## DESCRIPTION

- The High Efficiency Red source color devices are made with Gallium Arsenide Phosphide on Gallium Phosphide Orange Light Emitting Diode


## FEATURES

- Uniform light emitting area
- Easily mounted on P.C. boards or industry standard sockets
- Flush mountable
- Excellent on/off contrast
- Can be used with panels and legend mounts
- Mechanically rugged
- RoHS compliant


## APPLICATIONS

- Home and smart appliances
- Display time and digital combination
- Industrial and instrumental applications
- Numeric status


## PACKAGE DIMENSIONS



2
$3-D+4$

Recommended PCB Layout


Notes:

1. All dimensions are in millimeters (inches), Tolerance is $\pm 0.25$ ( $0.01^{\prime \prime}$ ) unless otherwise noted. 2. The specifications, characteristics and technical data described in the datasheet are subject to change without prior notice.

## SELECTION GUIDE

| Part Number | Emitting Color (Material) | Lens Type | Iv (mcd) @ 10mA ${ }^{\text {[1] }}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. |
| DE2ID | High Efficiency Red (GaAsP/GaP) | Red Diffused | 9 | 31 |
|  |  |  | *3.6 | *9 |

Notes:

1. Luminous intensity / luminous Flux: +/-15\%.

* Luminous intensity value is traceable to CIE127-2007 standards.

DE2ID

## ELECTRICAL / OPTICAL CHARACTERISTICS at $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

| Parameter | Symbol | Emitting Color | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Typ. | Max. |  |
| Wavelength at Peak Emission $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ | $\lambda_{\text {peak }}$ | High Efficiency Red | 627 | - | nm |
| Dominant Wavelength $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ | $\lambda_{\text {dom }}{ }^{[1]}$ | High Efficiency Red | 617 | - | nm |
| Spectral Bandwidth at 50\% © REL MAX $I_{F}=10 \mathrm{~mA}$ | $\Delta \lambda$ | High Efficiency Red | 45 | - | nm |
| Capacitance | C | High Efficiency Red | 15 | - | pF |
| Forward Voltage $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ | $V_{F}{ }^{[2]}$ | High Efficiency Red | 1.9 | 2.3 | V |
| Reverse Current ( $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ ) | $I_{R}$ | High Efficiency Red | - | 10 | $\mu \mathrm{A}$ |

Notes:

1. The dominant wavelength ( $\lambda d$ ) above is the setup value of the sorting machine. (Tolerance $\lambda d: \pm 1 \mathrm{~nm}$.)
2. Forward voltage: $\pm 0.1 \mathrm{~V}$.
3. Wavelength value is traceable to CIE127-2007 standards.
4. Excess driving current and / or operating temperature higher than recommended conditions may result in severe light degradation or premature failure.

## ABSOLUTE MAXIMUM RATINGS at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

| Parameter | Symbol | Value | Unit |
| :--- | :---: | :---: | :---: |
| Power Dissipation | $\mathrm{P}_{\mathrm{D}}$ | 75 | mW |
| Reverse Voltage | $\mathrm{V}_{\mathrm{R}}$ | 5 | V |
| Junction Temperature | $\mathrm{T}_{\mathrm{j}}$ | 125 | ${ }^{\circ} \mathrm{C}$ |
| Operating Temperature | $\mathrm{T}_{\mathrm{op}}$ | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature | $\mathrm{T}_{\text {stg }}$ | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| DC Forward Current | $\mathrm{I}_{\mathrm{F}}$ | 30 | C |
| Peak Forward Current | $\mathrm{I}_{\mathrm{FM}}{ }^{[1]}$ | 160 | mA |
| Electrostatic Discharge Threshold (HBM) | - | 8000 | mA |
| Lead Solder Temperature ${ }^{[2]}$ | $260^{\circ} \mathrm{C}$ For 3-5 Seconds | V |  |

## Notes:

1. $1 / 10$ Duty Cycle, 0.1 ms Pulse Width.
2. 2 mm below package base.
3. Relative humidity levels maintained between $40 \%$ and $60 \%$ in production area are recommended to avoid the build-up of static electricity - Ref JEDEC/JESD625-A and JEDEC/J-STD-033

