

Genelal Descliption

Description

AP2263 is highly integrated current mode PWM control IC optimized for high performance, low standby power and cost effective offline flyback converter up to 60W output power system.

PWM switching frequency is internally fixed at 65KHz. At no load or light load condition, the IC operates in 'burst mode' to minimize switching dissipation. Therefore, lower standby power dissipation and higher conversion efficiency are achieved.

Due to very small startup current and low operating current, a big resistor can be used in the startup circuit to minimize standby power dissipation.

AP2263 offers comprehensive protection functions, including Cycle-by-Cycle current limitation (OCP), over temperature protection (OTP), Over voltage clamp (OVP)and under voltage lockout (UVLO) on VDD. The Gate output is clamped up to 16V to protect the gate of the power MOSFET.

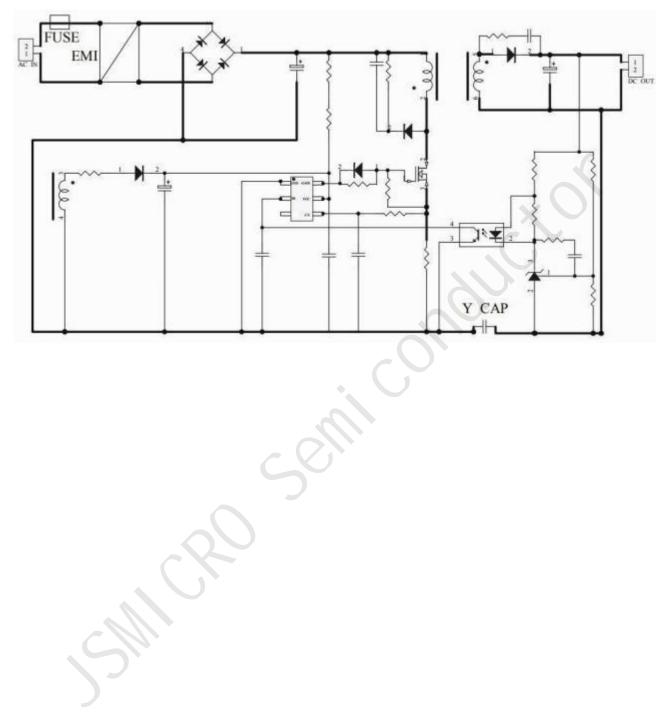
Features

- Digit frequency shuffling technology to improve EMI performance.
- Leading-edge blanking on current sense input.
- Slope compensation.

- Burst mode control to improve efficiency and optimize standby power dissipation.
- Low startup current and low operating current.
- Voltage clamping at gate output
- Soft-start to reduce MOSFET stress during power on.
- Comprehensive protection functions

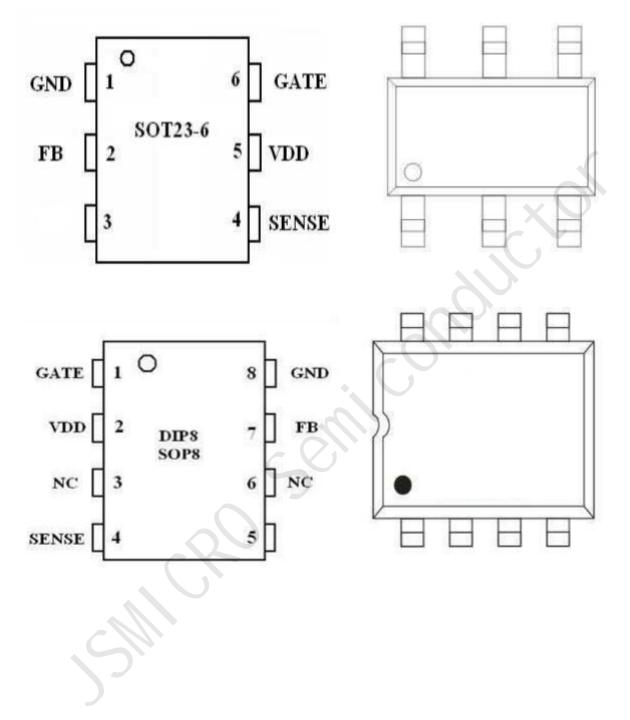
 Under voltage locked with
 hysteresis (UVLO) on VDD
 Over voltage protection (OVP) on
 VDD.

