# Aximax, 400, Conformally Coated, X7R Dielectric, 25 – 250 VDC (Automotive Grade)



#### **Overview**

KEMET's Aximax conformally coated axial leaded ceramic capacitors in X7R dielectric feature a 125°C maximum operating temperature. The Electronics Industries Alliance (EIA) characterizes X7R dielectric as a Class II "temperature stable" material. Components of this classification are fixed, ceramic dielectric capacitors suited for bypass and decoupling applications or for frequency discriminating circuits where Q and stability of capacitance characteristics are not critical. X7R exhibits a predictable change in capacitance with respect to time and voltage and boasts a minimal change in capacitance with reference to ambient temperature. Capacitance change is limited to  $\pm 15\%$  from  $-55^{\circ}$ C to  $\pm 125^{\circ}$ C. These devices meets the flame test requirements outlined in UL Standard 94V–0 and the demanding Automotive Electronics Council's AEC–Q200 qualification requirements.

#### **Benefits**

- · Axial leaded form factor
- Conformally
- Encapsulation meets flammability standard UL 94V-0
- Operating temperature range of -55°C to +125°C
- · Lead (Pb)-free, RoHS and REACH compliant

#### **Ordering Information**

| C       | 410               | C                        | 105                                                                                                      | K                                     | 3                                                 | R          | 5                 | Т                       | Α               | 9170                                                                                                                     |
|---------|-------------------|--------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------|------------|-------------------|-------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------|
| Ceramic | Style/<br>Size    | Specification/<br>Series | Capacitance<br>Code (pF)                                                                                 | Capacitance<br>Tolerance <sup>1</sup> | Voltage                                           | Dielectric | Design            | Lead<br>Finish          | Failure<br>Rate | Packaging/Grade<br>(C-Spec)                                                                                              |
|         | 410<br>420<br>430 | C =<br>Standard          | First two digits<br>represent<br>significant<br>figures. Third<br>digit specifies<br>number of<br>zeros. | J = ±5%<br>K = ±10%<br>M = ±20%       | 3 = 25<br>5 = 50<br>1 = 100<br>2 = 200<br>A = 250 | R =<br>X7R | 5 =<br>Multilayer | T =<br>100%<br>Matte Sn | A =<br>N/A      | Automotive Grade<br>9170 = Bulk Auto Grade<br>9170 7200 = T & R 12"<br>Auto Grade<br>9170 7293 = Ammo Pack<br>Auto Grade |

<sup>1</sup> Additional capacitance Tolerance offerings may be available. Contact KEMET for details. For Overmolding applications please contact your KEMET representative.



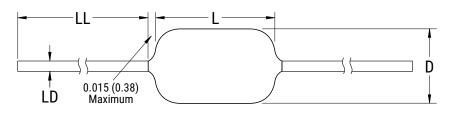
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com

#### One world. One KEMET



#### Benefits cont.

- X7R Temperature stable dielectric
- + DC voltage ratings of 25 V, 50 V, 100 V, 200 V, and 250 V
- Capacitance offerings ranging from 10 pF to 4.7  $\mu F$
- Available capacitance tolerances of  $\pm 5\%$ ,  $\pm 10\%$  and  $\pm 20\%$
- Non-polar device, minimizing installation concerns
- 100% pure matte tin-plated lead finish allowing for excellent solderability
- Automotive (AEC-Q200) grade.


### **Applications**

Typical applications include decoupling, bypass, filtering and transient voltage suppression.

### **Application Notes**

These devices are not recommended for use in overmold applications and/or processes.

