# PHE844, Class X1, 440/480 VAC, 105°C



### **Overview**

The PHE844 series is constructed of metallized polypropylene film encapsulated with self-extinguishing resin in a box of material that meets the requirements of UL 94 V-0.

## **Applications**

For use as an electromagnetic interference (EMI) suppression filter in across-the-line applications that require X1 safety classification. Suitable for use in situations in which capacitor failure does not pose a danger of electric shock.

### **Benefits**

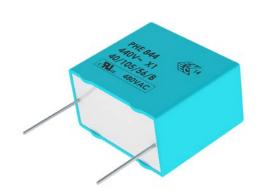
Approvals: ENEC, UL, cULClass X1 (IEC 60384-14)

 THB Grade IA: 40°C, 93% RH, 500 hours at 480 V URAC acc. to IEC 60384-14

 Rated voltage: 440 VAC 50/60 Hz (ENEC), 480 VAC 50/60 Hz (UL, cUL)

Capacitance range: 0.1 – 2.2 μF
Lead spacing: 22.5 – 37.5 mm
Capacitance tolerance: ±20%, ±10%

• Climatic category 40/105/56/B, IEC 60068-1


• Tape & Reel in accordance with IEC 60286-2

· RoHS Compliant and lead-free terminations

- Operating temperature range of -40  $^{\circ}\text{C}$  to +105  $^{\circ}\text{C}$ 

• 100% screening factory test at 3,000 VDC

Self-healing properties



### **Customer Part Number**

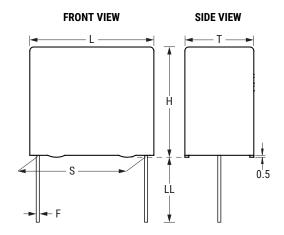
| PHE844                          | R                   | D                                | 6100                                                                                                       | M                        | R06L2                         |
|---------------------------------|---------------------|----------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------|
| Series                          | Rated Voltage (VAC) | Lead Spacing (mm)                | Capacitance Code (pF)                                                                                      | Capacitance<br>Tolerance | Packaging                     |
| X1, Metallized<br>Polypropylene | R = 440             | D = 22.5<br>F = 27.5<br>R = 37.5 | The last three digits represent significant figures. The first digit specifies the total number of digits. | K = ±10%<br>M = ±20%     | See Ordering Options<br>Table |

### **KEMET Internal Part Number**

| F                  | 844                             | D                                | Н                         | 104                                                                                            | M                        | 440                    | С                             |
|--------------------|---------------------------------|----------------------------------|---------------------------|------------------------------------------------------------------------------------------------|--------------------------|------------------------|-------------------------------|
| Capacitor<br>Class | Series                          | Lead Spacing (mm)                | Size Code                 | Capacitance Code (pF)                                                                          | Capacitance<br>Tolerance | Rated Voltage<br>(VAC) | Packaging                     |
| F = Film           | X1, Metallized<br>Polypropylene | D = 22.5<br>F = 27.5<br>R = 37.5 | See<br>Dimension<br>Table | The first two digits represent significant figures. The third digit specifies number of zeros. | K = ±10%<br>M = ±20%     | 440 = 440              | See Ordering<br>Options Table |

**Built Into Tomorrow** 




# **Ordering Options Table**

| Lead<br>Spacing<br>Nominal<br>(mm) | Type of Leads and Packaging         | Lead Length<br>(mm)        | KEMET<br>Lead and<br>Packaging<br>Code | Legacy<br>Lead and<br>Packaging<br>Code |
|------------------------------------|-------------------------------------|----------------------------|----------------------------------------|-----------------------------------------|
|                                    | Standard Lead and Packaging Options |                            |                                        |                                         |
|                                    | Bulk (Tray)-Short Leads             | 6 +0/-1                    | С                                      | R06L2 <sup>(1)</sup>                    |
|                                    | Other Lead and Packaging Options    |                            |                                        |                                         |
| 22.5                               | Pizza Pack                          | 6 +0/-1                    | Z                                      | R06L2 <sup>(1)</sup>                    |
|                                    | Bulk (Tray)-Long Leads              | 30 +0/-1                   | ALW0L                                  | R30L2                                   |
|                                    | Tape & Reel (Standard Reel)         | H <sub>0</sub> = 18.5 ±0.5 | L                                      | R17T0                                   |
|                                    | Tape & Reel (Large Reel)            | H <sub>0</sub> = 18.5 ±0.5 | Р                                      | R17T1                                   |
|                                    | Standard Lead and Packaging Options |                            |                                        |                                         |
|                                    | Bulk (Tray)-Short Leads             | 6 +0/-1                    | С                                      | R06L2 <sup>(1)</sup>                    |
| 27.5                               | Other Lead and Packaging Options    |                            |                                        |                                         |
|                                    | Pizza Pack                          | 6 +0/-1                    | Z                                      | R06L2 <sup>(1)</sup>                    |
|                                    | Bulk (Tray)-Long Leads              | 30 +0/-1                   | ALW0L                                  | R30L2                                   |
|                                    | Tape & Reel (Large Reel)            | H <sub>0</sub> = 18.5 ±0.5 | Р                                      | R17T1                                   |
|                                    | Standard Lead and Packaging         |                            |                                        |                                         |
|                                    | Options                             |                            |                                        |                                         |
| 37.5                               | Bulk (Tray)-Short Leads             | 6 +0/-1                    | С                                      | R06L2 <sup>(1)</sup>                    |
| 77.5                               | Other Lead and Packaging Options    |                            |                                        |                                         |
|                                    | Pizza Pack                          | 6 +0/-1                    | Z                                      | R06L2 <sup>(1)</sup>                    |

