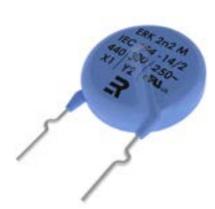


Overview

KEMET's ERK610 series encapsulated radial leaded ceramic disc capacitors are specifically designed for interference-suppression AC line filtering applications. Having internationally recognized safety certifications, these capacitors are well-suited for applications that require keeping potentially disruptive or damaging line transients and EMI out of susceptible equipment. They are also an ideal solution when needing to suppress line disturbances at the source.

Safety Certified Capacitors are classified as either X and/ or Y capacitors. Class X capacitors are primarily used in line-to line (across-the-line) applications. In this application there is no danger of electric shock to humans should the capacitor fail, but could result in a risk of fire. The class Y capacitor is primarily used in line-toground (line by-pass) applications. In this application, failure of the capacitor could lead to danger of electric shock.


With a working voltage of 440 VAC in line-to-line (Class X) and 300 VAC in line-to-ground (Class Y) applications, these safety capacitors meet the impulse test criteria outlined in IEC Standard 60384. Meeting subclass X1 and Y2 requirements, these devices are certified to withstand impulses up to 4 KV (X1) and 5 KV (Y2) respectively. These encapsulated devices also meet the flame test requirements outlined in UL Standard 94 V-0.

Benefits

- Safety Standard Recognized (IEC 60384-14)
- Reliable operation up to 125°C
- Class X1/Y2
- 5.0 mm, 7.5 mm, 10 mm, and 12.5 mm lead spacing
- RoHS compliant
- Capacitance offerings ranging from 33 pF up to 4.7 nF
- Available capacitance tolerances of $\pm 10\%$ and $\pm 20\%$
- High reliability
- Preformed (crimped) or straight lead configurations
- Non-polar device, minimizing installation concerns
- Encapsulation meets flammability standard UL 94 V-0

Applications

- · Line-to-Line (Class X) filtering
- · Line-to-Ground (Class Y) filtering
- Antenna coupling
- Primary and secondary coupling (switching power supplies)
- Line disturbances suppression (motors and motor controls, relays, switching power supplies, and invertors)

Ordering Information

ERK610	Z	102	К	CF0
Ceramic Series	Voltage Rating (Safety Subclass Rating)	Capacitance Code (pF)	Capacitance Tolerance	Lead configuration/ Packaging Code
ERK610	Z = X1 440 VAC/Y2 300 VAC	Two significant digits and number of zeroes	K = ±10% M = ±20%	*See Packaging Options

Packaging C-Spec Ordering Options Tables

Bulk Packaging								
	LEAD LENGTH L	LEAD DIAMETER D		LEAD SPACING F				
			5 mm	7.5 mm	10 mm	12.5 mm		
	30 mm – 3 mm	0.6 mm	BF0	CF0	DF0	EF0		
Ctraight loada	30 11111 - 3 11111	0.8 mm		CJ0	DJ0	EJ0		
Straight leads	10 mm ±1 mm	0.6 mm	BD0	CD0	DD0	ED0		
		0.8 mm		CH0	DH0	EH0		
	6 mm – 1 mm	0.6 mm/0.8 mm	BB0	CB0	DB0	EB0		
Draformed lands inside arimp	00	0.6 mm			DFG	EFG		
Preformed leads inside crimp	30 mm – 3 mm	0.8 mm			DJG	EJG		
Drefermed leads sutside arimp	5 mm ±1 mm	0.6 mm	TA0	TC0	TE0	TG0		
Preformed leads outside crimp	5 IIIII I I IIIII	0.8 mm		TD0	TF0	TH0		
Draformad laada anan in	Minimum 2.8 mm	0.6 mm			QE0	QG0		
Preformed leads snap-in	Minimum 3.5 mm	0.8 mm			QF0	QH0		
Inline wire	Minimum 2.8 mm + 1.5 mm	0.6 mm	YA0	YC0	YE0	YG0		
inine wire	Minimum 3.0 mm + 2.0 mm	0.8 mm	YB0	YD0	YF0	YH0		