#### **Dimensions – Inches (Millimeters)**



| Series | Style/Size | L<br>Length<br>Maximum | D<br>Diameter<br>Maximum | LD<br>Lead Diameter                         | LL<br>Lead Length<br>Minimum |
|--------|------------|------------------------|--------------------------|---------------------------------------------|------------------------------|
| C41X   | 410        | 0.170 (4.32)           | 0.095 (2.41)             | 0.000 +0.001/ 0.000                         | 1.0                          |
| C42X   | 420        | 0.200 (5.08)           | 0.100 (2.54)             | 0.020 +0.001/-0.003<br>(0.51 +0.025/-0.076) | 1.0<br>(25.4)                |
| C43X   | 430        | 0.240 (6.10)           | 0.150 (3.81)             | (0.01 : 0.020) 0.070)                       | (20.7)                       |

#### **Qualification/Certification**

Automotive Grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC-Q200, Stress Test Qualification for Passive Components. For additional information regarding the Automotive Electronics Council and AEC-Q200, please visit their website at www.aecouncil.com.



#### **Automotive C-Spec Information**

KEMET Automotive Grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC-Q200, Stress Test Qualification for Passive Components. These products are supported by a Product Change Notification (PCN) and Production Part Approval Process warrant (PPAP).

Automotive products offered through our distribution channel have been assigned an inclusive ordering code C-Spec, "9170." This C-Spec was developed in order to better serve small and medium sized companies that prefer an automotive grade component without the requirement to submit a customer Source Controlled Drawing (SCD) or specification for review by a KEMET engineering specialist. This C-Spec is therefore not intended for use by KEMET's OEM Automotive customers and are not granted the same "privileges" as other automotive C-Specs. Customer PCN approval and PPAP request levels are limited (see details below).

#### **Product Change Notification (PCN)**

The KEMET Product Change Notification system is used to communicate primarily the following types of changes:

- Product/process changes that affect product form, fit, function, and/or reliability
- Changes in manufacturing site
- Product obsolescence

| KEMET Automotive            | Customer Notifica                | Days prior to |                  |
|-----------------------------|----------------------------------|---------------|------------------|
| C-Spec                      | Process/Product change           | Obsolescence* | implementation   |
| KEMET assigned <sup>1</sup> | Yes (with approval and sign off) | Yes           | 180 days Minimum |
| 9170                        | Yes (without approval)           | Yes           | 90 days Minimum  |

<sup>1</sup> KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET.

#### **Production Part Approval Process (PPAP)**

The purpose of the Production Part Approval Process is:

- To ensure that supplier can meet the manufacturability and quality requirements for the purchased parts.
- To provide the evidence that all customer engineering design record and specification requirements are properly understood and fulfilled by the manufacturing organization.
- To demonstrate that the established manufacturing process has the potential to produce the part

| KEMET Automotive            | PPAP (Product Part Approval Process) Level |   |   |   |   |  |  |  |
|-----------------------------|--------------------------------------------|---|---|---|---|--|--|--|
| C-Spec                      | 1                                          | 2 | 3 | 4 | 5 |  |  |  |
| KEMET assigned <sup>1</sup> | •                                          | • | • | • | • |  |  |  |
| 9170                        |                                            |   | 0 |   |   |  |  |  |

<sup>1</sup> KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET.

#### • Part Number specific PPAP available

• Product family PPAP only



#### **Environmental Compliance**

Lead (Pb)-free, REACH and RoHS compliant without exemptions when ordered with a 100% tin (Sn) wire lead finish.

| Series     | Termination<br>Finish<br>(Wire Lead) | RoHS<br>Compliant | Exemption |     | Halogen<br>Free |
|------------|--------------------------------------|-------------------|-----------|-----|-----------------|
| 400 (C4XX) | 100% Matte Sn                        | Yes               | n/a       | Yes | Yes             |

<sup>1</sup> REACH compliance indicates product <u>does not</u> contain Substance/s of Very High Concern (SVHC)

### **Electrical Parameters/Characteristics**

| Item                                                                  | Parameters/Characteristics                                                                 |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Operating Temperature Range                                           | -55°C to +125°C                                                                            |
| Capacitance Change with Reference to<br>+25°C and 0 VDC Applied (TCC) | ±15%                                                                                       |
| Aging Rate (Max % Cap Loss/Decade Hour)                               | 3.0%                                                                                       |
| Dielectric Withstanding Voltage                                       | 250% of rated voltage<br>(5±1 seconds and charge/discharge not exceeding 50 mA)            |
| Dissipation Factor (DF) Maximum Limit at 25°C                         | 3.5%(25 V) and 2.5%(50 V to 250 V)                                                         |
| Insulation Resistance (IR) Limit at 25°C                              | See Insulation Resistance Limit Table<br>(Rated voltage applied for 120±5 seconds at 25°C) |