<sup>(1)</sup> Please specify Bulk (Tray) or Pizza Packaging



## **Dimensions - Millimeters**



| KEMET Size | Legacy Size                                                        |         | S         |         | T         |         | Н         |         | L         | F       |           |
|------------|--------------------------------------------------------------------|---------|-----------|---------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Code       | Code                                                               | Nominal | Tolerance |
| DH         | D14                                                                | 22.5    | ±0.4      | 8.0     | Maximum   | 16.0    | Maximum   | 26.0    | Maximum   | 0.8     | ±0.05     |
| DM         | D15                                                                | 22.5    | ±0.4      | 9.0     | Maximum   | 18.5    | Maximum   | 26.0    | Maximum   | 0.8     | ±0.05     |
| DT         | D16                                                                | 22.5    | ±0.4      | 11.0    | Maximum   | 21.5    | Maximum   | 26.0    | Maximum   | 0.8     | ±0.05     |
| DW         | D20                                                                | 22.5    | ±0.4      | 13.5    | Maximum   | 23.0    | Maximum   | 26.0    | Maximum   | 0.8     | ±0.05     |
| DY         | D19                                                                | 22.5    | ±0.4      | 15.5    | Maximum   | 24.5    | Maximum   | 26.0    | Maximum   | 0.8     | ±0.05     |
| FE         | F11                                                                | 27.5    | ±0.4      | 10.5    | Maximum   | 20.5    | Maximum   | 31.5    | Maximum   | 0.8     | ±0.05     |
| FK         | F03                                                                | 27.5    | ±0.4      | 13.5    | Maximum   | 23.0    | Maximum   | 31.5    | Maximum   | 0.8     | ±0.05     |
| FM         | F13                                                                | 27.5    | ±0.4      | 14.5    | Maximum   | 24.5    | Maximum   | 31.5    | Maximum   | 0.8     | ±0.05     |
| FR         | F14                                                                | 27.5    | ±0.4      | 17.5    | Maximum   | 28.0    | Maximum   | 31.5    | Maximum   | 0.8     | ±0.05     |
| FV         | F16                                                                | 27.5    | ±0.4      | 21.0    | Maximum   | 30.0    | Maximum   | 31.5    | Maximum   | 0.8     | ±0.05     |
| RF         | R05                                                                | 37.5    | ±0.5      | 13.0    | Maximum   | 24.0    | Maximum   | 41.0    | Maximum   | 1.0     | ±0.05     |
| RH         | R04                                                                | 37.5    | ±0.5      | 15.0    | Maximum   | 26.0    | Maximum   | 41.0    | Maximum   | 1.0     | ±0.05     |
| RM         | R03                                                                | 37.5    | ±0.5      | 19.0    | Maximum   | 36.0    | Maximum   | 41.0    | Maximum   | 1.0     | ±0.05     |
| RP         | R06                                                                | 37.5    | ±0.5      | 21.0    | Maximum   | 38.0    | Maximum   | 41.0    | Maximum   | 1.0     | ±0.05     |
|            | Note: See the Ordering Options Table for lead length (LL) options. |         |           |         |           |         |           |         |           |         |           |



