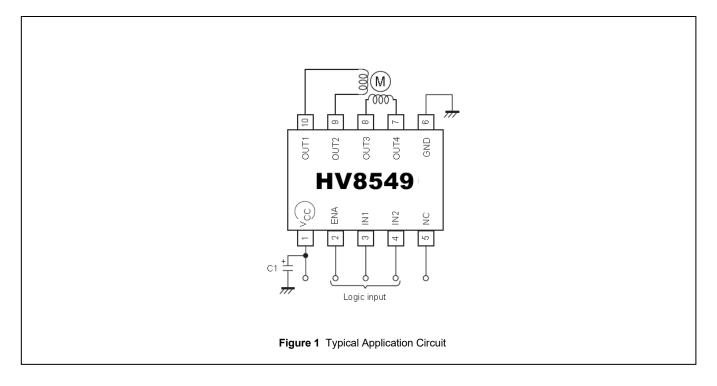


## **GENERAL DESCRIPTION**

The HV8549 is a 2-channel low saturation voltage forward/reverse motor driver IC. It is optimal for motor drive in 12V and 24V system products and can drive a stepper motor in Full-step.

The output driver block of each H-bridge consists of N-channel power MOSFETs configured as a Hbridge to drive the motor windings. Each H-bridge includes circuitry to regulate or limit the winding current.

Internal shutdown functions are provided for undervoltage lockout, and over temperature. A low-power sleep mode is also provided.


The HV8549 is available in a compact SOIC-10 package.

### FEATURES

- DMOS output transistor adoption (upper and lower total Rdson = 0.65 Ω Typ.).
- VCC Max = 28V, IO Max = 1.2A, IO RMS = 0.8A.
- 4V to 28V operating supply voltage range (The control system power supply is unnecessary.).
- The compact package (SOIC-10) is adopted.
- Current consumption 0 when standby mode.

### TYPICAL APPLICATIONS

- Stage Lighting
- Refrigerator
- Flatbed Scanner, Document Scanner
- POS Printer, Label Printer
- PoE Point of Sales Terminal
- Clothes Dryer
- Vacuum Cleaner
- Time Recorder



## TYPICAL APPLICATION CIRCUIT



### **PIN CONFIGURATION**

| Package | Pin Configuration (Top View) |            |         |
|---------|------------------------------|------------|---------|
|         |                              |            | 1       |
|         | Vcc 1                        | $\bigcirc$ | 10 OUT1 |
|         | ENA 🛛                        |            | 9 OUT2  |
| SOIC-10 | IN1 3                        | HV8549     | 8 OUT3  |
|         | IN2 4                        |            | 7 OUT4  |
|         | NC 5                         |            | 6 GND   |
|         |                              |            |         |

### **PIN DESCRIPTION**

| No. | Pin  | Description                                                                                                               |  |  |  |
|-----|------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1   | Vcc  | Power-supply voltage pin. A 10-uF (minimum) ceramic bypass capacitor to GND is recommended.                               |  |  |  |
| 2   | ENA  | otor drive control enable pin. "0" stand-by current when ENA=L. Output is orresponding to input control logic when ENA=H. |  |  |  |
| 3   | IN1  | ogic input pin of OUT1 and OUT2. Internal pull-down.                                                                      |  |  |  |
| 4   | IN2  | Logic input pin of OUT3 and OUT4. Internal pull-down.                                                                     |  |  |  |
| 5   | NC   | No connection.                                                                                                            |  |  |  |
| 6   | GND  | Device ground.                                                                                                            |  |  |  |
| 7   | OUT4 | Driving output pin. Motor coil is connected between terminal OUT3 (pin8).                                                 |  |  |  |
| 8   | OUT3 | Driving output pin. Motor coil is connected between terminal OUT4 (pin7).                                                 |  |  |  |
| 9   | OUT2 | Driving output pin. Motor coil is connected between terminal OUT1 (pin10).                                                |  |  |  |
| 10  | OUT1 | Driving output pin. Motor coil is connected between terminal OUT2 (pin9).                                                 |  |  |  |

## **ORDERING INFORMATION**

#### Industrial Range: -40°C to +125°C

| Order Part No. | Package          | QTY       |
|----------------|------------------|-----------|
| HV8549MC-AH    | SOIC-10, Pb-Free | 4000/Reel |
| HV8549CC-13GTR | SOIC-10, Pb-Free | 4000/Reel |
| HV8549CC-GT    | SOIC-10, Pb-Free | 100/Tube  |