Regarding aging rate: Capacitance measurements (including tolerance) are indexed to a referee time of 1,000 hours. To obtain IR limit, divide  $M\Omega$ - $\mu$ F value by the capacitance and compare to G $\Omega$  limit. Select the lower of the two limits. Capacitance and dissipation factor (DF) measured under the following conditions:

1 kHz ±50 Hz and 1.0 ±0.2  $V_{rms}$  if capacitance  $\leq$  10  $\mu F$ 

120 Hz ±10 Hz and 0.5 ±0.1  $V_{rms}$  if capacitance > 10  $\mu$ F

Note: When measuring capacitance it is important to ensure the set voltage level is held constant. The HP4284 and Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON."

#### **Post Environmental Limits**

| High Temperature Life, Biased Humidity, Moisture Resistance |                     |                      |                                   |                      |                          |  |  |  |  |  |
|-------------------------------------------------------------|---------------------|----------------------|-----------------------------------|----------------------|--------------------------|--|--|--|--|--|
| Style/Size                                                  | Rated<br>DC Voltage | Capacitance<br>Value | Dissipation Factor<br>(Maximum %) | Capacitance<br>Shift | Insulation<br>Resistance |  |  |  |  |  |
| All                                                         | 25<br>> 25          | All                  | 5.0<br>3.0                        | ± 20%                | 10% of Initial Limit     |  |  |  |  |  |

#### **Insulation Resistance Limit Table**

| Style/Size | 1,000 Megohm<br>Microfarads or 100 GΩ | 500 Megohm<br>Microfarads or 10 GΩ |
|------------|---------------------------------------|------------------------------------|
| 410        | < 0.15µF                              | ≥ 0.15µF                           |
| 420        | < 0.68µF                              | ≥ 0.68µF                           |
| 430        | < 0.47µF                              | ≥ 0.47µF                           |