## **Performance Characteristics**

| Polynronylene film             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| ,                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                | esign.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ant according to UL94 V-0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 440 VAC 50/60 Hz (ENEC) - 4    | 480 VAC 50/60 Hz (UL,cUL)                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 0.10 - 2.2 μF                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| E6 series (IEC 60063)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| ±20% standard, ±10% option     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| -40°C to 105°C                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 40/105/56/B IEC 60068-1        | 40/105/56/B IEC 60068-1                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| ENEC, UL, cUL                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| EN/IEC 60384-14:2005, UL 60    | EN/IEC 60384-14:2005, UL 60384-14, CAN/CSA E60384-14:09                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Maximum Values at +23°C        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Frequency                      | C ≤ 0.1 µF                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1 μF < C ≤ 1 μF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C > 1 μF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 1 kHz                          | 0.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 10 kHz                         | 0.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 100 kHz                        | 0.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| requirements in applicable equ | ipment standards. All electri                                                                                                                                                                                                                                                                                                                                                                                                                                        | ical characteristics are check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | red after the test. Do not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Tabulated Self-resonance Fre   | equencies f <sub>o</sub> (see Table 1 – F                                                                                                                                                                                                                                                                                                                                                                                                                            | Ratings & Part Number Refe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rence)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                | Measured at +25°C ±5°C, ac                                                                                                                                                                                                                                                                                                                                                                                                                                           | ccording to IEC 60384-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                | Minimum Values Bet                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tween Terminals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| C ≤ 0.33                       | μF                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C > 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33 μF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| ≥ 30,000                       | ΜΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥ 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ΜΩ•μF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Recommended voltage ≤ 1,00     | 00 VDC                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                | Non-inductive type. Series de Tinned wire  Plastic case, thermosetting res  440 VAC 50/60 Hz (ENEC) - 4  0.10 - 2.2 µF  E6 series (IEC 60063)  ±20% standard, ±10% option  -40°C to 105°C  40/105/56/B IEC 60068-1  ENEC, UL, cUL  EN/IEC 60384-14:2005, UL 60  Frequency  1 kHz  10 kHz  100 kHz  The 100% screening factory te requirements in applicable equirepeat this test, as there is a risbeen repeated.  Tabulated Self-resonance Free  C ≤ 0.33  ≥ 30,000 | Metal layer deposited by evaporation under vacuum  Non-inductive type. Series design.  Tinned wire  Plastic case, thermosetting resin-filled. Box material is solve $440 \text{ VAC } 50/60 \text{ Hz } (\text{ENEC}) - 480 \text{ VAC } 50/60 \text{ Hz } (\text{UL,cUL})$ $0.10 - 2.2  \mu\text{F}$ E6 series (IEC 60063) $\pm 20\%$ standard, $\pm 10\%$ option $-40\%$ C to $105\%$ C $40/105/56/B$ IEC 60068-1  ENEC, UL, cUL  EN/IEC 60384-14:2005, UL 60384-14, CAN/CSA E60384-  Maximum Value  Frequency $C \le 0.1  \mu\text{F}$ $1  \text{kHz}$ $0.1\%$ $10  \text{kHz}$ $0.6\%$ The $100\%$ screening factory test is carried out at 3,000 VDC requirements in applicable equipment standards. All electric repeat this test, as there is a risk of damaging the capacitor been repeated.  Tabulated Self-resonance Frequencies $f_o$ (see Table 1 – 6)  Measured at $+25\%$ C $\pm 5\%$ C, and | Metal layer deposited by evaporation under vacuum  Non-inductive type. Series design.  Tinned wire  Plastic case, thermosetting resin-filled. Box material is solvent-resistant and flame-retards 440 VAC 50/60 Hz (ENEC) − 480 VAC 50/60 Hz (UL,cUL) $0.10 - 2.2  \mu\text{F}$ E6 series (IEC 60063) $\pm 20\%$ standard, $\pm 10\%$ option $-40\text{°C}$ to $105\text{°C}$ $40/105/56/B$ IEC 60068-1  ENEC, UL, cUL  EN/IEC 60384-14:2005, UL 60384-14, CAN/CSA E60384-14:09  Maximum Values at $\pm 23\text{°C}$ Frequency $C \le 0.1  \mu\text{F}$ $0.1  \mu\text{F} < C \le 1  \mu\text{F}$ $1  \text{kHz}$ $0.1\%$ $10  \text{kHz}$ $0.2\%$ $0.4\%$ $100  \text{kHz}$ $0.6\%$ The 100% screening factory test is carried out at 3,000 VDC. The voltage level is selecter requirements in applicable equipment standards. All electrical characteristics are check repeat this test, as there is a risk of damaging the capacitor. KEMET is not liable for any been repeated.  Tabulated Self-resonance Frequencies $f_o$ (see Table 1 − Ratings & Part Number Reference of the surface of the sur |  |  |  |  |