## FUNCTIONAL BLOCK DIAGRAM

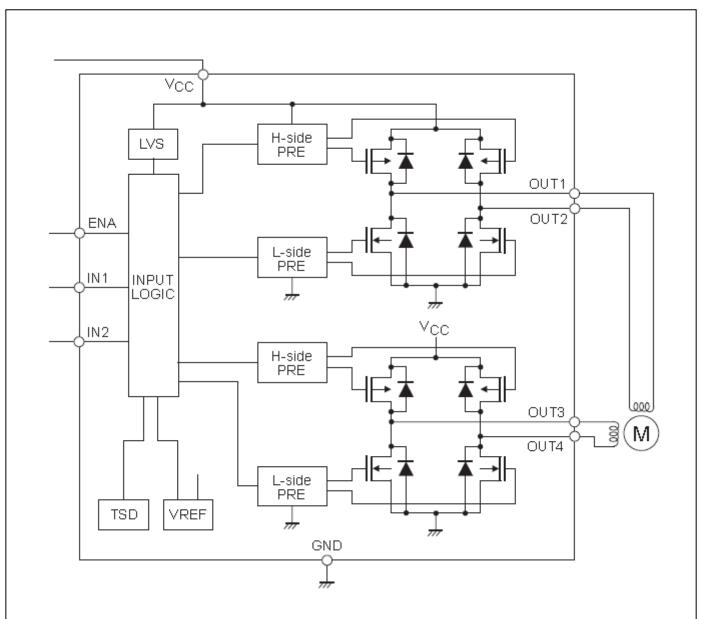



Figure 2 Stepper Motor Drive



## ABSOLUTE MAXIMUM RATINGS

| Symbol            | Definition                                        | Min. | Max. | Units |      |
|-------------------|---------------------------------------------------|------|------|-------|------|
| Vcc Max           | Maximum power supply voltage                      | -0.3 | +30  |       |      |
| Vout              | Output voltage (OUT1, OUT2, OUT                   | -0.3 | +30  | V     |      |
| V <sub>IN</sub>   | Input voltage (EN, IN1, IN2                       | -0.3 | +6   |       |      |
| I <sub>GND</sub>  | Maximum GND pin sink/source o                     |      | +1.2 | A     |      |
| P <sub>D</sub>    | Package power dissipation @ $T_A \leqslant$ +25°C |      |      | 1.0   | W    |
| Rth <sub>JA</sub> | Thermal resistance, junction to ambient SOIC-10   |      |      | 80    | °C/W |
| TJ                | Junction temperature                              |      | 150  |       |      |
| Ts                | Storage temperature                               | -55  | 150  | °C    |      |
| ΤL                | Lead temperature (soldering, 10 s                 |      | 300  |       |      |

Note:

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

### **RECOMMENDED OPERATION CONDITIONS**

| Symbol | Definition                             | Min. | Max. | Units |
|--------|----------------------------------------|------|------|-------|
| Vcc    | Power supply voltage (Vcc)             | 4.0  | 28   |       |
| Vін    | Logic "1" input voltage (EN, IN1, IN2) | 1.8  | 5.5  | V     |
| VIL    | Logic "0" input voltage (EN, IN1, IN2) | -0.3 | +0.7 | v     |
| Vlo    | Low-side output voltage                | 0    | Vcc  |       |
| TA     | Ambient temperature                    | - 40 | 125  | °C    |

Note:

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The  $V_s$  offset rating is tested with all supplies biased at a 15 V differential.



## **DYNAMIC ELECTRICAL CHARACTERISTICS**

#### $V_{CC}$ = 12 V and $T_A$ = 25°C unless otherwise specified.

| Symbol           | Parameter                                                          | Condition                                                                 | Min. | Тур. | Max. | Unit |
|------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|------|------|------|------|
| t <sub>on</sub>  | Turn-on propagation delay                                          | V <sub>CC</sub> = 12 / 24 V                                               | 170  | 200  | 230  |      |
| t <sub>off</sub> | Turn-off propagation delay                                         | V <sub>CC</sub> = 12 / 24 V                                               | 80   | 100  | 120  |      |
| tr               | Turn-on rise time                                                  | V <sub>CC</sub> = 12 / 24 V, 16Ω<br>to GND, 10% to 90%<br>V <sub>CC</sub> | 160  | 200  | 240  | ns   |
| t <sub>f</sub>   | Turn-off fall time                                                 | V <sub>CC</sub> = 12 / 24 V, 16Ω<br>to GND, 90% to 10%<br>V <sub>CC</sub> | 220  | 260  | 300  |      |
| DT               | Deadtime, LS turn-off to HS turn-on &<br>HS turn-on to LS turn-off | V <sub>CC</sub> = 12 / 24 V                                               | 220  | 270  | 320  |      |

