HIGH FREQUENCY LOW NOISE AMPLIFIER NPN SILICON EPITAXIAL TRANSISTOR SUPER MINI MOLD

DESCRIPTION

The 2SC4226 is a low supply voltage transistor designed for VHF, UHF Iow noise amplifier.

It is suitable for a high density surface mount assembly since the transistor has been applied small mini mold package.

FEATURES

- Low Noise
$\mathrm{NF}=1.2 \mathrm{~dB}$ TYP. $@ \mathrm{f}=1 \mathrm{GHz}, \mathrm{V} \mathrm{Ce}=3 \mathrm{~V}, \mathrm{Ic}=7 \mathrm{~mA}$
- High Gain

$$
\left|\mathrm{S}_{21 \mathrm{e}}\right|^{2}=9.0 \mathrm{~dB} \text { TYP. @ } \mathrm{f}=1 \mathrm{GHz}, \mathrm{~V} \mathrm{CE}=3 \mathrm{~V}, \mathrm{Ic}=7 \mathrm{~mA}
$$

- Small Mini Mold Package

EIAJ: SC-70

ORDERING INFORMATION

PART NUMBER	QUANTITY	PACKING STYLE
2 SC4226-T1	3 Kpcs/Reel.	Embossed tape 8 mm wide. Pin3 (Collector)face to perforation side of the tape.
2SC4226-T2	3 Kpcs/Reel.	Embossed tape 8 mm wide. Pin1 (Emitter), Pin2 (Base) face to perforation side of the tape.

* Please contact with responsible NEC person, if you require evaluation sample. Unit sample quantity shall be 50 pcs. (Part No.: 2SC4226)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION
Collector Cutoff Current	Icbo			1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {Cb }}=10 \mathrm{~V}, \mathrm{IE}=0$
Emitter Cutoff Current	Iebo			1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {eb }}=1 \mathrm{~V}, \mathrm{Ic}=0$
DC Current Gain	hfe	40	110	250		$\mathrm{V}_{\text {Ce }}=3 \mathrm{~V}, \mathrm{lc}=7 \mathrm{~mA}{ }^{* 1}$
Gain Bandwidth Product	f_{T}	3.0	4.5		GHz	$\mathrm{V}_{\text {CE }}=3 \mathrm{~V}, \mathrm{IC}=7 \mathrm{~mA}$
Feed back Capacitance	Cre		0.7	1.5	pF	$\mathrm{V}_{\text {ce }}=3 \mathrm{~V}, \mathrm{le}=0, \mathrm{f}=1 \mathrm{MHz}^{* 2}$
Insertion Power Gain	$\mid S_{21} e^{2}$	7	9		dB	$\mathrm{V}_{\text {CE }}=3 \mathrm{~V}, \mathrm{Ic}=7 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}$
Noise Figure	NF		1.2	2.5	dB	$\mathrm{V}_{\text {CE }}=3 \mathrm{~V}, \mathrm{Ic}=7 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}$

*1 Pulse Measurement ; PW $\leq 350 \mu \mathrm{~s}$, Duty Cycle ≤ 2 \% Pulsed.
*2 Measured with 3 terminals bridge, Emitter and Case should be grounded.
$h_{f E}$ Classification

Rank	R23	R24	R25
Marking	R23	R24	R25
hfe	40 to 80	70 to 140	125 to 250

TYPICAL CHARACTERISTICS (TA $=25^{\circ} \mathrm{C}$)