## **Environmental Test Data**

| Test                   | IEC Publication         | Procedure                                                                                                                                                      |
|------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Endurance              | IEC 60384-14:2005       | $1.25  \mathrm{x}  \mathrm{V_R}  \mathrm{VAC}  50  \mathrm{Hz}$ , once every hour increase to 1,000 VAC for 0.1 second, 1,000 hours at upper rated temperature |
| Vibration              | IEC 60068-2-6 Test Fc   | 3 directions at 2 hours each 10 – 55 Hz at 0.75 mm or 98 m/s²<br>No visible damage. No open or short circuit.                                                  |
| Bump                   | IEC 60068-2-29 Test Eb  | 1,000 bumps at 390 m/s²<br>No visible damage. No open or short circuit.                                                                                        |
| Change of Temperature  | IEC 60068-2-14 Test Na  | Upper and lower rated temperature 5 cycles No visible damage.                                                                                                  |
| Active Flammability    | IEC 60384-14:2005       | V <sub>R</sub> + 20 surge pulses at 4 kV (pulse every 5 seconds)                                                                                               |
| Passive Flammability   | IEC 60384-14:2005       | IEC 60384-1, IEC 60695-11-5 Needle Flame Test                                                                                                                  |
| Damp Heat Steady State | IEC 60068-2-78 Test Cab | +40°C and 90 – 95% RH, 56 days                                                                                                                                 |

# **Approvals**

| <b>Certification Body</b> | Mark            | Specification                                     | File Number |
|---------------------------|-----------------|---------------------------------------------------|-------------|
| Intertek Semko AB         |                 | EN/IEC 60384-14                                   | SE/0140-1D  |
| UL                        | c <b>FLL</b> us | UL 60384 and<br>CAN/CSA E60384-14:09<br>(480 VAC) | E73869      |

# **Environmental Compliance**

All KEMET EMI capacitors are RoHS compliant.





## **Table 1 - Ratings & Part Number Reference**

| Capacitance               | Value (uF) (New/ Dimensions in mm Spacing (n) |        | f <sub>。</sub><br>(MHz) | dV/dt<br>(V/ | New KEMET Part Number | Legacy Part<br>Number |                 |                          |                       |
|---------------------------|-----------------------------------------------|--------|-------------------------|--------------|-----------------------|-----------------------|-----------------|--------------------------|-----------------------|
| value (pr)                | Legacy)                                       | В      | Н                       | ш            | opaomy (p)            | (11112)               | μs)             | T dit Hamber             | Number                |
| 0.10                      | DH/D14                                        | 8.0    | 16.0                    | 26.0         | 22.5                  | 3.2                   | 100             | F844DH104(1)440(2)       | PHE844RD6100(1)(2)    |
| 0.15                      | DM/D15                                        | 9.0    | 18.5                    | 26.0         | 22.5                  | 2.6                   | 100             | F844DM154(1)440(2)       | PHE844RD6150(1)(2)    |
| 0.22                      | DT/D16                                        | 11.0   | 21.5                    | 26.0         | 22.5                  | 2.1                   | 100             | F844DT224(1)440(2)       | PHE844RD6220(1)(2)    |
| 0.33                      | DW/D20                                        | 13.5   | 23.0                    | 26.0         | 22.5                  | 1.8                   | 100             | F844DW334(1)440(2)       | PHE844RD6330(1)(2)    |
| 0.47                      | DY/D19                                        | 15.5   | 24.5                    | 26.0         | 22.5                  | 1.5                   | 100             | F844DY474(1)440(2)       | PHE844RD6470(1)(2)    |
| 0.22                      | FE/F11                                        | 10.5   | 20.5                    | 31.5         | 27.5                  | 2.2                   | 100             | F844FE224(1)440(2)       | PHE844RF6220(1)(2)    |
| 0.33                      | FK/F03                                        | 13.5   | 23.0                    | 31.5         | 27.5                  | 1.7                   | 100             | F844FK334(1)440(2)       | PHE844RF6330(1)(2)    |
| 0.47                      | FM/F13                                        | 14.5   | 24.5                    | 31.5         | 27.5                  | 1.4                   | 100             | F844FM474(1)440(2)       | PHE844RF6470(1)(2)    |
| 0.68                      | FR/F14                                        | 17.5   | 28.0                    | 31.5         | 27.5                  | 1.1                   | 100             | F844FR684(1)440(2)       | PHE844RF6680(1)(2)    |
| 1.0                       | FV/F16                                        | 21.0   | 30.0                    | 31.5         | 27.5                  | 1.0                   | 100             | F844FV105(1)440(2)       | PHE844RF7100(1)(2)    |
| 0.47                      | RF/R05                                        | 13.0   | 24.0                    | 41.0         | 37.5                  | 1.3                   | 100             | F844RF474(1)440(2)       | PHE844RR6470(1)(2)    |
| 0.68                      | RF/R05                                        | 13.0   | 24.0                    | 41.0         | 37.5                  | 1.1                   | 100             | F844RF684(1)440(2)       | PHE844RR6680(1)(2)    |
| 1.0                       | RH/R04                                        | 15.0   | 26.0                    | 41.0         | 37.5                  | 0.92                  | 100             | F844RH105(1)440(2)       | PHE844RR7100(1)(2)    |
| 1.5                       | RM/R03                                        | 19.0   | 36.0                    | 41.0         | 37.5                  | 0.74                  | 100             | F844RM155(1)440(2)       | PHE844RR7150(1)(2)    |
| 2.2                       | RP/R06                                        | 21.0   | 38.0                    | 41.0         | 37.5                  | 0.60                  | 100             | F844RP225(1)440(2)       | PHE844RR7220(1)(2)    |
| Capacitance<br>Value (µF) | Size Code (New/<br>Legacy)                    | B (mm) | H (mm)                  | L (mm)       | Lead Spacing (p)      | f <sub>o</sub> (MHz)  | dV/dt<br>(V/μs) | New KEMET<br>Part Number | Legacy<br>Part Number |

