OUAD SINGLE-SUPPLY OPERATIONAL AMPLIFIER

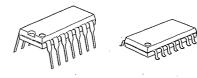
GENERAL DESCRIPTION

The NJM2902 consists of four independent high-gain operational amplifiers that are designed for single-supply operation.

Operation from split power supplies is also possible and the low power supply drain is independent of the magnitude of the power supply voltage.

Used with a dual supply the circuit will operate over a wide range of supply voltages. However, a large amount of crossover distortion may occur with loads to ground. An external current-sinking resistor to -V_s will reduce crossover distortion. There is no crossover distortion problem in single-supply operation if the load is direct-coupled to ground.

FEATURES

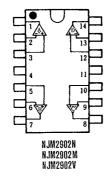

- Single Supply
- Operating Voltage
- High Output Voltage
- Slew Rate
- Low Operating Current Package Outline
- Bipolar Technology

 $(+3V \sim +30V)$

 (V^+-2V) $(0.5V/ \mu s typ.)$ (1mA typ.)

DIP14, DMP14, SSOP14

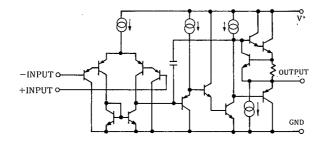
■ PACKAGE OUTLINE


NJM2902N

NJM2902M

NJM2902V

PIN CONFIGURATION


PIN FUNCTION

1.A OUTPUT 8.C OUTPUT 2.A-INPUT 9.C-INPUT 3.A+INPUT 10.C+INPUT

11.GND 5.B+INPUT 12.D+INPUT 6.B-INPUT 13.D-INPUT

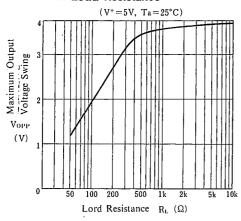
7.B OUTPUT 14.D OUTPUT

■ EQUIVALENT CIRCUIT (1/4 Shown)

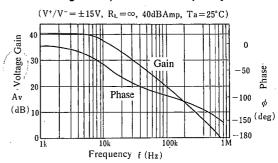
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

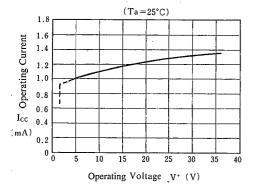
PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V+(V+/V-)	32(or ±16)		
Differential Input Voltage	V _{ID}	32	V	
Input Voltage	V _{1C}	-0.3~+32 (note)	V	
Power Dissipation		(DIP14) 570	mW	
	PD	(DMP14) 300	mW	
		(SSOP14) 300	mW	
Operating Temperature Range	Topr	Topr −40~+85		
Storage Temperature Range	Tstg	−50~+125	°C	

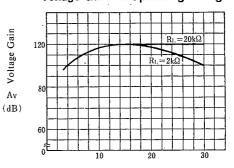

■ ELECTRICAL CHARACTERISTICS

(Ta=25°C V⁺=5V)

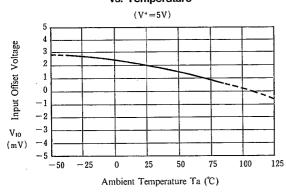

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	Vio	$R_S=0\Omega$	_	2	10	mV
Input Offset Current	I _{IO}	$I_{IN}^+ - I_{IN}^-$	-	5	50	nA
Input Bias Current	I _B	I _{IN} + or I _{IN} -		20	500	nA
Large Signal Voltage Gain	A_{V}	R _L ≧2kΩ	_	100	—	V/mV
Maximum Output Voltage Swing	Vom	$R_L=2k\Omega$	3.5	_	l —	V
Input Common Mode Voltage Range	V _{ICM}		0~3.5		_	V
Common Mode Rejection Ratio	CMR		_	85	_	dB
Supply Voltage Rejection Ratio	SVR		_	100	-·	dB
Output Source Current	ISOURCE	$V_{iN}^{+} = 1V, V_{iN}^{-} = 0V$	20	40	_	mA
Output Sink Current	I _{SINK}	$V_{IN}^{+} = 0V, V_{IN}^{-} = IV$	8	20	_	mA
Channel Separation	CS .	f=1k~20kHz, Input Referred	-	120		dB
Operating Current	1 _{cc}	$R_{t} = \infty$	-	lι	2	mA
Slew Rate	SR	$V^{+}/V^{-} = \pm 15V$	-	0.5	_	V/μs
Gain Bandwidth Product	GB	$V^{+}/V^{-}=\pm 15V$	-	0.5	-	MHz