### Table 1A - C410 Style/Size (0.100" Diameter x 0.170" L), Capacitance Range Waterfall

| Rated Volt         | age (VDC)                | 25                                       | 50                | 100        | 200        | 250        |  |  |
|--------------------|--------------------------|------------------------------------------|-------------------|------------|------------|------------|--|--|
| Voltage Code       |                          | 3                                        | 5                 | 1          | 2          | Α          |  |  |
| Capacitance        | Capacitance<br>Tolerance | Capacitance Code (Available Capacitance) |                   |            |            |            |  |  |
| 10pF               |                          | 100                                      | 100               | 100        | 100        | 100        |  |  |
| 12pF               | _                        | 120                                      | 120               | 120        | 120        | 120        |  |  |
| 15pF               | _                        | 150                                      | 150               | 150        | 150<br>180 | 150        |  |  |
| 18pF<br>22pF       | -                        | 180<br>220                               | <u>180</u><br>220 | 180<br>220 | 220        | 180<br>220 |  |  |
| 27pF               |                          | 270                                      | 270               | 270        | 270        | 270        |  |  |
| 33pF               | -                        | 330                                      | 330               | 330        | 330        | 330        |  |  |
| 39pF               |                          | 390                                      | 390               | 390        | 390        | 390        |  |  |
| 47pF               |                          | 470                                      | 470               | 470        | 470        | 470        |  |  |
| 56pF               |                          | 560                                      | 560               | 560        | 560        | 560        |  |  |
| 68pF               | _                        | 680                                      | 680               | 680        | 680        | 680        |  |  |
| 82pF               |                          | 820                                      | 820               | 820        | 820        | 820        |  |  |
| 100pF              |                          | 101                                      | 101               | 101        | 101        | 101        |  |  |
| 120pF              |                          | 121                                      | 121               | 121        | 121        | 121        |  |  |
| 150pF<br>180pF     |                          | 151<br>181                               | 151<br>181        | 151<br>181 | 151<br>181 | 151<br>181 |  |  |
| 220pF              |                          | 221                                      | 221               | 221        | 221        | 221        |  |  |
| 270pF              |                          | 271                                      | 271               | 221        | 221        | 221        |  |  |
| 330pF              |                          | 331                                      | 331               | 331        | 331        | 331        |  |  |
| 390pF              | -                        | 391                                      | 391               | 391        | 391        | 391        |  |  |
| 470pF              |                          | 471                                      | 471               | 471        | 471        | 471        |  |  |
| 560pF              |                          | 561                                      | 561               | 561        | 561        | 561        |  |  |
| 680pF              |                          | 681                                      | 681               | 681        | 681        | 681        |  |  |
| 820pF              | _                        | 821                                      | 821               | 821        | 821        | 821        |  |  |
| 1000pF             |                          | 102                                      | 102               | 102        | 102        | 102        |  |  |
| 1200pF             | _                        | 122                                      | 122               | 122        | 122        | 122        |  |  |
| 1500pF             |                          | 152                                      | 152               | 152        | 152<br>182 | 152        |  |  |
| 1800pF<br>2200pF   | J = ±5%<br>K = ±10%      | 182<br>222                               | <u>182</u><br>222 | 182<br>222 | 222        | 182<br>222 |  |  |
| 2700pF             | $M = \pm 20\%$           | 272                                      | 272               | 272        | 272        | 272        |  |  |
| 3300pF             | 11 12070                 | 332                                      | 332               | 332        | 332        | 332        |  |  |
| 3900pF             | -                        | 392                                      | 392               | 392        | 392        | 392        |  |  |
| 4700pF             |                          | 472                                      | 472               | 472        | 472        | 472        |  |  |
| 5600pF             |                          | 562                                      | 562               | 562        | 562        | 562        |  |  |
| 6800pF             |                          | 682                                      | 682               | 682        | 682        | 682        |  |  |
| 8200pF             |                          | 822                                      | 822               | 822        | 822        | 822        |  |  |
| 0.01µF             | _                        | 103                                      | 103               | 103        | 103        | 103        |  |  |
| 0.012µF            |                          | 123                                      | 123               | 123        | 123        | 123        |  |  |
| 0.015µF            |                          | 153                                      | 153               | 153<br>183 | 153        | 153        |  |  |
| 0.018µF<br>0.022µF |                          | 183<br>223                               | <u>183</u><br>223 | 223        | 183<br>223 | 183<br>223 |  |  |
| 0.022µF<br>0.027µF |                          | 223                                      | 223               | 223        | 223        | 223        |  |  |
| 0.033µF            |                          | 333                                      | 333               | 333        | 333        |            |  |  |
| 0.039µF            |                          | 393                                      | 393               | 393        | 393        |            |  |  |
| 0.047µF            |                          | 473                                      | 473               | 473        | 473        |            |  |  |
| 0.056µF            |                          | 563                                      | 563               | 563        | 563        |            |  |  |
| 0.068µF            |                          | 683                                      | 683               | 683        |            |            |  |  |
| 0.082µF            |                          | 823                                      | 823               | 823        |            |            |  |  |
| 0.1µF              |                          | 104                                      | 104               | 104        |            |            |  |  |
| 0.12µF             |                          | 124                                      | 124               | 124        |            |            |  |  |
| 0.15µF             |                          | 154                                      | 154               | 154        |            |            |  |  |
| 0.18µF             |                          | 184                                      | 184               | 184        |            |            |  |  |
| 0.22µF             |                          | 224<br>274                               | 224<br>274        | 224        |            |            |  |  |
| 0.27µF<br>0.33µF   |                          | 334                                      | 334               |            |            |            |  |  |
| 0.39µF             |                          | 394                                      | 394               |            |            |            |  |  |
| 0.47µF             |                          | 474                                      | 474               |            |            |            |  |  |
| Rated Volt         | age (VDC)                | 25                                       | 50                | 100        | 200        | 250        |  |  |
|                    | e Code                   | 3                                        | 5                 | 1          | 2          | A          |  |  |