Reel Packaging Component Pitch 12.7 mm ^{1,2}								
	TAPING P		TAP	ING T	TAPING U			
Lead diameter 0.6 mm	H = 16.5 mm		H = 18.0 mm straight leads only H0 = 16.0 mm preformed leads only		H = 20.0 mm			
Lead spacing F	5 mm	7.5 mm	5 mm	7.5 mm	5 mm	7.5 mm		
Body diameter D		Valid for ≤	12 mm standard (>	12 mm to ≤ 13 mm or	n request)			
Straight leads		CRE	BRA	CRA	BRC	CRC		
Preformed leads inside crimp								
Preformed leads outside crimp			TAR	TCR				
Preformed leads 7.5 mm to 5 mm			UAR					
Preformed leads snap-in								
Inline wire				YCR				

¹ When requiring the 12.7 mm pitch option, 5 mm and 7.5 mm lead spacing is only available for body diameters less than or equal to 12 mm. See Product Ordering Codes and Ratings (Table 1) for Body Diameter.

 $^{\rm 2}$ 10 mm and 12.5 mm lead spacing options are not available in 12.7 mm pitch.

Packaging C-Spec Ordering Options Tables cont.

Reel Packaging Component Pitch 25.4 mm ^{1,2}							
			TAPING F				
Lead spacing F		5 mm	7.5 mm	10 mm	12.5 mm		
Body diameter D		> 12 mm		All diameters			
	H = 16.5 mm	BRT	CRT	DRT	ERT		
Straight leads	H = 18.0 mm	BRU	CRU	DRU	ERU		
	H = 20.0 mm	BRY	CRY	DRY	ERY		
Preformed leads inside crimp	H0 = 16.0 mm			DRZ	ERZ		
Preformed leads outside crimp	H0 = 16.0 mm			TDR	TER		
Inline wire	H0 = 16.0 mm	YRB	YRC	YRD	YRE		

¹ When requiring the 25.4 mm pitch option, 5 mm and 7.5 mm lead spacing is only available for body diameters greater than 12 mm. See Product Ordering Codes and Ratings (Table 1) for Body Diameter.

² 10 mm and 12.5 mm lead spacing is available for all body diameters.

Ammo Packaging Component Pitch 12.7 mm ^{1,2}							
	TAPING P	TAPI	TAPING U				
Lead diameter 0.6 mm	H = 16.5 mm	H = 18.0 mm str H0 = 16.0 mm pre	H = 20.0 mm				
Lead spacing F	5 mm	5 mm	7.5 mm	5 mm			
Body diameter D	Valid for ≤ [•]	12 mm standard (>	12 mm to ≤ 13 mm	on request)			
Straight leads	BLE	BLA	CLA	BLC			
Preformed leads inside crimp							
Preformed leads 7.5 mm to 5 mm		UAL					
Inline wire		YAL	YLC				

¹ When requiring the 12.7 mm pitch option, 5 mm and 7.5 mm lead spacing is only available for body diameters less than or equal to 12 mm. See Product Ordering Codes and Ratings (Table 1) for Body Diameter.

² 10 mm and 12.5 mm lead spacing options are not available in 12.7 mm pitch.

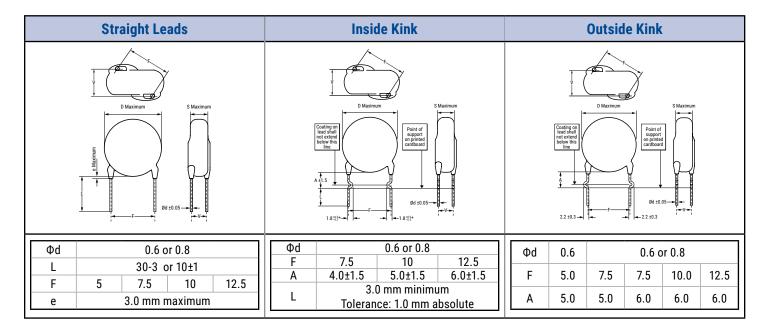
Approval Standard and Certification Number

Safety Standard	Specification	Certificate Number		
VDE (ENEC)	EN 132400	<u>40001991, 40001992</u>		
UL CAN/CSA	UL 60384-14 and E60384-14	<u>E356389</u>		

These devices are VDE/ENEC recognized for antenna coupling and AC line-to-line (Class X) and line-to-ground (Class Y) applications per IEC60384–14.