FEED-BACK CAPACITANCE vs. COLLECTOR TO BASE VOLTAGE

S-PARAMETER

VCe $=3 \mathrm{~V}, \mathrm{Ic}=7 \mathrm{~mA}, \mathrm{Zo}=50 \Omega$

FREQUENCY	S_{11}		$\mathrm{~S}_{21}$			$\mathrm{~S}_{12}$		
MHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
100.00	.750	-45.7	11.858	144.0	.035	63.3	.816	-28.5
200.00	.618	-84.9	10.093	122.3	.053	53.2	.609	-41.8
300.00	.528	-114.5	8.219	107.7	.064	50.6	.481	-46.7
400.00	.483	-134.3	6.684	97.9	.073	50.6	.411	-49.1
500.00	.459	-148.5	5.565	90.5	.081	50.7	.365	-50.5
600.00	.447	-158.8	4.737	84.6	.089	52.3	.337	-51.5
700.00	.441	-167.4	4.134	79.7	.098	53.5	.316	-52.6
800.00	.439	-174.4	3.653	75.2	.107	54.2	.300	-54.2
900.00	.437	179.2	3.283	71.1	.117	54.9	.290	-55.9
1000.00	.437	173.7	2.978	67.2	.126	55.6	.281	-57.9
1100.00	.440	168.6	2.732	63.7	.136	55.8	.275	-59.6
1200.00	.443	163.9	2.533	60.0	.147	55.3	.270	-62.3
1300.00	.444	159.6	2.357	56.6	.158	55.4	.267	-64.7
1400.00	.449	155.5	2.216	53.4	.169	55.3	.264	-67.5
1500.00	.450	151.6	2.077	50.3	.180	54.7	.259	-70.6
1600.00	.455	147.9	1.972	47.4	.192	54.5	.258	-73.3
1700.00	.459	144.3	1.868	44.3	.202	53.9	.256	-76.3
1800.00	.462	140.9	1.789	41.3	.214	53.0	.255	-79.6
1900.00	.466	137.5	1.702	38.4	.226	52.3	.253	-83.0
2000.00	.470	134.4	1.635	36.1	.238	51.5	.253	-86.4

Vce $=3 \mathrm{~V}, \mathrm{Ic}=5 \mathrm{~mA}, \mathrm{Zo}=50 \Omega$

FREQUENCY	S_{11}		S21		S_{12}		S22	
MHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
100.00	. 819	-38.9	8.934	148.0	. 038	65.8	. 868	-23.6
200.00	. 701	-73.4	8.007	127.6	. 060	53.1	. 687	-36.7
300.00	. 608	-102.3	6.898	112.6	. 072	47.6	. 560	-42.4
400.00	. 549	-123.6	5.819	101.8	. 079	45.2	. 483	-45.4
500.00	. 511	-139.6	4.970	93.5	. 086	45.7	. 434	-47.2
600.00	. 494	-151.0	4.255	86.9	. 093	46.5	. 402	-48.6
700.00	. 481	-160.8	3.750	81.4	. 099	47.2	. 379	-49.9
800.00	. 475	-168.6	3.328	76.3	. 107	48.9	. 361	-51.5
900.00	. 472	-175.7	3.004	72.0	. 113	49.7	. 350	-53.4
1000.00	. 471	178.2	2.734	67.7	. 122	50.9	. 340	-55.4
1100.00	. 473	172.8	2.522	64.0	. 130	51.6	. 332	-57.3
1200.00	. 474	167.6	2.355	60.2	. 139	52.3	. 328	-59.7
1300.00	. 474	162.9	2.176	56.7	. 148	53.1	. 322	-62.3
1400.00	. 477	158.4	2.038	53.2	. 158	53.3	. 319	-65.2
1500.00	. 481	154.4	1.921	49.8	. 168	53.7	. 315	-68.2
1600.00	. 484	150.3	1.818	46.7	. 177	53.3	. 313	-70.9
1700.00	. 489	146.5	1.726	43.9	. 190	53.3	. 312	-73.9
1800.00	. 490	142.9	1.647	40.6	. 200	53.0	. 312	-77.2
1900.00	. 495	139.3	1.578	37.6	. 212	52.7	. 309	-80.8
2000.00	. 501	136.0	1.505	35.0	. 223	52.0	. 309	-84.0