### Table 1A – C410 Style/Size (0.100" Diameter x 0.170" L), Capacitance Range Waterfall cont'.

|                                     | C410 Style/Size (0.100" Diameter x 0.170" L ) |                                          |               |     |     |     |  |  |  |  |
|-------------------------------------|-----------------------------------------------|------------------------------------------|---------------|-----|-----|-----|--|--|--|--|
| Rated Volt                          | age (VDC)                                     | 25                                       | 25 50 100 200 |     |     |     |  |  |  |  |
| Voltag                              | Voltage Code                                  |                                          | 5             | 1   | 2   | Α   |  |  |  |  |
| Capacitance                         | Capacitance<br>Tolerance                      | Capacitance Code (Available Capacitance) |               |     |     |     |  |  |  |  |
| 0.56µF<br>0.68µF<br>0.82µF<br>1.0µF | J = ±5%<br>K = ±10%<br>M = ±20%               | 564<br>684<br>824<br>105                 | 564<br>684    |     |     |     |  |  |  |  |
| Rated Volt                          | Rated Voltage (VDC)                           |                                          | 50            | 100 | 200 | 250 |  |  |  |  |
| Voltag                              | Voltage Code                                  |                                          | 5             | 1   | 2   | Α   |  |  |  |  |

### Table 1B - C420 Style/Size (0.100" Diameter x 0.260" L), Capacitance Range Waterfall

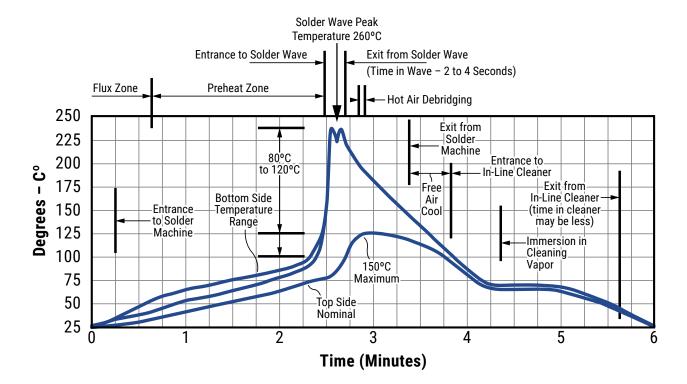
|             | C420 Style/Size (0.100" Diameter x 0.260" L ) |     |           |                   |                |     |  |  |  |  |
|-------------|-----------------------------------------------|-----|-----------|-------------------|----------------|-----|--|--|--|--|
| Rated Volt  | Rated Voltage (VDC)                           |     | 50        | 100               | 200            | 250 |  |  |  |  |
| Voltag      | e Code                                        | 3   | 5         | 1                 | 2              | A   |  |  |  |  |
| Capacitance | Capacitance<br>Tolerance                      |     | Capacitan | ce Code (Availabl | e Capacitance) |     |  |  |  |  |
| 0.027µF     |                                               | 273 | 273       | 273               | 273            | 273 |  |  |  |  |
| 0.033µF     |                                               | 333 | 333       | 333               | 333            | 333 |  |  |  |  |
| 0.039µF     |                                               | 393 | 393       | 393               | 393            | 393 |  |  |  |  |
| 0.047µF     |                                               | 473 | 473       | 473               | 473            | 473 |  |  |  |  |
| 0.056µF     |                                               | 563 | 563       | 563               | 563            | 563 |  |  |  |  |
| 0.068µF     |                                               | 683 | 683       | 683               | 683            | 683 |  |  |  |  |
| 0.082µF     |                                               | 823 | 823       | 823               | 823            | 823 |  |  |  |  |
| 0.1µF       |                                               | 104 | 104       | 104               | 104            | 104 |  |  |  |  |
| 0.12µF      | L . F0/                                       | 124 | 124       | 124               |                |     |  |  |  |  |
| 0.15µF      | J = ±5%<br>K = ±10%                           | 154 | 154       | 154               |                |     |  |  |  |  |
| 0.18µF      | $M = \pm 20\%$                                | 184 | 184       | 184               |                |     |  |  |  |  |
| 0.22µF      | IVI - 120%                                    | 224 | 224       | 224               |                |     |  |  |  |  |
| 0.27µF      |                                               | 274 | 274       | 274               |                |     |  |  |  |  |
| 0.33µF      |                                               | 334 | 334       |                   |                |     |  |  |  |  |
| 0.39µF      |                                               | 394 | 394       |                   |                |     |  |  |  |  |
| 0.47µF      |                                               | 474 | 474       |                   |                |     |  |  |  |  |
| 0.56µF      |                                               | 564 | 564       |                   |                |     |  |  |  |  |
| 0.68µF      |                                               | 684 | 684       |                   |                |     |  |  |  |  |
| 0.82µF      |                                               | 824 | 824       |                   |                |     |  |  |  |  |
| 1.0µF       |                                               | 105 | 105       |                   |                |     |  |  |  |  |
| Rated Volt  | age (VDC)                                     | 25  | 50        | 100               | 200            | 250 |  |  |  |  |
| Voltag      | e Code                                        | 3   | 5         | 1                 | 2              | Α   |  |  |  |  |



