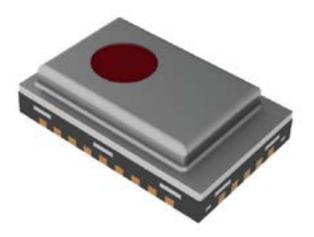


Overview

KEMET's QGS thin film digital pyroelectric IR sensors for gas detection and concentration measurement combine high sensitivity with fast response times and high dynamic range to ensure rapid and accurate detection of target gases.

These high quality sensors, in their small SMD package, integrate a digital, current mode read-out that enables lower IR-emitter duty cycles, thereby saving significantly on system level power consumption, while maintaining high SNR. Industry standard I²C communication enables plugand-play connectivity to microcontrollers and allows easy tuning and calibration. Programmable gain and filtering offer maximum flexibility in system design, and various optical filter options are also available. These sensors can be connected together in linear series to allow synchronized sampling across devices.

Their long and maintenance-free operational lifetime makes them ideal for highly demanding automotive or medical applications.


For additonal sources of information, please refer to <u>https://ec.kemet.com/environmental-sensors/</u>

Benefits

- · High sensitivity with fast response time
- High dynamic range
- Small SMD package
- I²C communication
- Digital output
- Programmable gain and filltering
- Various optical filter options
- · Integrated configurable amplifier, filter and ADC
- · Low power comsumption
- Sensor modules and digital evaluation kit available for easy evaluation and quick prototype development (ref QGSM Series)

Applications

- · Gas and gas flues
- HVAC (refrigerant or CO₂-driven ventilation system)
- · Industrial process and safety
- · Medical capnography and anesthesia
- Handheld breath analysis and breath rate measurement
- · Breath actuated dispenser
- · Automotive cabin air quality
- Exhaust (CO₂ content)
- Home and building technology
- Environmental monitoring (ambient CO₂ level)
- Pollution air quality in home, office and car (excessive CO₂ level)

Ordering Information

USE	QGS	E	Α	C821	8	0
Product Family	Series	Sensor Type	Mounting Type	Specification	Packaging	Version
Sensors	QGS = SMD IR Gas Sensors	E = Serial output	A = Sensor only, low profile H = Sensor only, high profile	C821 = CO ₂ CH41 = CH ₄ N8L1 = NO 9501 = 9.50 μm	8 = 7" Tape & Reel	0

Environmental Compliance

All KEMET Gas Sensors are RoHS and REACH Compliant.

Article 33(1) of the REACH Regulation states that manufacturers and importers of articles (products) are required to notify their customers of the presence of any Substances of Very High Concern (SVHC) in their products exceeding 0.1% by weight and provide instructions on safe use of the product.

KEMET Corporation reports regarding the Article 33(1) of REACH Regulation as follows:

1. Applicable Product: Gas Sensors (QGC, QGS & QGSM series)

2. Report for the content of REACH SVHC list:

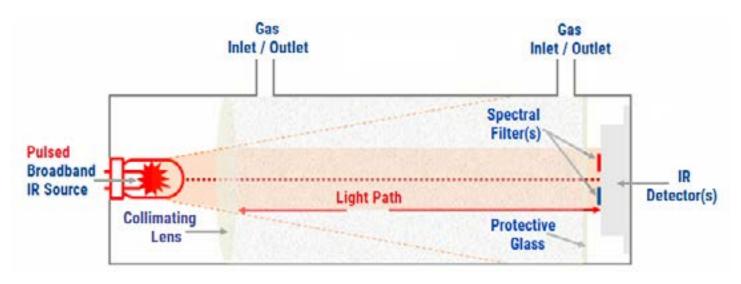
The product(s) above contains a substance by more than 0.1wt% per product weight that was published in the 8th update of the REACH SVHC substances (December 19, 2012).