3、Cycle-by-Cycle current limitation4、Current limitation compensationto obtain the same output current inuniversal ac line input


- 5 、 Over load protection (OLP)
- 6 、 Over temperature protection (OTP)
- 300mA drive capability

Applications

- Cell Phone Charger
- Digital Cameras Charger
- Power adaptor
- Battery charger

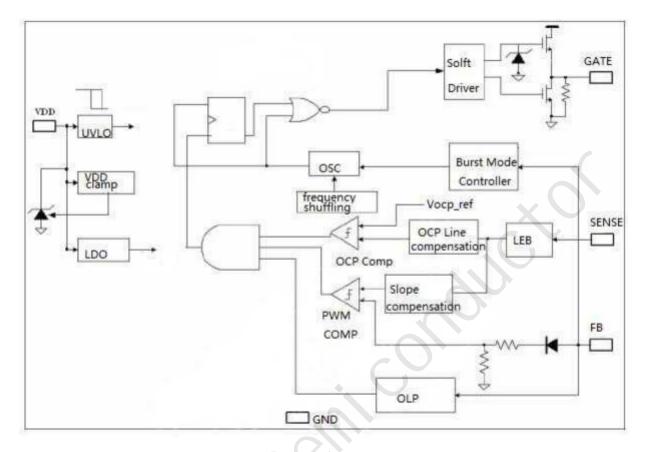


Application Circuit

Pin Assignment

Ordering Information

Part number	Package	version number
AP2263ST	SOT23-6	
AP2263S	SOP-8	
AP2263D	DIP-8	


Pin Description

Symbol	Туре	Description
GATE	0	Totem-pole gate dive output for the power MOSFET
VDD	Р	Chip DC power supply pin
SENSE	Ι	Current Sense input pin.
FB	Ι	Feedback input pin.
Gnd	Р	Ground.

ر ۲

Block Diagram

Absolute Maximum Rating

Parameter	Value	Unit
VDD supply voltage	27	V
VDD clamp voltage	29	V
VDD clamp current	10	mA
VFB input voltage	-0.3 to7	V
VSENSE input voltage to SENSE pin	-0.3 to7	V
Min/Max operating junction temperature	-55 to 150	°C
Operating ambient temperature	-20 to 85	°C
Thermal resistance, Junction to ambient	250	°C/W

Note: Stresses above absolute maximum ratings may cause permanents damage to the device. Exposure to absolutely maximum-rated conditions for extended periods may affects device reliability

1

Recommended Operating Conditions

Symbol	Parameter	Min. Max.	Unit
VDD	Supply Voltage Vcc	10 to 26	V
Тоа	Operating Ambient Temperature	-20 to 85	°C
ESD-HM	Human Model	2	KV
ESD-MM	Machine Model	150	V

Electrical Characteristics($T_A = 25$ °C, if not otherwise noted)

Symbol	Parameter	Conditions	Value	e e		Unit
Symbol	rarameter	Conditions	Min.	Тур.	Max	
Supply Volta	ge(Vaa Pin)					1
Idd_startup	VDD start up current	VDD=12.5V		3	15	uA
Idd	VDD operation current	VDD=16V	2	2.3	mA	
Iuu	VDD operation current	FB=3V			2.3	IIIA
UVLO(ON)	VDD under voltage			7.8		v
	lockout enter			7.0		v
UVLO(OFF)	VDD under voltage			13.4		v
UVLO(OFF)	lockout exit	7		13.4		v
VDD_clamp	VDD clamp voltage	Idd=10mA	32			V
Voltage Feed	back (FB Pin)		1		1	
AVCS	PWM input gain	Δ VFB/ Δ VSENSE		2		V/V
VFB_open	VFB open loop voltage			5.7		V
IFB short	FB pin short current	Short FB pin to GND and		0.9		mA
	r b pin short current	measure current		0.9		IIIA
VFB burst	Burst mode voltage			1.2		V
VTH PL	Power limiting FB			3.7		v
	threshold voltage			5.7		v
TD PL	Power limiting delay			120		mS
	time			120		
DC MAX	Maximum duty avala	VDD=18V, SENSE=0V		75		%
	Maximum duty cycle	FB=3V		15		70

	Leading-edge blanking					G
T_blanking	time			250		nS
ZSENSE_IN	Input impedance			40		KΩ
VTIL comeo	Over current threshold			0.0		V
VTH sense	voltage			0.9		V
Oscillator						
F	Normal oscillation		(0)	(5	70	1/1
Fosc	frequency		60	65	70	Khz
Af tomp	Frequency temperature	VDD=16V	. (-		0 /
Δf_{temp}	stability	TA =-20°C to $100°C$		5		%
Δf VDD	Frequency voltage	VDD=12V to 25V		5		0/
	stability			5		%
Fosc BM	Burst mode base	<u> </u>		20		Khz
- -	frequency			20		IXIIZ
Δf_OSC	Frequency modulation		-5		+5	%
	range /Base frequency		-5			/0
Gate Drive O	utput		1	1	1	
VOL	Output low level	VDD=16V, IO=-20mA			0.8	V
VOH	Output high level	VDD=16V, IO=20mA	10			V
V Clamp	output clamp voltage			16		V
v_Clamp	level			10		v
T_r	Output rising time	VDD=16V, CL=1nF		220		nS
T f	Output falling time	VDD=16V, CL=1nF		70		nS

