JW5361/JW5361M)

(V_{OUT}=3.3V, L=3.3µH)

Figure 3. Frequency vs Load Current

 $(V_{OUT}=3.3V, L=3.3\mu H)$

Figure 5. Supply Current vs Junction Temperature

(V_{OUT}=3.3V, L=3.3µH)

Figure 6. Shutdown Current vs Junction Temperature

FUNCTIONAL DESCRIPTION

JW5361/JW5361M/JW5361F/JW5361FM

JW5361, JW5361M, JW5361F and JW5361FM are synchronous step-down regulators based on I2 control architecture. It regulates input voltages from 4.5V to 18V down to an output voltage as low as 0.765V, and is capable of supplying up to 3A of load current.

Shut-Down Mode

The regulator shuts down when voltage at EN pin is driven below 0.4V. The entire regulator is off and the supply current consumed by the regulator drops below 1μ A.

Power Switch

N-Channel MOSFET switches are integrated on the JW5361, JW5361M, JW5361F and JW5361FM to down convert the input voltage to the regulated output voltage. Since the top MOSFET needs a gate voltage great than the input voltage, a boost capacitor connected between BST and SW pins is required to drive the gate of the top switch. The boost capacitor is charged by the internal 3.3V rail when SW is low.

CCM Operation

Continuous conduction mode (CCM) occurs when the output current is high, and the inductor current is always above zero amps.

JW5361F and JW5361FM are configured to operate in forced CCM operation (FCCM) when the output current is low. In FCCM operation, the switching frequency is fairly constant; hence the output ripple keeps almost the same throughout the whole load range.

PFM Operation

At light load condition, JW5361 and JW5361M are configured to work in PFM mode to optimize the efficiency. When the load decreases, the inductor current will decrease as well. Once the

inductor current reaches zero, the part transitions from CCM to PFM mode.

In PFM operation, the high side MOSFET is turned off by the peak current reference and the low side MOSFET turns on until the inductor current reaches zero. At this time, the output voltage is still higher than the target value which causes the internal COMP voltage lower than a clamp value, and the high side MOSFET is not allowed to turn on until the COMP voltage rises above its clamp voltage.

VIN Under-Voltage Protection

A resistive divider can be connected between V_{IN} and ground, with the central tap connected to EN, so that when V_{IN} drops to the pre-set value, EN drops below 1.05V to trigger input under voltage lockout protection.

Output Current Run-Away Protection

At start-up, due to the high voltage at input and low voltage at output, current inertia of the output inductor can be easily built up, resulting in a large start-up output current. A valley current limit is designed in JW5361, JW5361M, JW5361F and JW5361FM so that only when output current drops below the valley current limit can the top power switch be turned on. By such control mechanism, the output current at start-up is well controlled.

Output Short Protection

When the output is shorted to ground, the regulator is allowed to switch for 2048 cycles. If the short condition is cleared within this period, then the regulator resumes normal operation. If the short condition is still present after 2048 switching cycles, then no switching is allowed and the regulator enters hiccup mode for 6144 cycles. After the 6144 hiccup cycles, the regulator will try to start-up again. If the short

JW5361/JW5361M/JW5361F/JW5361FM Rev.0.2

JW5361/JW5361M/JW5361F/JW5361FM

condition still exists after 2048 cycles of switching, the regulator enters hiccup mode. This process of start-up and hiccup iterate itself until the short condition is removed.

Thermal Protection

When the temperature of the regulator rises above 160°C, it is forced into thermal shut-down. Only when core temperature drops below 140°C can the regulator become active again.

APPLICATION INFORMATION

Output Voltage Set

The output voltage is determined by the resistor divider connected at the FB pin, and the voltage ratio is:

$$V_{FB} = V_{OUT} \cdot \frac{R_4}{R_4 + R_3}$$

where V_{FB} is the feedback voltage and V_{OUT} is the output voltage.

Choose R_4 around $16k\Omega,$ and then R_3 can be calculated by:

$$\mathbf{R}_3 = \mathbf{R}_4 \cdot \left(\frac{\mathbf{V}_{\text{OUT}}}{0.765} - 1\right)$$

The following table lists the recommended values.

V _{оυт} (V)	R₄(kΩ)	R ₃ (kΩ)
0.8	16	0.715
1	16	4.9
1.2	16	9.1
1.8	16	21.6
2.5	16	36.3
3.3	16	51
5	16	88.7

Feedforward Capacitor

In order to improve dynamic performance, a feedforward capacitor (C_5) can be considered to be in parallel with R_3 .

Input Capacitor

The input capacitor is used to supply the AC input current to the step-down converter and maintain the DC input voltage. Estimate the RMS current in the input capacitor with:

$$\mathbf{I}_{\text{C1}} = \mathbf{I}_{\text{LOAD}} \cdot \sqrt{\frac{\mathbf{V}_{\text{OUT}}}{\mathbf{V}_{\text{IN}}} \cdot \left(1 - \frac{\mathbf{V}_{\text{OUT}}}{\mathbf{V}_{\text{IN}}}\right)}$$

where I_{LOAD} is the load current, V_{OUT} is the output voltage, V_{IN} is the input voltage.

The input capacitor can be calculated by the following equation when the input ripple voltage is determined.

$$\mathbf{C}_{1} = \frac{\mathbf{I}_{\text{LOAD}}}{\mathbf{f}_{\text{S}} \cdot \Delta \mathbf{V}_{\text{IN}}} \cdot \frac{\mathbf{V}_{\text{OUT}}}{\mathbf{V}_{\text{IN}}} \cdot \left(1 - \frac{\mathbf{V}_{\text{OUT}}}{\mathbf{V}_{\text{IN}}}\right)$$

where C_1 is the input capacitance value, f_S is the switching frequency, $\triangle V_{IN}$ is the input ripple voltage.