3. Regarding the safety of the gas sensors (Piezoceramic products):

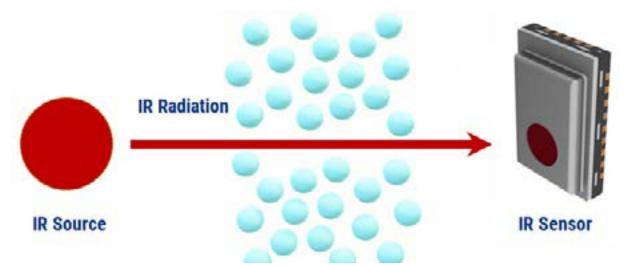
The Piezoceramic that is used in this product becomes ceramic by sintering powder containing PZT as the main ingredient. It is chemically stable, with minimum risks toward the human body or environment within the intended use of the product. Please note that risks could occur in the case of inhalation or accidental oral uptake of powder ceramics.

4. Technical product information on the gas sensors (Piezoceramic products):

The manufacturing technique of the "piezoceramic products" whose main ingredient is Lead Titanium Zirconium Oxide (PZT) has been established, and there is no alternative material that can exhibit superior performance than PZT at this moment. Please note that the piezoceramic is listed as an exempt on RoHS (2011/65/EU) AnnexIII (7c.1).


5. The responsibility of piezoceramic manufacturers:

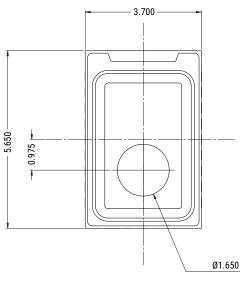
Piezoceramic manufacturers report information regarding PZT containment in their products to the customers to obey the article 33 of the REACH regulation.

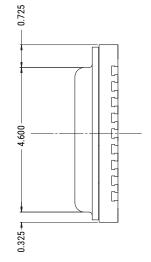


Infrared Spectroscopy

KEMET Infrared Sensors work in the MID Infrared Spectrum. They are a critical component -- but not the only component -- in a gas analysis system. An IR heat source and a suitable gas path "mechanical enclosure" are also required in order to complete the gas analysis system.

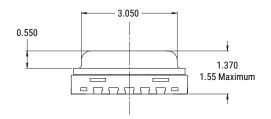
IR Absorption - Active IR Sensing

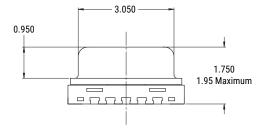

The IR source is directed as energy towards the sensor like an IR spotlight. Depending on the specific gas of interest or gas concentration levels between the IR source and the pyroelectric sensor, the IR transmitted is absorbed by the presence of the gas by a small amount. Understanding how much IR is being optically transmitted versus how much is received can indicate gas concentration levels.


Filters are used to shorten the optical spectrum of the sensor to specifically match the gas of interest. These filters are usually included within the sensor, but for special cases KEMET can make optimised filters to suit customers specific gas requirements.

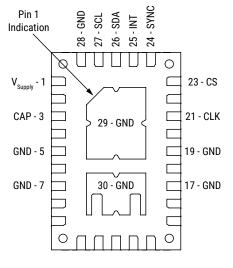
Dimensions – Millimeters

Sensor



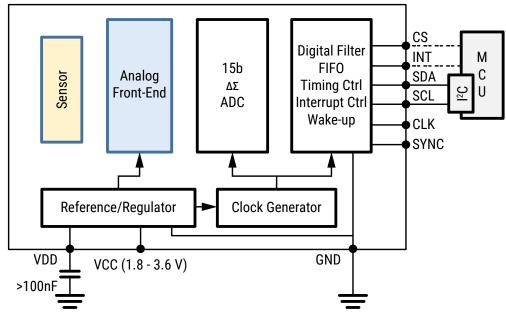

24 28 l \Box 0 0 23 ſ Į 0.226 2.050 -Γ Γ F Ţ Г 1.200 0.400 -Γ ł 15 7 9 0 Ο Æ M D 14 10 0.500