Application Information

AP2263 is a highly integrated PWM controller IC optimized for offline flyback converter up to 60W power system. The burst mode control greatly reduces the standby power consumption and helps the designer easily meet the international energy-saving requirements.

Startup Current and Startup Control

Startup current of AP2263 is designed to be very low so that VDD could be charged up above UVLO threshold level quickly. Therefore, a large value resistor can be used to minimize the power dissipation in application For AC/DC adaptor within universal input range, a 2 M , 1/2 W resistor could be connected to VDD capacitor to provide a fast startup and low power dissipation solution.

Operating Current

The Operating current of AP2263 is lower 2.3mA. Therefore AP2263 can havega ood efficiency .

Frequency shuffling for EMI improvement

The frequency Shuffling is implemented in AP2263The oscillation frequency is modulated with a random source so that the harmonic energy is spread out. The spread spectrum minimizes the conduction EMI and therefore reduces system design challenge.

Burst Mode Operation

At zero load or light load condition, the main power dissipation in a switching mode power supply is from switching on the MOSFET, the transformer core and the snubber circuit. The magnitude of power dissipation is proportional to the number of switching frequency within certain period. Less switching frequency can reduce the power dissipation.AP2263 adjusts the switching frequency according to the loading condition. From light load to no load, the FB voltage drops. While the FB voltage is less than 1.1V, the gate pin output is disabled and kept low, while the FB voltage is higher than 1.2V, the gate output recovers to normal working mode. This is called "burst mode". To reduce audio noise, the switching frequency will be kept higher than 20KHz in burst mode.

Oscillator Operation

The switching frequency is internally fixed at 65kHz. No external frequency setting components are required on PCB design.

Current Sensing and Leading-Edge Blanking

Cycle-by-Cycle current limitation is offered in AP2263. The switchin g current is detected by a resistor into the SENSE pin. An internal leading-edge blanking circuit chops off the SENSE voltage spike at initial so that the external RC filtering on SENSE pin is no longer required. The current limiting comparator is disabled and thus cannot turn off the external MOSFET during the blanking period. PWM duty cycle is determined by the voltage in the SENSE pin and the FB pin.

Internal Synchronized Slope Compensation

Slope compensation circuit adds voltage ramp onto the SENSE voltage according to PWM pulse width. This greatly improves the close loop stability at CCM and prevents the sub-harmonic oscillation and thus reduces the output ripple voltage. Slope compensation can help AP2263 obtain the same output current in universal ac input voltage.

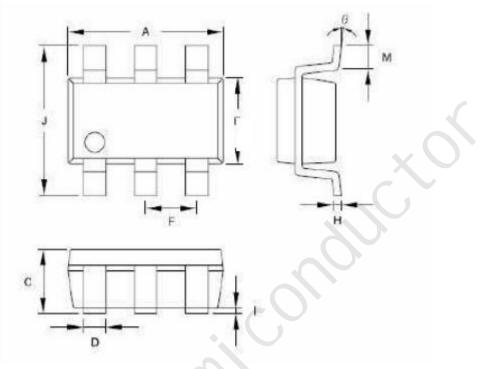
GATE DRIVE

GATE pin of AP2263 has 300mA drive current capability and the highest voltage is clamped at 16V. Therefore, the dissipation of conduction and switching in MOSFET is minimized.

Protection Controls

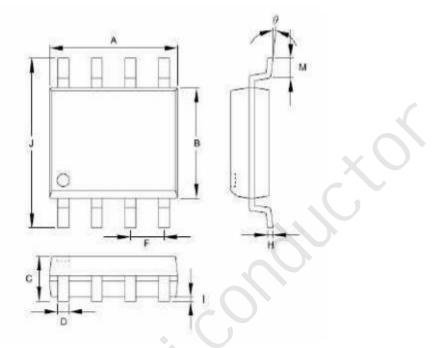
AP2263 has comprehensive protection functions including Cycle-by- Cycle current limitation (OCP), Over Load Protection (OLP) and over voltage clamp, Under Voltage Lockout on VDD (UVLO), Over Temperature Protection (OTP).