S-PARAMETER

Vce $=3 \mathrm{~V}, \mathrm{Ic}=3 \mathrm{~mA}, \mathrm{Zo}=50 \Omega$

FREQUENCY	S_{11}		$\mathrm{~S}_{21}$			$\mathrm{~S}_{12}$		
MHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
100.00	.899	-30.6	5.578	153.7	.042	69.0	.923	-17.3
200.00	.808	-60.6	5.327	134.4	.069	54.5	.793	-29.2
300.00	.723	-86.7	4.877	119.6	.084	46.0	.679	-35.4
400.00	.660	-108.2	4.341	108.1	.093	41.1	.604	-39.5
500.00	.610	-125.9	3.883	98.5	.098	38.8	.550	-42.0
600.00	.583	-138.6	3.388	90.9	.102	37.4	.513	-44.2
700.00	.560	-150.0	3.046	84.3	.106	37.8	.487	-45.9
800.00	.547	-159.4	2.741	78.5	.108	38.1	.468	-47.9
900.00	.538	-167.4	2.498	73.4	.112	39.5	.455	-49.9
1000.00	.535	-174.4	2.287	68.9	.116	41.0	.444	-52.3
1100.00	.534	179.3	2.111	64.6	.120	43.0	.435	-54.7
1200.00	.533	173.4	1.965	60.2	.125	45.1	.429	-57.2
1300.00	.533	168.3	1.830	56.3	.131	46.7	.424	-59.9
1400.00	.534	163.2	1.721	52.7	.139	48.3	.422	-62.8
1500.00	.538	158.7	1.620	49.2	.146	49.8	.417	-65.7
1600.00	.542	154.3	1.544	45.7	.155	51.3	.414	-68.8
1700.00	.545	150.0	1.464	42.7	.164	52.4	.415	-72.0
1800.00	.548	146.1	1.396	39.5	.174	53.0	.412	-75.3
1900.00	.552	142.0	1.336	36.6	.187	53.7	.411	-78.8
2000.00	.556	138.3	1.280	33.6	.199	54.1	.411	-82.3

Vce $=3 \mathrm{~V}, \mathrm{Ic}=1 \mathrm{~mA}, \mathrm{Zo}=50 \Omega$

FREQUENCY	S_{11}		$\mathrm{~S}_{21}$		$\mathrm{~S}_{12}$			
MHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
100.00	.967	-22.9	1.935	159.9	.045	74.0	.978	-9.2
200.00	.930	-45.8	1.968	143.1	.083	60.1	.931	-17.4
300.00	.884	-67.1	1.938	129.1	.108	48.9	.870	-23.2
400.00	.842	-85.9	1.827	117.2	.125	39.4	.822	-28.0
500.00	.801	-103.1	1.748	106.7	.134	32.6	.779	-31.9
600.00	.771	-117.0	1.576	97.4	.137	27.1	.749	-35.3
700.00	.742	-130.0	1.498	89.2	.137	22.9	.722	-38.4
800.00	.722	-141.2	1.403	81.9	.134	20.0	.702	-41.3
900.00	.706	-151.1	1.326	75.6	.129	18.5	.690	-44.4
1000.00	.695	-159.9	1.242	69.6	.124	17.8	.680	-47.4
1100.00	.689	-167.7	1.169	64.5	.118	18.1	.671	-50.4
1200.00	.685	-174.9	1.102	59.6	.112	19.8	.666	-53.6
1300.00	.681	178.7	1.030	55.3	.106	23.5	.660	-56.9
1400.00	.681	172.6	.979	50.9	.103	28.0	.658	-60.4
1500.00	.683	166.8	.925	47.2	.100	33.6	.654	-64.0
1600.00	.684	161.4	.884	43.6	.102	40.4	.651	-67.6
1700.00	.684	156.1	.842	40.4	.107	47.5	.651	-71.5
1800.00	.686	151.4	.804	37.3	.115	53.5	.649	-75.1
1900.00	.689	146.6	.773	34.6	.127	57.9	.646	-79.2
2000.00	.690	142.1	.738	32.3	.141	62.1	.646	-83.0

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.
Anti-radioactive design is not implemented in this product.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by Kemet manufacturer:
Other Similar products are found below :
BC559C MCH4017-TL-H MMBT-2369-TR BC546/116 NJVMJD148T4G NTE16 NTE195A IMX9T110 2N4401-A 2N6728 2SA1419T-
TD-H 2SB1204S-TL-E 2SC5488A-TL-H FMC5AT148 2N2369ADCSM 2N2907A 2N3904-NS 2N5769 2SC4618TLN CPH6501-TL-E
US6T6TR BAX18/A52R BC556/112 IMZ2AT108 MMST8098T146 MCH6102-TL-E BC846B-13-F 2N3879 30A02MH-TL-E NTE13 NTE282 NTE323 NTE350 NTE81 JANTX2N2920L JANSR2N2907AUB CMLT3946EG TR SNSS40600CF8T1G CMLT3906EGTR GRP-DATA-JANS2N2907AUB GRP-DATA-JANS2N2222AUA MMDT3946FL3-7 2N4240 JANS2N3019 MSB30KH-13 2N2221AUB 2SD1815T-TL-E 2N6678 2N2907Ae4 JAN2N3507