- 1.700 -

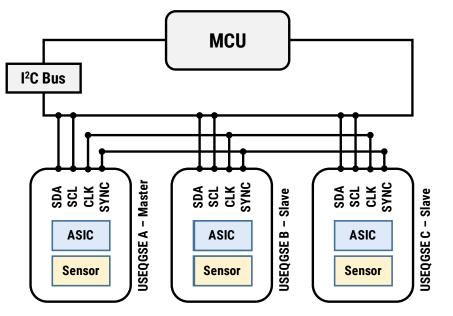

USEQGSEA***** Low Profile

USEQGSEH***** High Profile

Pin Configuration of the Sensor

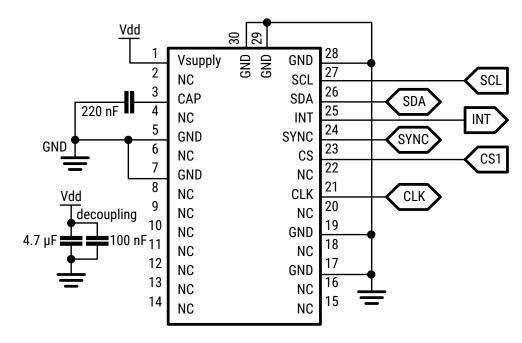


Transparent Top View

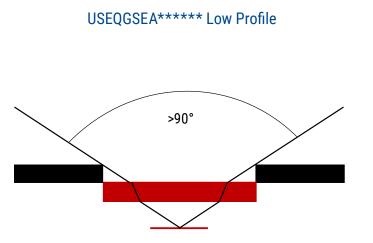


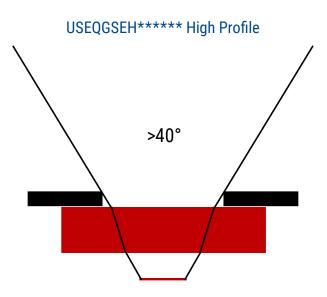
Recommended Circuit Diagram

Single Device Block Diagram



Three Devices with Synchronised Sampling

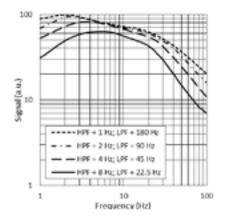




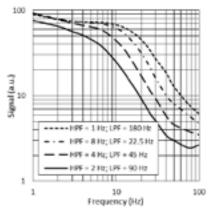
Recommended Circuit Diagram cont.

Field of View

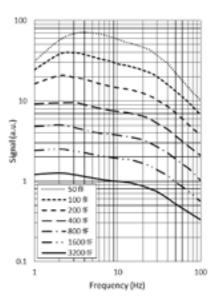
Performance Characteristics


Signal Filtering & Power Modes

Power Mode (base sample rate)	High Pass Filter – Analog (Hz)			Fixed Analog Low Pass Filter (Hz)	Fixed Digital Low Pass Filter (Hz)	Digital Low Pass Filter (Hz)			SS	Maximum ADC Sampling Rate (sps)		
Normal Power Mode	Off	1.0	2.0	4.0	8.0	600	250	180.0	90.0	45.0	22.5	1,000
Low Power Mode	Off	0.17	0.33	0.66	1.30	100	42	30.00	15.00	7.50	3.75	166


ltem	Mode	Description	Typical Current Consumption (1.8 V, room temperature)
Power consumption	Normal Power Mode	Normal power consumption, 1 kHz maximum sample rate	22 μΑ
Power consumption	Low Power Mode	Low power consumption, 166 Hz maximum sample rate	3.5 μA
	Normal Operation Mode	Sensor signal readout over I ² C	22 μΑ
Operational state	Sleep Mode	Hardware interrupt on infrared trigger	21 μA (Normal Power Mode) 3.5 μA (Low Power Mode)
	Power Down Mode	Sensor is disabled	1.1 µA

Infrared Frequency Characteristics



Typical Frequency Response in Low Power Mode

Typical Frequency Response at Different Gain Settings

Part Number Specifications

Sensor Characteristics

Filter Aperture (mm)	Element Size (mm²)	SMD Package (mm)	D*¹ (cm√Hz/W) Typical	NEP¹ (W/√Hz) Typical	Time Constant (ms) at 10-20 Hz peak	Field of View
φ 1.65	0.64 x 0.64	5.65 x 3.70 x 1.55	2.5 x 10 ⁸	2.7 x 10 ⁻¹⁰	~10	~90°

¹ 10 Hz, 500 K, room temperature, without window and optics.