■ TYPICAL CHARACTERISTICS

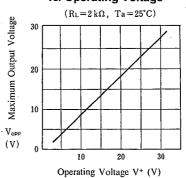

Maximum Output Voltage Swing vs. Load Resistance


Voltage Gain, Phase vs. Frequency

Operating Current vs. Operating Voltage

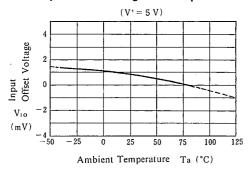


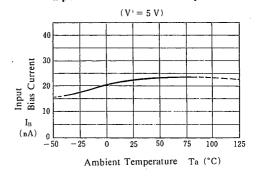
Voltage Gain vs. Operating Voltage



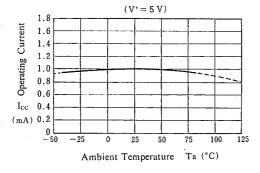
Operating Voltage V+ (V)

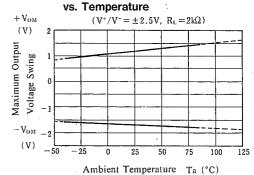
Input Offset Voltage vs. Temperature

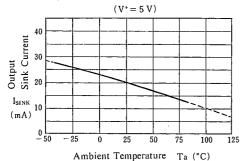

Maximum Output Voltage vs. Operating Voltage


Voltage Gain

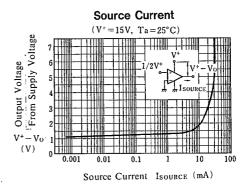
■ TYPICAL CHARACTERISTICS


Input Offset Voltage vs. Temperature

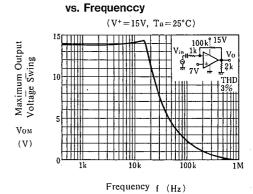

Input Bias Current vs. Temperature


Operating Current vs. Temperature

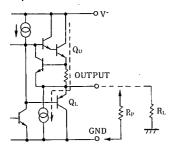
Maximum Output Voltage Swing



Output Sink Current vs. Temperature



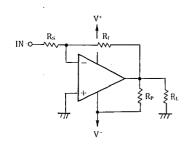
TYPICAL CHARACTERISTICS

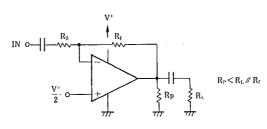

Pulse Response $(V^{+}=15V, RL=2k\Omega)$ $V^{+}=15V, RL=2k\Omega$ $V^{+}=1$

Maximum Output Voltage Swing

■ APPLICATION

Improvement of Cross-over Distortion Equivalent circuit at the output stage




NJM2902, in its static state (No in and output condition) when design, Q_U being biassed by constant current (breake down beam) yet, Q_L stays OFF.

While using with both power soure mode, the cross-over distortion might occure instantly when Q_L ON.

There might be cases when application for amplifier of audio signals, not only distortion but also the apparent frequency bandwidth being narrowed remarkably.

It is adultable especially when using both power soure mode, constantly to use with higher current on Q_U than the load current (including feedback current), and then connect the pull-down resister RP at the part between output and GND pins.

NJM2902

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by JRC manufacturer:

Other Similar products are found below:

430227FB AZV831KTR-G1 UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC258G2-A NCS5651MNTXG
NCV33202DMR2G NJM324E NTE925 5962-9080901MCA* AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E
SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM2902EDR2G NTE778S NTE871 NTE924 NTE937
MCP6V16UT-E/OT MCP6V17T-E/MS MCP6V19T-E/ST SCY6358ADR2G LTC2065IUD#PBF NCS20282FCTTAG UPC4741G2-E1-A
LM4565FVT-GE2 EL5420CRZ-T7A TSV791IYLT TSV772IQ2T AS324AMTR-E1 TLV2772QPWR NJM4556AM-TE1 NJM2068M-TE1
AS324MTR-E1 AS358MMTR-G1 MCP6232T-EMNY MCP662-E/MF TLC081AIP TLC082AIP TLE2074ACDW TLV07IDR
TLV2170IDGKT TLV2455IDR