Current limitation compensation

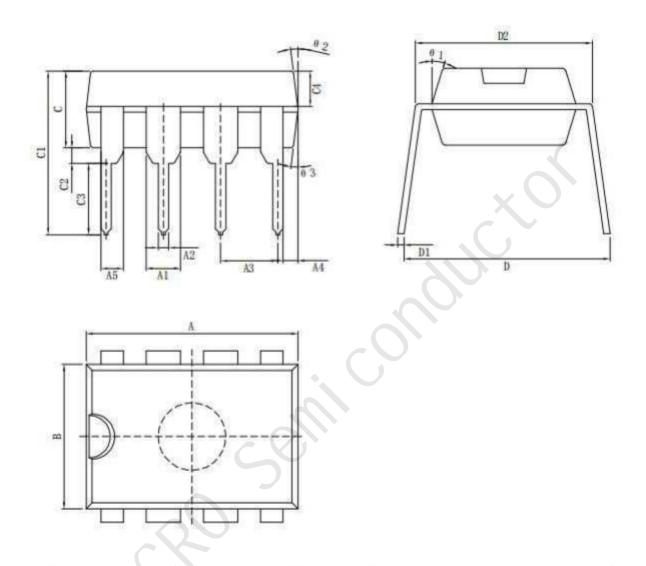

To obtain the same output current capability, the OLP threshold voltage is compensated for the different input AC voltage. This function makes the current of OLP is in consistency whatever the AC input is (110V or 220V).

www.jsmsemi.com

Package Information


SOT-23-6

Sumbol	Dimension	in Millimeters	Dimensio	ns in Inches
Symbol	Min	Max	Min	Max
A	2.692	3.099	0.106	0.122
в	1.397	1.803	0.055	0.071
С	CHARGE (1.450		0.058
D	0.300	0.550	0.012	0.022
F	0.838	1.041	0.033	0.041
Н	0.080	0.254	0.003	0.010
1	0.050	0.150	0.002	0.006
J	2.600	3.000	0.102	0.118
М	0.300	0.600	0,012	0.024
θ	0*	10°	0°	10°


SOP-8

6	Dimensions i	in Millimeters	Dimensio	ns in Inch
Symbols	MIN	MAX	MIN	MAX
А	4.801	5.004	0.189	0.197
В	3.810	3.988	0.150	0.157
С	1.346	1.753	0.053	0.069
D	0.330	0.508	0.013	0.020
F	1.194	1.346	0.047	0.053
н	0.178	0.229	0.007	0.009
1	0.102	0.254	0.004	0.010
J	5.791	6.198	0.228	0.244
М	0.406	1.270	0.016	0.050
θ	0°	8°	0°	8°

DIP 8

Symbol Size	MIN (mm)	MAX (mm)	Symbol	MIN (mm)	MAX (mm)
A	9.00	9.20	C2	0.	50TYP
Al	1.474	1.574	C3	3.20	3.40
A2	0.41	0.51	C4	1.47	1. 57
A3	2.44	2.64	D	8.20	8,80
A4	0, 51	TYP	D1	0.244	0.264
AS	0.99	TYP	D2	7.62 7.87	
В	6, 10	6.30	01	17° TYP4	
C	3.20	3.40	0.2	10* TYP4	
C1	7.10	7.30	0.3	8° TYP	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Battery Management category:

Click to view products by JSMSEMI manufacturer:

Other Similar products are found below :

NCP1851BFCCT1G NCP1855FCCT1G FAN54063UCX MP2615GQ-P LC05132C01NMTTTG ISL95522HRZ BD8665GW-E2 ISL9538HRTZ ISL95522AIRZ S-82D1AAA-A8T2U7 S-8224ABA-I8T1U MP2615CGQ-P ISL6251HRZ ISL6253HRZ ISL6292-2CR3 ISL6292BCRZ-T ISL6299AIRZ ISL9211AIRU58XZ-T ISL9214IRZ ISL9220IRTZ-T FAN54161UCX SY6982CQDC IP6566_AC_30W_ZM WS3221C-6/TR ADBMS1818ASWAZ-RL ADBMS6815WCSWZ ML5245-005AMBZ07CX BQ25672RQMR ADBMS1818ASWZ-R7 KA49503A-BB SC33771CTA1MAE BQ24060DRCR BQ7695202PFBR BQ21080YBGR BQ771809DPJR BQ24179YBGR BQ7693002DBTR TP4586 FM2119L FM1623A DW01 BQ25172DSGR DW01S TP4054 MP2723GQC-0000-Z MP26124GR-Z MP2664GG-0000-Z XB5608AJ BQ25628ERYKR BQ25756RVR