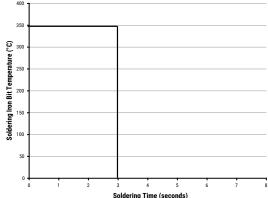
<sup>(1)</sup>  $M = \pm 20\%$ ,  $K = \pm 10\%$ .

<sup>(2)</sup> Insert ordering code for lead type and packaging. See Ordering Options Table for available options.



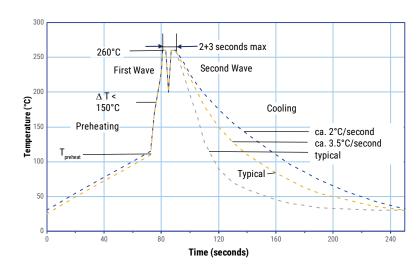
## **Soldering Process**

The implementation of the RoHS directive has resulted in the selection of SnAuCu (SAC) alloys or SnCu alloys as primary solder. This implementation has increased the liquidus temperature from 183°C for SnPb eutectic alloys to 217 – 221°C for the new alloys. As a result, the heat stress to the components, even in wave soldering, has increased considerably due to higher pre-heat and wave temperatures. Polypropylene capacitors are especially sensitive to heat (the melting point of polypropylene is 160 – 170°C). Wave soldering can be destructive, especially for mechanically small polypropylene capacitors (with lead spacing of 5 – 15 mm), and great care must be taken during soldering. The recommended solder profiles from KEMET should be used. Consult KEMET with any questions. In general, the wave soldering curve from IEC Publication 61760-1 Edition 2 serves as a solid guideline for successful soldering. See Figure 1.


Reflow soldering is not recommended for through-hole film capacitors. Exposing capacitors to a soldering profile in excess of the recommended limits may result in degradation of or permanent damage to the capacitors.

Do not place the polypropylene capacitor through an adhesive curing oven to cure resin for surface-mount components. Insert through-hole parts after curing the surface mount parts. Consult KEMET to discuss the actual temperature profile in the oven, if through-hole components must pass through the adhesive curing process. A maximum of two soldering cycles is recommended. Allow time for the capacitor surface temperature to return to normal before the second soldering cycle.

#### **Manual Soldering Recommendations**


Following is the recommendation for manual soldering with a soldering iron.





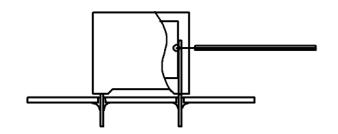
Soldering iron tip temperature should be set at 350°C (+10°C maximum), with the soldering duration not to exceed 3 seconds.