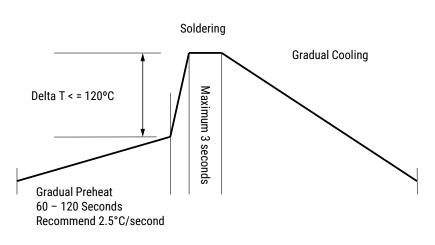
### Table 1C - C430 Style/Size (0.150" Diameter x 0.290" L), Capacitance Range Waterfall

|             | C430 Style/Size (0.150" Diameter x 0.290" L ) |                                          |     |     |     |  |  |  |  |  |
|-------------|-----------------------------------------------|------------------------------------------|-----|-----|-----|--|--|--|--|--|
| Rated Volt  | age (VDC)                                     | 25                                       | 50  | 100 | 200 |  |  |  |  |  |
| Voltag      | e Code                                        | 3                                        | 5   | 1   | 2   |  |  |  |  |  |
| Capacitance | Capacitance<br>Tolerance                      | Capacitance Code (Available Capacitance) |     |     |     |  |  |  |  |  |
| 0.12µF      |                                               | 124                                      | 124 | 124 | 124 |  |  |  |  |  |
| 0.15µF      |                                               | 154                                      | 154 | 154 | 154 |  |  |  |  |  |
| 0.18µF      |                                               | 184                                      | 184 | 184 |     |  |  |  |  |  |
| 0.22µF      |                                               | 224                                      | 224 | 224 |     |  |  |  |  |  |
| 0.27µF      |                                               | 274                                      | 274 | 274 |     |  |  |  |  |  |
| 0.33µF      |                                               | 334                                      | 334 | 334 |     |  |  |  |  |  |
| 0.39µF      |                                               | 394                                      | 394 | 394 |     |  |  |  |  |  |
| 0.47µF      |                                               | 474                                      | 474 | 474 |     |  |  |  |  |  |
| 0.56µF      |                                               | 564                                      | 564 |     |     |  |  |  |  |  |
| 0.68µF      | J = ±5%                                       | 684                                      | 684 |     |     |  |  |  |  |  |
| 0.82µF      | K = ±10%                                      | 824                                      | 824 |     |     |  |  |  |  |  |
| 1.0µF       | M = ±20%                                      | 105                                      | 105 |     |     |  |  |  |  |  |
| 1.2µF       |                                               | 125                                      | 125 |     |     |  |  |  |  |  |
| 1.5µF       |                                               | 155                                      | 155 |     |     |  |  |  |  |  |
| 1.8µF       |                                               | 185                                      | 185 |     |     |  |  |  |  |  |
| 2.0µF       |                                               | 205                                      | 205 |     |     |  |  |  |  |  |
| 2.2µF       |                                               | 225                                      | 225 |     |     |  |  |  |  |  |
| 2.7µF       |                                               | 275                                      |     |     |     |  |  |  |  |  |
| 3.3µF       |                                               | 335                                      |     |     |     |  |  |  |  |  |
| 3.9µF       |                                               | 395                                      |     |     |     |  |  |  |  |  |
| 4.7µF       |                                               | 475                                      |     |     |     |  |  |  |  |  |
| Rated Volt  | age (VDC)                                     | 25                                       | 50  | 100 | 200 |  |  |  |  |  |
| Voltag      | e Code                                        | 3                                        | 5   | 1   | 2   |  |  |  |  |  |