Environmental Compliance

These devices are RoHS compliant. They meet all the requirements set forth by both EU and China RoHS directives.



Storage & Handling

KEMET's ER Series Safety Rated capacitors should not be stored in an environment that contains a corrosive atmosphere where sulphide or chloride gas, acid, alkali or salt are present. Additionally, exposure to moisture should be avoided. Storage does not affect the solderability of the leads for up to 24 months (temperature: +10°C to +35°C, relatively humidity: up to 60%). Class 2 ceramic dielectric capacitors are also subject to aging.

Lead Configurations

	5 mm to 7.5 mm		Snap-In Lea	ıds		Verti	cal Crimp	
b	D Maximum D Maximum	D Maximum Coating on led thand to bow this ine H to 3 H to 3 H to 3 H to 3 H to 4 H to 4 H to 3 H to 4 H t			D Maximum D Maximum Construction D Maximum Construction S Maximum Construction			
Φd	0.6	Φd F	0.6 7.5/10/12.5	0.8 7.5/10/12.5	F	7.5	10	12.5
В	D-9:6.8±0.7 D>9:7.5±0.7	L	2.8 mm minimum	3.5 mm minimum	D	0.6 4.5	0.8	0.8
	2.0 mm minimum	H P1	2.6 1.25	3.3 1.65	A	maximum 2.8	maximum 3.0	maximum 3.0
	Tolerance: 2.0 mm absolute	P2 1.65 1.95 Tolerance: 2.0 mm absolute A D - 8: 6.0±1.5 D > 8: 7.0±1.5		-		minimum 1.5 absolute	minimum 2.0 absolute	minimum 2.0 absolute

General Specifications/Performance Characteristics

Dielectric/Temperature Characteristic	U2J	Y5S	Y5T	Y5U	
Operating Temperature Range:	-40°C to +125°C				
Capacitance Change with Reference to +25°C and 0 VDC Applied (TCC):	±60 ppm/°C	±60 ppm/°C ±22% +22%/-33%			
Test Voltage Between Terminals	Component test: 2,600 VAC, 50 Hz, 2 seconds As repeated test admissible only once with 2,600 VAC, 50 Hz, 60 seconds Random sampling test (destructive test): 2,600 VAC, 50 Hz, 60 seconds				
Dielectric Strength of Body Insulation	2,600 VAC, 50 Hz, 60 seconds (destructive test))	
¹ Dissipation Factor (tanδ) at +25°C ¹	0.50% 2.50%				
Insulation Resistance (IR) Limit at +25°C	6,000 MΩ minimum (500 VDC applied for 60 ±5 seconds at 25°C)				

*C = Nominal capacitance

¹ Capacitance and Dissipation Factor (DF) measured under the following conditions:

U2J: 1 MHz ±100 kHz and 1.0 ±0.2 $V_{\rm rms}$

Y5S, Y5T and Y5U: 1 kHz ±50 Hz and 1.0 ±0.2 $V_{\rm rms}$

Note: When measuring capacitance, it is important to ensure the set voltage level is held constant. The HP4284 & Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON."