## STATIC ELECTRICAL CHARACTERISTICS

 $V_{CC}$  = 12 V and T<sub>A</sub> = 25°C unless otherwise specified.

| Symbol                               | Parameter                                                    | Condition                                            | Min. | Тур. | Max. | Unit |
|--------------------------------------|--------------------------------------------------------------|------------------------------------------------------|------|------|------|------|
| Vcc                                  | Power supply voltage                                         |                                                      | 4.0  |      | 28   | V    |
| Vccuv+                               | V <sub>CC</sub> supply undervoltage positive going threshold |                                                      | 3.5  | 3.7  | 3.95 |      |
| Vccuv-                               | V <sub>CC</sub> supply undervoltage negative going threshold | Vcc = 12 / 24 V                                      | 3.1  | 3.3  | 3.6  | V    |
| VIH                                  | Logic "1" input voltage                                      |                                                      | 1.8  |      |      |      |
| VIL                                  | Logic "0" input voltage                                      |                                                      |      |      | 0.7  |      |
| I <sub>CC0</sub>                     | Quiescent current (standby mode)                             | V <sub>CC</sub> = 12 / 24 V,<br>EN = "0"             |      |      | 1    | μA   |
| I <sub>CC1</sub>                     | Operating current (no load)                                  | V <sub>CC</sub> = 12 / 24 V,<br>EN = "1"             |      | 1.5  | 2.3  | mA   |
| lin                                  | Input current                                                | V <sub>CC</sub> = 12 / 24 V,<br>V <sub>IN</sub> = 5V | 40   | 56   | 65   | μA   |
| Tsd                                  | Thermal shutdown temperature                                 |                                                      | 150  | 160  | 170  | °C   |
| T <sub>SD_HYS</sub>                  | Thermal shutdown hysteresis                                  |                                                      |      | 25   |      | °C   |
| R <sub>DSON</sub>                    | Output ON resistance<br>(high-side and low-side total)       | I <sub>OUT</sub> = 0.8A                              | 550  | 650  | 900  | mΩ   |
| IOLEAK                               | Output leakage current                                       | Vo = 30V                                             |      |      | 10   | μA   |
| V <sub>D</sub> Diode forward voltage |                                                              | I <sub>D</sub> = 0.8A                                |      | 1.0  | 1.2  | V    |



### **APPLICATION INFORMATION**

#### **STM Output Control Logic**

|     | Input |     | Output |      |      |      | State    |  |
|-----|-------|-----|--------|------|------|------|----------|--|
| ENA | IN1   | IN2 | OUT1   | OUT2 | OUT3 | OUT4 | State    |  |
| L   | -     | -   | OFF    | OFF  | OFF  | OFF  | Stand-by |  |
|     | L     | L   | Н      | L    | Н    | L    | Step 1   |  |
| н   | Н     | L   | L      | Н    | Н    | L    | Step2    |  |
|     | Н     | Н   | L      | Н    | L    | Н    | Step3    |  |
|     | L     | Н   | Н      | L    | L    | Н    | Step4    |  |

Figure 3 Control Logic

#### Timing

About the switch time from the stand-by state to the state of operation, this IC has completely stopped operating when ENA pin is logic "0". After the time of reset of about  $7\mu$ s of and internal setting, it shifts to a prescribed output status corresponding to the state of the input when ENA pin is logic "1".

During reset time, all output TR OFF is maintained.

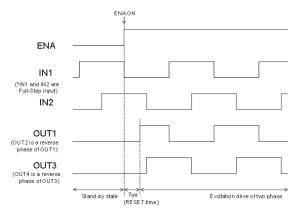
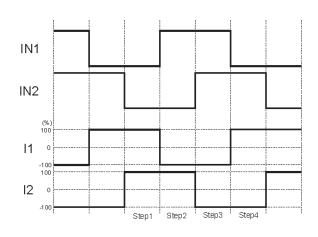




Figure 4 Control Timing

#### **Current Waveforms**





#### **Thermal Shutdown**

The thermal shutdown circuit is incorporated and the output is turned off when junction temperature exceeds 160°C. As the temperature falls by hysteresis, the output turned on again.

The thermal shutdown circuit doesn't guarantee the protection of the final product because it operates when the temperature exceed the junction temperature of  $T_{jmax}$ =150°C.