#### **Wave Soldering Recommendations**





### **Soldering Process cont.**


#### **Wave Soldering Recommendations cont.**

1. The table indicates the maximum set-up temperature of the soldering process. Figure 1

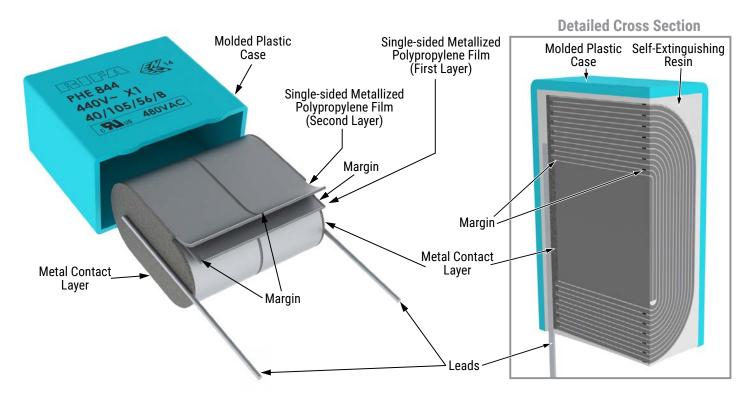
| Dielectric<br>film<br>material |                            | n Preheat<br>erature       | Maximum Peak Soldering<br>Temperature |                            |  |  |
|--------------------------------|----------------------------|----------------------------|---------------------------------------|----------------------------|--|--|
|                                | Capacitor<br>Pitch ≥ 10 mm | Capacitor<br>Pitch > 15 mm | Capacitor<br>Pitch ≤ 15 mm            | Capacitor<br>Pitch > 15 mm |  |  |
| Polyester                      | 130°C                      | 130°C                      | 270°C                                 | 270°C                      |  |  |
| Polypropylene                  | 110°C                      | 130°C                      | 260°C                                 | 270°C                      |  |  |
| Paper                          | 130°C                      | 140°C                      | 270°C                                 | 270°C                      |  |  |
| Polyphenylene<br>Sulphide      | 150°C                      | 160°C                      | 270°C                                 | 270°C                      |  |  |

2. The maximum temperature measured inside the capacitor: set the temperature so that the maximum temperature is below the limit inside the element.

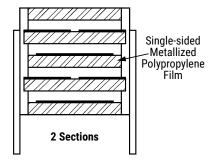
| Dielectric Film Material | Maximum Temperature<br>Measured Inside the Element |
|--------------------------|----------------------------------------------------|
| Polyester                | 160°C                                              |
| Polypropylene            | 110°C                                              |
| Paper                    | 160°C                                              |
| Polyphenylene Sulphide   | 160°C                                              |



Temperature monitored inside the capacitor.

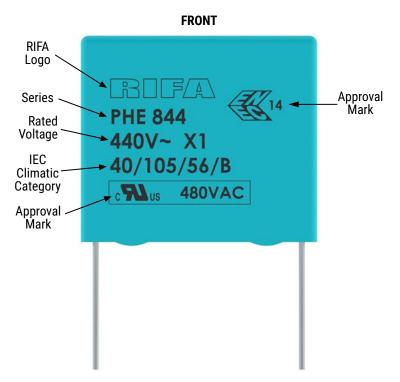

#### **Selective Soldering Recommendations**

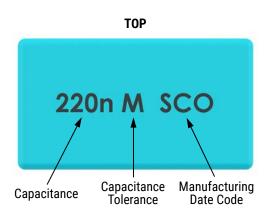
Selective dip soldering is a variation of reflow soldering. In this method, the printed circuit board with through-hole components to be soldered is preheated and transported over the solder bath, as in normal flow soldering, without touching the solder. When the board is over the bath, it is stopped. Pre-designed solder pots are lifted from the bath with molten solder only at the places of the selected components, and then pressed against the lower surface of the board to solder the components.


The temperature profile for selective soldering is similar to the double-wave flow soldering outlined in this document. **However, instead of two baths, there is only one with a time from 3 to 10 seconds.** In selective soldering, the risk of overheating is greater than in double-wave flow soldering. Great care must be taken so that the parts do not overheat.