Table 1 – Product Ordering Codes and Ratings

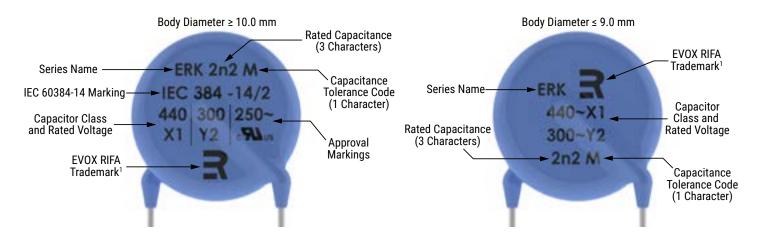
					Dimensior	ns (mm)		Lead S	pacing												
	KEMET Part Number	Capacitance	Capacitance Tolerance	Body Diameter (Maximum)	Body Thickness (Maximum)	Lead Diameter	Width V ±0.5 mm	Bulk Packaging	Ammo Packaging												
U2J	ERK610Z330	33 pF					1.6		·												
025	ERK610Z470	47 pF					1.0														
Y5S	ERK610Z680	68 pF																			
100	ERK610Z101	100 pF 8.0																			
	ERK610Z151	150 pF		6.0	6.0		1.9														
Y5T	ERK610Z221	220 pF				0.6															
	ERK610Z331	330 pF	110%				0.6 0.8	0.6	0.6	0.0	0.0	0.6	0.6	0.6	0.6	0.6	0.6	0.6		5 7.5	
	ERK610Z471	470 pF	±10% ±20%					2	7.5 10												
	ERK610Z681	680 pF	120%	9.0		0.0	Z	10													
	ERK610Z102	1,000 pF		7.0													12				
Y5U	ERK610Z152	1,500 pF		8.0																	
100	ERK610Z222	2,200 pF	1	10.0	4.5		1.0														
	ERK610Z332	3,300 pF	1	12.0	4.5		1.6														
	ERK610Z392	3,900 pF	1	10.5																	
	ERK610Z472	4,700 pF	1	13.5																	
	KEMET Part Number	Capacitance	Capacitance Tolerance	Body Diameter (Maximum)	Body Thickness (Maximum)	Lead Diameter	Width V ±0.5 mm	Lead S	pacing												

To properly complete ordering code, enter the three-digit alphanumeric "Packaging Code." See "Dimensions" section of this document, page 2, for available options.

Soldering and Mounting Information

Soldering Specifications							
Solderability Resistance to Solderin Heat							
Soldering Temperature	235°C ±5°C	260°C ±5°C					
Solder Duration	2 seconds ±0.5 seconds	10 seconds ±1.0 seconds					
Distance from component body	≥ 2 mm	≥ 5 mm					
CSA (cUL recognition)	C 22.2 No. 1-M90 (Ur = 250 VAC)	216038					

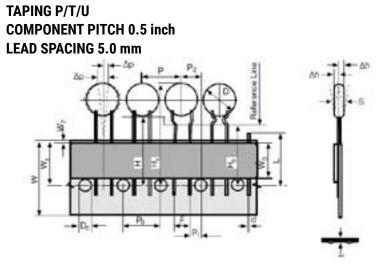
Soldering test for capacitors with wire leads (according to IEC 60068-2-20, solder bath method)

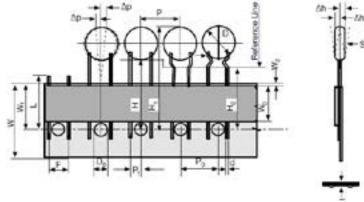

Sodering Recommendations

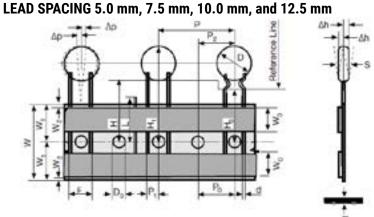
When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could reflow the solder joint between the lead and ceramic element and/or may result in thermal shocks that can crack the ceramic element.

Cleaning Recommendations

The components should be cleaned immediately following the soldering operation with vapor degreasers.


Marking


¹ EVOX RIFA and all associated products were acuired by KEMET in 2007. The EVOX RIFA trademark is still used on the capacitor marking.