T<sub>SD</sub> = 160°С (ТҮР) T<sub>SD\_HYS</sub> = 25°С (ТҮР)



## **CLASSIFICATION REFLOW PROFILES**

| 150°C<br>200°C<br>50-120 seconds |  |  |
|----------------------------------|--|--|
| 50-120 30001143                  |  |  |
| 3°C/second max.                  |  |  |
| 60-150 seconds                   |  |  |
| Max 260°C<br>Max 30 seconds      |  |  |
| 6°C/second max.                  |  |  |
| 2<br>30<br>M                     |  |  |

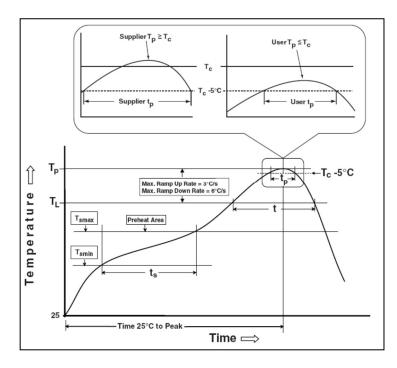
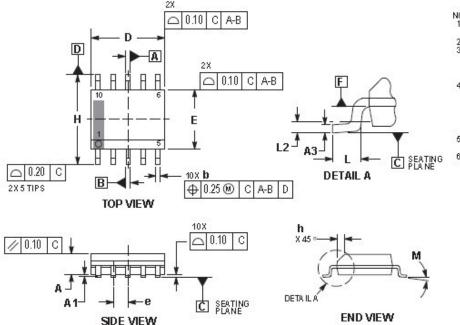
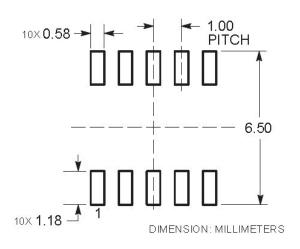




Figure 2 Classification Profile



## PACKAGE CASE OUTLINES




NOTES: 1. DMENSIONING AND TOLERANCING PER

NOTES.
NOTES.
DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
CONTROLLING DIMENSION: MILLIMETERS.
DIMENSIONS DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.10mm TOTAL IN EXCESS OF 'b' AT MAXIMUM MATERIAL CONDITION.
DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED0.15mm PER SIDE. DIMENSIONS D AND E ARE DE-TERMINED AT DATUM F.
DIMENSIONS A AND B ARE TO BE DETERM-INED AT DATUM F.
AI IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

|     | MILLIMETERS |       |  |  |  |  |
|-----|-------------|-------|--|--|--|--|
| DIM | MIN         | MAX   |  |  |  |  |
| A   | 1.25        | 1.75  |  |  |  |  |
| A1  | 0.10        | 0.25  |  |  |  |  |
| A3  | 0.17        | 0.25  |  |  |  |  |
| Ь   | 0.31        | 0.51  |  |  |  |  |
| D   | 4.80        | 5.00  |  |  |  |  |
| E   | 3.80        | 4.00  |  |  |  |  |
| е   | 1.00        | BSC   |  |  |  |  |
| Н   | 5.80        | 6.20  |  |  |  |  |
| h   | 0.37        | ' REF |  |  |  |  |
| L   | 0.40        | 1.27  |  |  |  |  |
| 12  | 0.25        | BSC   |  |  |  |  |
| M   | 0°          | 8°    |  |  |  |  |

## **RECOMMENDED SOLDERING FOOTPRINT**



# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Motor/Motion/Ignition Controllers & Drivers category:

Click to view products by Keysemi manufacturer:

Other Similar products are found below :

LV8133JA-ZH LV8169MUTBG LV8774Q-AH LV8860PV-TLM-H MC33931EKR2 MC34GD3000EP FSB50250UTD FSB50550TB2 FSBF15CH60BTH FSBS10CH60T MP6507GR-P MP6508GF MSVGW54-14-5 NTE7043 CAT3211MUTAG LA6245P-CL-TLM-E LA6245P-TLM-E LA6565VR-TLM-E LB11650-E LB1694N-E LB1837M-TLM-E LB1845DAZ-XE LC898111AXB-MH LC898300XA-MH SS30-TE-L-E STK531-345A-E STK581U3A0D-E STK58AUNP0D-E STK621-068C-E STK621-140C STK621-728S-E STK625-728-E STK672-400B-E STK672-432AN-E STK672-432BN-E STK672-440AN-E STK672-442AN-E AMIS30621AUA FSB50550ASE 26700 LV8161MUTAG LV8281VR-TLM-H LV8702V-TLM-H LV8734VZ-TLM-H LV8773Z-E LV8807QA-MH MC33932EK MCP8024T-H/MP TND027MP-AZ BA5839FP-E2