### Construction





### **Winding Scheme**





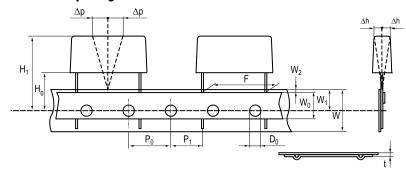
# **Marking**





| Mar  | Manufacturing Date Code (IEC-60062) |           |      |  |  |  |  |  |  |  |
|------|-------------------------------------|-----------|------|--|--|--|--|--|--|--|
|      | Y = Year, Z = Month                 |           |      |  |  |  |  |  |  |  |
| Year | Code                                | Month     | Code |  |  |  |  |  |  |  |
| 2010 | Α                                   | January   | 1    |  |  |  |  |  |  |  |
| 2011 | В                                   | February  | 2    |  |  |  |  |  |  |  |
| 2012 | С                                   | March     | 3    |  |  |  |  |  |  |  |
| 2013 | D                                   | April     | 4    |  |  |  |  |  |  |  |
| 2014 | E                                   | May       | 5    |  |  |  |  |  |  |  |
| 2015 | F                                   | June      | 6    |  |  |  |  |  |  |  |
| 2016 | Н                                   | July      | 7    |  |  |  |  |  |  |  |
| 2017 | J                                   | August    | 8    |  |  |  |  |  |  |  |
| 2018 | К                                   | September | 9    |  |  |  |  |  |  |  |
| 2019 | L                                   | October   | 0    |  |  |  |  |  |  |  |
| 2020 | М                                   | November  | N    |  |  |  |  |  |  |  |
| 2021 | N                                   | December  | D    |  |  |  |  |  |  |  |
| 2022 | 0                                   |           |      |  |  |  |  |  |  |  |
| 2023 | Р                                   |           |      |  |  |  |  |  |  |  |
| 2024 | R                                   |           |      |  |  |  |  |  |  |  |
| 2025 | S                                   |           |      |  |  |  |  |  |  |  |
| 2026 | Т                                   |           |      |  |  |  |  |  |  |  |
| 2027 | U                                   |           |      |  |  |  |  |  |  |  |
| 2028 | V                                   |           |      |  |  |  |  |  |  |  |
| 2029 | W                                   |           |      |  |  |  |  |  |  |  |
| 2030 | Х                                   |           |      |  |  |  |  |  |  |  |




# **Packaging Quantities**

| Lead<br>Spacing | KEMET<br>Size Code | Legacy<br>Size Code | Thickness (mm) | Height<br>(mm) | Length<br>(mm) | Bulk<br>Short<br>Leads | Standard<br>Reel<br>ø 355 mm | Large<br>Reel<br>ø 500 mm | Ammo<br>Bulk<br>(Pizza) |
|-----------------|--------------------|---------------------|----------------|----------------|----------------|------------------------|------------------------------|---------------------------|-------------------------|
|                 | DD                 | D13                 | 6.5            | 14.5           | 26.0           | 234                    | 300                          | 600                       | 440                     |
|                 | DH                 | D14                 | 8.0            | 16.0           | 26.0           | 186                    | 250                          | 500                       | 352                     |
|                 | DM                 | D15                 | 9.0            | 18.5           | 26.0           | 308                    | 250                          | 500                       | 308                     |
| 22 E            | DT                 | D16                 | 11.0           | 21.5           | 26.0           | 253                    | 200                          | 400                       | 253                     |
| 22.5            | DF                 | D17                 | 7.0            | 16.5           | 26.0           | 216                    | 300                          | 600                       | 396                     |
|                 | DR                 | D18                 | 10.5           | 19.0           | 26.0           | 264                    | 200                          | 400                       | 264                     |
|                 | DY                 | D19                 | 15.5           | 24.5           | 26.0           | 176                    | 110                          | 250                       | 176                     |
|                 | DW                 | D20                 | 13.5           | 23.0           | 26.0           | 209                    | 160                          | 300                       | 209                     |
|                 | l FK               | F03                 | 13.5           | 23.0           | 31.5           | 171                    |                              | 250                       | 171                     |
|                 | FE                 | F11                 | 10.5           | 20.5           | 31.5           | 216                    |                              | 350                       | 216                     |
|                 | FG                 | F12                 | 11.5           | 22.5           | 31.5           | 198                    |                              | 300                       | 198                     |
|                 | FM                 | F13                 | 14.5           | 24.5           | 31.5           | 153                    |                              | 250                       | 153                     |
| 07.5            | FR                 | F14                 | 17.5           | 28.0           | 31.5           | 126                    |                              |                           | 126                     |
| 27.5            | FS                 | F15                 | 19.0           | 29.0           | 31.5           | 117                    |                              |                           | 117                     |
|                 | FV                 | F16                 | 21.0           | 30.0           | 31.5           | 108                    |                              |                           | 108                     |
|                 | FH                 | F17                 | 21.0           | 12.5           | 31.5           | 108                    |                              |                           | 108                     |
|                 | FT                 | F18                 | 31.0           | 18.5           | 31.5           | 72                     |                              |                           | 72                      |
|                 | FQ                 | F19                 | 27.5           | 16.0           | 31.5           | 81                     |                              |                           | 81                      |
|                 | l DV               | DOO                 | 16 F           | 22.0           | 41.0           | 105                    |                              |                           | 105                     |
|                 | RK                 | R02                 | 16.5           | 32.0           | 41.0           | 105                    |                              |                           | 105                     |
|                 | RM                 | R03                 | 19.0           | 36.0           | 41.0           | 91                     |                              |                           | 91                      |
| 37.5            | RH                 | R04                 | 15.0           | 26.0           | 41.0           | 119                    |                              |                           | 119                     |
|                 | RF                 | R05                 | 13.0           | 24.0           | 41.0           | 140                    |                              |                           | 140                     |
|                 | RP                 | R06                 | 21.0           | 38.0           | 41.0           | 84                     |                              |                           | 84                      |
|                 | RS                 | R08                 | 28.0           | 43.0           | 41.0           | 54                     |                              |                           | 54                      |