### **Soldering Process**

#### **Recommended Soldering Methods:**


- Solder Wave
- Hand Soldering (Manual)

#### **Recommended Soldering Profile:**

Optimum Wave Solder Profile

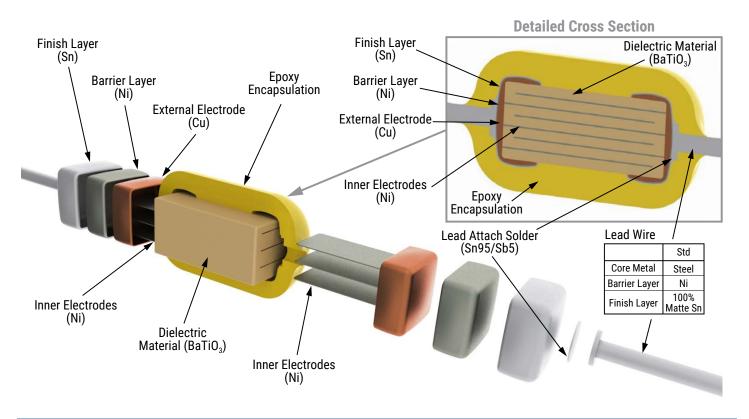


• Hand Soldering (Manual)

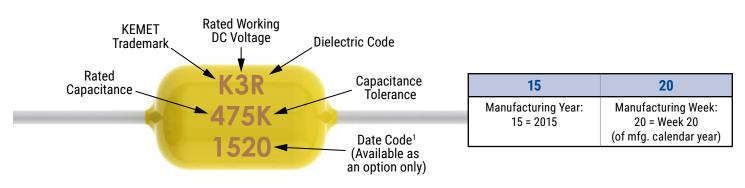


#### **Manual Solder Profile with Pre-heating**




#### **Storage & Handling**

The un-mounted storage life of a leaded ceramic capacitor is dependent upon storage and atmospheric conditions as well as packaging materials. While the ceramic chips enveloped under the epoxy coating themselves are quite robust in most environments, solderability of the wire lead on the final epoxy-coated product will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature and exposure to direct sunlight–reels may soften or warp, and tape peel force may increase.


KEMET recommends storing the un-mounted capacitors in their original packaging, in a location away from direct sunlight, and where the temperature and relative humidity do not exceed 40 degrees centigrade and 70% respectively. For optimum solderability, capacitor stock should be used promptly, preferably within 18 months of receipt. For applications requiring pre-tinning of components, storage life may be extended if solderability is verified. Before cleaning, bonding or molding these devices, it is important to verify that your process does not affect product quality and performance. KEMET recommends testing and evaluating the performance of a cleaned, bonded or molded product prior to implementing and/or qualifying any of these processes.



### Construction



Marking



<sup>1</sup> To properly request the inclusion of the date code in the marking, ordering code please contact your KEMET representative.