The input capacitor can be electrolytic, tantalum or ceramic. To minimize the potential noise, a small X5R or X7R ceramic capacitor, e.g. 0.1μ F, should be placed as close to the IC as possible when using electrolytic capacitors.

A 22µF/25V ceramic capacitor is recommended in typical application.

Output Capacitor

The output capacitor is required to maintain the DC output voltage, and the capacitance value determines the output ripple voltage. The output voltage ripple can be calculated by:

$$\Delta \mathbf{V}_{\text{OUT}} = \frac{\mathbf{V}_{\text{OUT}}}{\mathbf{f}_{\text{S}} \cdot \mathbf{L}} \cdot \left(1 - \frac{\mathbf{V}_{\text{OUT}}}{\mathbf{V}_{\text{IN}}}\right) \cdot \left(\mathbf{R}_{\text{ESR}} + \frac{1}{8 \cdot \mathbf{f}_{\text{S}} \cdot \mathbf{C}_{\text{OUT}}}\right)$$

where C_{OUT} is the output capacitance value and R_{ESR} is the equivalent series resistance value of

the output capacitor.

The output capacitor can be low ESR electrolytic, tantalum or ceramic, and lower ESR capacitors get lower output ripple voltage.

The output capacitors also affect the system stability and transient response, and a 44μ F~66 μ F ceramic capacitor is recommended in typical application.

Inductor

The inductor is used to supply constant current to the output load, and the value determines the ripple current which affect the efficiency and the output voltage ripple. The ripple current is typically allowed to be 40% of the maximum switch current limit, thus the inductance value can be calculated by:

$$L = \frac{V_{\text{OUT}}}{f_{\text{S}} \cdot \Delta I_{\text{L}}} \cdot \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right)$$

where V_{IN} is the input voltage, V_{OUT} is the output voltage, f_S is the switching frequency, and $\triangle IL$ is the peak-to-peak inductor ripple current.

External Bootstrap Capacitor

A bootstrap capacitor is required to supply voltage to the top switch driver. A 0.1μ F low ESR ceramic capacitor is recommended to be connected between the BST pin and SW pin.

PCB Layout Note

For minimum noise problem and best operating performance, the PCB is preferred to follow the guidelines as below.

- Place the input decoupling capacitor as close to JW5361 or JW5361M or JW5361F or JW5361FM (VIN pin and PGND) as possible to eliminate noise at the input pin. The loop area formed by input capacitor and GND must be minimized.
- 2. Put the feedback trace as far away from the inductor and noisy power traces as possible.
- 3. The ground plane on the PCB should be as large as possible for better heat dissipation.

PCB Layout Recommendation

REFERENCE DESIGN

Reference 1:

V_{IN}: 4.5V~18V

V_{OUT}: 3.3V

ILOAD: 0~3A

External Components Suggestion (VIN=12V):

V _{OUT} (V)	R₄ (kΩ)	R ₃ (kΩ)	C₅ (pF)	L (µH)	C ₃ (μF)
0.8	16	0.715	NC	1	66
1	16	4.9	NC	1.5	66
1.2	16	9.1	NC	1.5	66
1.8	16	21.6	NC	2.2	44
2.5	16	36.3	NC	2.2	44
3.3	16	51	NC	3.3	44
5	16	88.7	NC	4.7	44

Note: In order to improve dynamic performance, a feedforward capacitor (C5) can be considered to be in parallel with R3.

PACKAGE OUTLINE

IMPORTANT NOTICE

- Joulwatt Technology Inc. reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein.
- Any unauthorized redistribution or copy of this document for any purpose is strictly forbidden.
- Joulwatt Technology Inc. does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Copyright © 2021 JW5361/JW5361M /JW5361F/JW5361FM Incorporated.

All rights are reserved by Joulwatt Technology Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Controllers category:

Click to view products by JoulWatt manufacturer:

Other Similar products are found below :

NCP1218AD65R2G_NCP1244BD065R2G_NCP1336ADR2G_NCP6153MNTWG_NCP81101BMNTXG_NCP81205MNTXG_SJE6600 AZ7500BMTR-E1_SG3845DM_NCP1250BP65G_NCP4204MNTXG_NCP6132AMNR2G_NCP81102MNTXG_NCP81206MNTXG NCP1240AD065R2G_NCP1240FD065R2G_NCP1361BABAYSNT1G_NCP1230P100G_NX2124CSTR_SG2845M_NCP1366BABAYDR2G NCP81101MNTXG_NCP81174NMNTXG_NCP4308DMTTWG_NCP4308AMTTWG_NCP1366AABAYDR2G_NCP1251FSN65T1G NCP1246BLD065R2G_MB39A136PFT-G-BND-ERE1_NCP1256BSN100T1G_LV5768V-A-TLM-E_NCP1365BABCYDR2G NCP1365AABCYDR2G_NCP1246ALD065R2G_AZ494AP-E1_CR1510-10_NCP4205MNTXG_XRP6141ELTR-F_RY8017_LP6260SQVF LP6298QVF_ISL6121LIB_ISL6225CA_ISL6244HRZ_ISL6268CAZ_ISL6315IRZ_ISL6420AIAZ-TK_ISL6420AIRZ_ISL6420IAZ_ISL64