## Lead Taping & Packaging (IEC 60286-2)

### **Lead Spacing 22.5 - 27.5 mm**



# **Taping Specification**

| Description                             | Symbol             | Dimensions (mm) |      |            |
|-----------------------------------------|--------------------|-----------------|------|------------|
|                                         |                    | Lead Space      |      | Tolerance  |
|                                         |                    | 22.5            | 27.5 | Tolerance  |
| Lead Spacing                            | F                  | 22.5            | 27.5 | +0.6/-0.1  |
| Carrier Tape Width                      | W                  | 18              | 18   | +1/-0.5    |
| Hold Down Tape Width                    | W <sub>o</sub>     | 5               | 5    | Minimum    |
| Hole Position                           | W <sub>1</sub>     | 9               | 9    | +0.75/-0.5 |
| Hold Down Tape Position                 | W <sub>2</sub>     | 3               | 3    | Maximum    |
| Feed Hole Diameter                      | D <sub>0</sub>     | 4               | 4    | ±0.2       |
| Feed-hole Lead Space *                  | P <sub>0</sub>     | 12.7            | 12.7 | ±0.2 **    |
| Centering of the Lead Wire              | P <sub>1</sub>     | 7.8             | 5.3  | ±0.7       |
| Component Alignment                     | Δh                 | 2               | 2    | ±2         |
| Deviation Tape - Plane                  | Δр                 | 1.3             | 1.3  | Maximum    |
| Tape Thickness                          | t                  | 0.9             | 0.9  | Maximum    |
| Height of Component<br>from Tape Center | H <sub>0</sub> *** | 18.5            | 18.5 | ±0.5       |

<sup>\*</sup>Available also 15mm

<sup>\*\*</sup>Maximum 1 mm on 20 lead spaces

<sup>\*\*\*</sup>  $H_0$  = 16.5 mm is available upon request



### **KEMET Electronics Corporation Sales Offices**

For a complete list of our global sales offices, please visit www.kemet.com/sales.

#### **Disclaimer**

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Film Capacitors category:

Click to view products by Kemet manufacturer:

Other Similar products are found below:

F339X134748MIP2T0 750-1018 FKP1-1000160010P15 FKP1-1500160010P15 FKP1R031507E00JYSD FKP1U024707E00KYSD 82DC4100CK60J 82EC1100DQ50K PFR5101J100J11L16.5TA18 PME261JB5220KR19T0 A451GK223M040A A521HH333M035C A561ED221M450A QXJ2E474KTPT QXL2B333KTPT R49AN347000A1K EEC2G505HQA406 B25668A6676A375 B25673A4282E140 BFC233868148 BFC2370GC222 C3B2AD44400B20K CB027C0473J-- 23PW210 950CQW5H-F SCD105K122A3-22 SCD155K162A3X44-F 2N3155 A571EH331M450A FKP1-2202KV5P15 FKS3-680040010P10 QXL2E473KTPT 445450-1 B25669A3996J375 46KI322000M1M 46KR415050M1K 4BSNBX4100ZBFJ MKP383510063JKP2T0 MKPY2-.02230020P15 MKT 1813-368-015 4055292001 46KN410000N1K EEC2E106HQA405 EEC2G205HQA402 EEC2G805HQA415 82EC2150DQ50K 288P22494H101 PHE841ED6150MR17T0 B25620B118K883 B25620B158K883