#### **Packaging Quantities**

| Style/Size | Standard<br>Bulk Quantity | Ammo Pack<br>Quantity<br>Maximum | Reel Quantity<br>Maximum<br>(12" Reel) |
|------------|---------------------------|----------------------------------|----------------------------------------|
| 410        | 300/Box                   | 4 000                            | 5,000                                  |
| 420        | 300/Box                   | 4,000                            |                                        |
| 430        | 200/Box                   | 2,000                            | 2,500                                  |



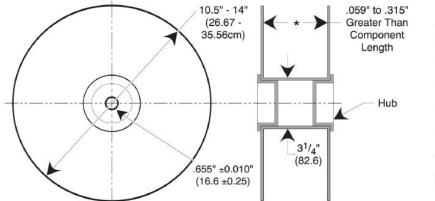
Figure 1

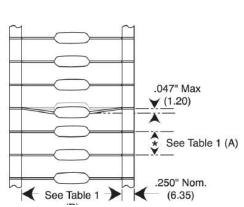
KEME

HARGED

### **Tape & Reel Packaging Information**

KEMET offers standard reeling of molded and conformally coated axial leaded ceramic capacitors for automatic insertion or lead forming machines in accordance with EIA standard 296. KEMET's internal specification four-digit suffix, 7200, is placed at the end of the part number to designate tape and reel packaging, e.g., C410C104Z5U5CA7200.


Paper (50 lb.) test minimum is inserted between the layers of capacitors wound on reels for component pitch  $\leq$  0.400". Capacitor lead length may extend only a maximum of .0625" (1.59 mm) beyond the tapes' edges. Capacitors are centered in a row between the two tapes and will deviate only ± 0.031" (0.79 mm) from the row center. A minimum of 36" (91.5 cm) leader tape is provided at each finished length of taped components. Universal splicing clips are used to connect the tape. Adhesive Tape


Figure 2

Adhesive Tape



Kraft Paper Interleaving





# Table 3 – Ceramic Axial Tape and Reel Dimensions

| Dimensions – Millimeters (Inches) |              |               | Symbol Reference Table |                     |
|-----------------------------------|--------------|---------------|------------------------|---------------------|
| Axial Capacitor                   | А            | B             | A                      | Component Pitch     |
| Body Diameter                     | ±0.5 (0.020) | ±1.5 (0.059)* | В                      | Inside Tape Spacing |
| 0.0 to 5.0<br>(0.0 to 0.197)      | 5.0 (0.197)  | 52.4 (2.062)  |                        | in the first of     |

\* Inside tape spacing dimension (B) is determined by the body diameter of the capacitor.



#### **KEMET Electronics Corporation Sales Offices**

For a complete list of our global sales offices, please visit www.kemet.com/sales.

#### Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

KEMET is a registered trademark of KEMET Electronics Corporation.

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - Leaded category:

Click to view products by Kemet manufacturer:

Other Similar products are found below :

010-007220-002REV A M39014/01-1210V M39014/01-1281V M39014/01-1335V M39014/01-1571V M39014/01-1578V M39014/01-1593 M39014/02-1265V M39014/02-1347 M39014/02-1350 M39014/02-1356VTR1 M39014/22-0167 M39014/22-0734 87043-49 Q52-DK AR215F103K4RTR2-3323 C0603C309C5GACTU-CUT-TAPE C410C221K1G5TATR C420C102J1G5TATR C430C104M1U5TATR SL155C222MAB FK26X7R2E104KN006 CCR06CG183GRV CFB1/2C101J CFB1/2C102J CN20C102K M39014/01-1317 M39014/01-1572V M39014/01-1594V M39014/02-1236 M39014/02-1321V M39014/02-1345V M39014/22-0351 M39014/22-0695 M39014/220767 M39014/220788 M39014/22-1005 MA405E334MAA MD015A103KAB SL301E105MAB CCR05CG242FRV KTD101B684M32A0B00 CCR07CG473KR CCR05CG820JP TKC-TMC1206-05-1501-J?? TKC-TMC1206-05-1801-J TKC-TMC1206-05-20R0-F TKC-TMC1206-05-3901-J TKC-TMC1206-05-44R2-F TKC-TMC1206-05-4703-J??