Figure 1 - Ammo Pack Taping Format

TAPING P/T/U COMPONENT PITCH 0.5 inch LEAD SPACING 7.5 mm

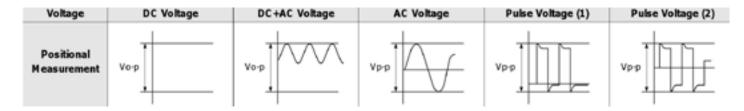
TAPING F COMPONENT PITCH 1.0 inch

Table 2 – Ammo Pack Taping Specifications

Lead Style	TAPING P	TAPING T	TAPING U	TAPING F	
Item	Symbol		Dimensions(mm)		
Pitch of component	Р		12.7±1		25.4 ±1
Pitch of sprocket hole	P0		12.7±0.3		12.7 ±0.3
Distance, hole to lead	P1		3.85±0.7		(0.5F) ±0.7
Distance, hole to center of component	P2		6.35±1.3		12.7 ±1.3
Lead spacing	F		5.0/7.5 +0.8/-0.2		5/7.5/10/12.5 ±0.8
Average deviation across tape	Δh		±2.0 maximum		±3.0 maximum
Average deviation in direction of reeling	Δp		±1.3 maximum		±1.3 maximum
Carrier tape width	W		18.0 +1/-0.5		18.0 +1/-0.5
Hold-down tape width	W0		6		6
Position of sprocket hole	W1		9.0 +0.75/-0.5		9.0 +0.75/-0.5
Distance of hold-down tape	W2		3.0 maximum		3.0 maximum
Distance between the abscissa and the bottom place of the component body (straight leads)	Н	16.5 ±0.5	18.0 +2/-0	20 ±1	16.5 ±0.5 18.0 +2/-0 20.0 ±1
Distance between the abscissa and the bottom place of the component body (kinked leads)	HO	16.0 ±0.5		16.0 ±0.5	
Length of cut leads	L	11.0 maximum		11.0 maximum	
Diameter of sprocket hole	DO	4.0 ±0.2			4.0 ±0.2
Total tape thickness	t		0.9 maximum		0.9 maximum

¹ Prefromed (crimped) lead configurations include vertical kink, outside kink and inside kink. See "Lead Configurations" and "Ordering Information" sections of this document for further details.

² Also referred to as "lead length" in this document.


Application Notes

Storage and Operating Conditions

The insulating coating of these devices does not form an air and moisture-tight seal. Avoid exposure to moisture and do not use or store these devices in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt, or the like are present. Before cleaning, bonding or molding these devices, it is important to verify that your process does not affect product quality and performance. KEMET recommends testing and evaluating the performance of a cleaned, bonded or molded product prior to implementing and/or qualifying any of these processes. Store the capacitors where the temperature and relative humidity do not exceed 40 degrees centigrade and 70% respectively. For optimum solderability, capacitor stock should be used promptly, preferably within 6 months of receipt.

Working Voltage

Application voltage (Vp-p or Vo-p) must not exceed the voltage rating of the capacitor. Irregular voltages can be generated for a transient period of time when voltage is initially applied and/or removed from a circuit. It is important to choose a capacitor with a voltage rating greater than or equal to these irregular voltages.

Operating Temperature and Self-Generating Heat

The surface temperature of a capacitor should be kept below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a high-frequency current, pulse current or similar current, it may self-generate heat due to dielectric loss. Temperature rise due to self-generated heating should not exceed 20°C (while operated at an atmosphere temperature of 25°C).

Handling - Vibration and Impact

Do not expose these devices or their leads to excessive shock or vibration during use.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

KEMET Electronics Corporation Sales Offices

For a complete list of our global sales offices, please visit www.kemet.com/sales.

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

KEMET is a registered trademark of KEMET Electronics Corporation.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Safety Capacitors category:

Click to view products by Kemet manufacturer:

Other Similar products are found below :

 R49AN347000A1K
 B32022B3223K026
 B32912A3104K026
 46KI3470DQM1K
 B32913A3154K
 MKPY2-.02230020P15
 46KN333000M1M

 DE1E3KX222MJ4BN01F
 46KR422000M1K
 B32924C3824K189
 46KI3100DQM1M
 HUB2200-S
 BFC2 33910103
 46KN3330JBM1K

 463I333000M1K
 46KF2470JBN0M
 46KF268000M1M
 46KI22205001M
 46KI24705201K
 46KI2470CK01M
 46KI2470ND01K

 46KI2680JH01M
 46KI315000M2K
 46KI3150CKM2K
 46KI3150NDM2M
 46KI3220JLM1M
 46KN3150JH01K

 46KN34705001K
 46KN347050N0K
 46KN3470JHP0M
 46KN410040H1M
 46KN415000P1M
 46KW510050M1K
 474I24700003K

 PHE840MD6220MD13R30
 PHE840MY6470MD14R06
 PHE845VD5470MR06
 R463N4100ZAM1K
 46KR410050M1K

 YV500103Z060B20X5P
 MKPX2R-1/400/10P27
 YU0AH222M090DAMD0B
 LS1808N102K302NX080TM
 R463F210000N0K

 R463I26800001K
 R463I315000M2K
 F861A0224K310A
 F861KJ223K310A
 DE21XSA470KA3BT02F