Electrical Characteristics

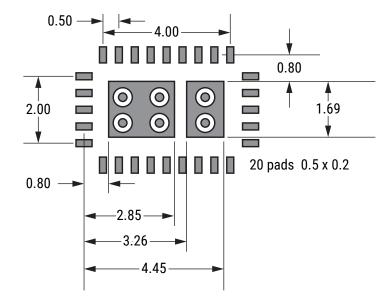
Supply Voltage (V)	Supply Current (µA) Typical	Digital I/O	ΔΣ ADC at 1 ksp	Operating Temperature Range (°C)	Storage Temperature Range (°C)	Sensor Read-out	Configurable
1.75 to 3.60	1 to 23	l²C (FM+ compatible)	15 bit	-40 to +85	-40 to +110	Current mode	Gain Digital filtering Sampling rate Power modes

Part Number (Sensor)

Part Number	Filter (µm)	Filter BW (nm)	Use	Weight (gr)
USEQGSEAC82180	4.26	180	CO ₂	0.07
USEQGSEACH4180	3.30	160	CH4	0.07
USEQGSEAN8L180	5.30	180	NO	0.07
USEQGSEH950180	9.50	400	Sugar, Ethanol	0.08

Below flame sensors from the QFS series can also be used for gas detection or analysis, more details about these products available on https://content.kemet.com/datasheets/KEM_SE0211_QFS.pdf

Part Number	Filter (µm)	Filter BW (nm)	Use	Weight (gr)
USEQFSEA391180	3.91	90	Reference	0.07
USEQFSEA22L180 ¹	2.20	Long pass	Broadband	0.07
USEQFSEA50L180 ¹	5.00	Long pass	Broadband	0.07
USEQFSEA464180 ²	4.64	180	CO	0.07


¹ Used with bespoke, customer or application-specific (narrowband) filters mounted externally.

² Used as gas or active filter.

T_c −5°C

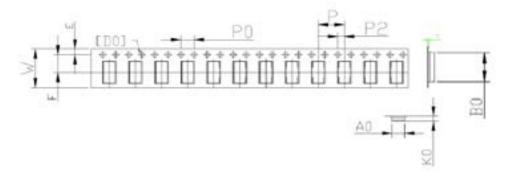
Landing Pattern

Recommended PCB Landing Pattern – Millimeters

Soldering Process

Recommended Reflow Soldering Profile

Profile Feature	Pb-Free Assembly		1
		T _p	Maximum Ramp-up Rate = 3°C/second
Preheat/Soak			Maximum Ramp-down Rate = 6°C/second
Temperature Minimum (T _{smin})	150°C	T _L	tt
Temperature Maximum (T _{Smax})	200°C	⊤ tu	
Time (t_s) from T_{smin} to T_{smax}	60 - 120 seconds	Lemberature Lemberature	
Ramp-Up Rate (T_L to T_P)	3°C/second maximum		······
Liquidous Temperature (T_{L})	217°C	F	
Time Above Liquidous (t_L)	60 - 150 seconds		
Peak Temperature (T _P)	260°C	25-	∠5°C to Peak
Time within 5°C of	30 seconds maximum		Time
Maximum Peak Temperature (t _P) ¹	Su seconds maximum		T IIIC
Ramp-Down Rate $(T_P to T_L)$	6°C/second maximum		
Time 25°C to Peak Temperature	8 minutes maximum		

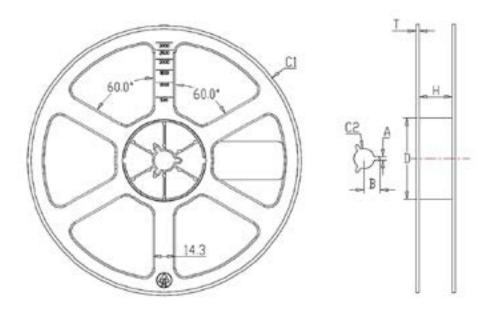

¹ Tolerance for peak profile temperature (TP) is defined as a supplier minimum and as a user maximum.

Packaging

Part Number	Packaging Type	Pieces Per Reel		
USEQGS******	7" Tape & Reel	800		

Taping Specification

USEQGSEA***** Low Profile


		Dimensions (mm)											
	P0	Р	Т	P2	W	A0	B 0	KO	E	F	DO		
Minimum	3.90	7.90	0.25	1.90	11.70	3.90	5.85	1.65	1.65	5.40	1.50		
Typical	4.00	8.00	0.30	2.00	12.00	4.00	5.95	1.75	1.75	5.50	1.50		
Maximum	4.10	8.10	0.35	2.10	12.30	4.10	6.05	1.85	1.85	5.60	1.60		

USEQGSEH***** High Profile

		Dimensions (mm)											
	P0	Р	Т	P2	W	A 0	B 0	KO	E	F	DO		
Minimum	3.90	7.90	0.25	1.90	11.70	3.90	5.85	2.05	1.65	5.40	1.50		
Typical	4.00	8.00	0.30	2.00	12.00	4.00	5.95	2.15	1.75	5.50	1.50		
Maximum	4.10	8.10	0.35	2.10	12.30	4.10	6.05	2.25	1.85	5.60	1.60		

Reel Specification

		Dimensions (mm)										
	C1	C2	Α	В	Н	Т	D					
Tolerance	±1.0	±0.2	±0.2	±0.2	±0.5	±0.2	±0.5					
Nominal	Ø178	13.5	2.3	10.4	12.5	1.6	Ø54					

Handling Precautions

Pyroelectric Infrared Sensors should be kept away from indirect and direct sunlight, the headlights of cars, wind, and exposure to strong vibration and strong shock.

Do not use in water, alcohol ETA, corrosive gas or under sea breeze.

Do not be expose to corrosive substances.

Do not drop or apply any mechanical stress.

The performance of this device can be affected by ESD. Precautions should be used when handling and installing the sensor. Precision devices such as this sensor can be damaged or caused not to meet published specification due to ESD. Please note that there is limited ESD protection built-in as the device is optimised for low power consumption and low noise operation. Human Body Model (HBM), per JS-001: 2,000 V.

Pyroelectric Infrared Sensors should be stored in normal working environments. Solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long-term storage.

KEMET recommends that ambient storage conditions are < 30°C and < 60% relative humidity and that maximum storage temperature does not exceed 110°C. Atmospheres should be free of chlorine and sulfur-bearing compounds. Temperature fluctuations should be minimized to avoid condensation on the parts.

For optimized solderability sensors stock should be used promptly, preferably within 24 months of receipt.

KEMET Electronics Corporation Sales Offices

For a complete list of our global sales offices, please visit www.kemet.com/sales.

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

When providing KEMET products and technologies contained herein to other countries, the customer must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the International Traffic in Arms Regulations (ITAR), the US Export Administration Regulations (EAR) and the Japan Foreign Exchange and Foreign Trade Act.

KEMET is a registered trademark of KEMET Electronics Corporation.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Air Quality Sensors category:

Click to view products by Kemet manufacturer:

Other Similar products are found below :

 GMS-MSTH2.S.V.3
 MO86551
 076074 01
 DE800.A.1
 MF010-2-LC1
 MF020-2-LC3
 KGZ10-5PIN
 GMS10SENSORS
 IR25TT

 208280-0001
 IR11BD
 IR11GM
 IR12GM
 IR21BD
 GMS10-18C
 KGZ12
 S-300L-3V-5000-SLEEP-UART
 MP7227-TC
 SGPC3-TR-2.5KS

 T6713-6H
 POLOLU-1482
 3.000.475
 3.000.496
 HPMA115S0-XXX
 SGPC3-2.5k
 T3032-2-10K-24-P
 VQ6MB
 INIR-CD-5%
 VQ23TB

 IR11GJ
 VQ31MB
 IR11BR
 GP2Y1026AU0F
 VQ549ZD
 MHM501-00
 MHM500-00A
 MHM305-01
 MICS-4514
 VQ548ZD-S
 SEN-09403

 IR15TT
 MICS-5524
 MICS-5914
 MICS-2714
 INIR-ME-100%
 T8100-D
 VQ21TB
 IR21EJ
 VQ603/2