## TECHNICAL DATA

## RELATIVE INTENSITY vs. WAVELENGTH



# HIGH EFFICIENCY RED 



RECOMMENDED WAVE SOLDERING PROFILE


Notes:

1. Recommend pre-heat temperature of $105^{\circ} \mathrm{C}$ or less (as measured with a thermocouple attached to the LED pins) prior to immersion in the solder wave with a maximum solder bath temperature of $260^{\circ} \mathrm{C}$
2. Peak wave soldering temperature between $245^{\circ} \mathrm{C} \sim 255^{\circ} \mathrm{Cfor} 3 \mathrm{sec}(5 \mathrm{sec} \max$ )
3. Do not apply stress to the epoxy resin while the temperature is above $85^{\circ} \mathrm{C}$.
4. Fixtures should not incur stress on the component when mounting and during soldering process.
5. SAC 305 solder alloy is recommended.
6. No more than one wave soldering pass.
7. During wave soldering, the PCB top-surface temperature should be kept below $105^{\circ} \mathrm{C}$.

## Soldering General Notes

1. Through-hole displays are incompatible with reflow soldering.
2. If components will undergo multiple soldering processes, or other processes where the components may be subjected to intense heat, please check with Kingbright for compatibility.

## CLEANING

1. Mild "no-clean" fluxes are recommended for use in soldering.
2. If cleaning is required, Kingbright recommends to wash components with water only. Do not use harsh organic solvents for cleaning because they may damage the plastic parts .
3. The cleaning process should take place at room temperature and the devices should not be washed for more than one minute.
4. When water is used in the cleaning process, Immediately remove excess moisture from the component with forced-air drying afterwards.


## PACKING \& LABEL SPECIFICATIONS



## THROUGH HOLE DISPLAY MOUNTING METHOD

## Lead Forming

Do not bend the component leads by hand without proper tools. The leads should be bent by clinching the upper part of the lead firmly such that the bending force is not exerted on the plastic body.


Not Recommended


Recommended

## Installation

1. The installation process should not apply stress to the lead terminals.
2. When inserting for assembly, ensure the terminal pitch matches the substrate board's hole pitch to prevent spreading or pinching the lead terminals. (Fig.1)
3. The component shall be placed at least 5 mm from edge of PCB to avoid damage caused excessive heat during wave soldering.(Fig.2)


## CIRCUIT DESIGN NOTES

1. Protective current-limiting resistors may be necessary to operate the LEDs within the specified range.
2. LEDs mounted in parallel should each be placed in series with its own current-limiting resistor.(Fig.3)
3. The driving circuit should be designed to protect the LED against reverse voltages and transient voltage spikes when the circuit is powered up or shut down.
4. The safe operating current should be chosen after considering the maximum ambient temperature of the operating environment.
5. Prolonged reverse bias should be avoided, as it could cause metal migration, leading to an increase in leakage current or causing


Recommended Set-up


Invalid Set-up a short circuit.

## PRECAUTIONARY NOTES

1. The information included in this document reflects representative usage scenarios and is intended for technical reference only.
 the latest datasheet for the updated specifications.
 customer usage exceeds the specified limits, Kingbright will not be responsible for any subsequent issues.
 liabilities, such as automotive or medical usage, please consult with Kingbright representative for further assistance.
2. The contents and information of this document may not be reproduced or re-transmitted without permission by Kingbright.
3. When any special process such as potting is required for LED assembly, please consult with Kingbright representative before proceeding
4. All design applications should refer to Kingbright application notes available at https://www.KingbrightUSA.com/ApplicationNotes
© 2020 Kingbright. All Rights Reserved. Spec No: DSAD1411 / 1334000006 Rev No: V.9A Date: 03/02/2020

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Bars and Arrays category:
Click to view products by Kingbright manufacturer:
Other Similar products are found below :
SSA-LXB10GW-18751 SSA-LXB10YW SSA-LXH1025I1G7XXD LTL-2450Y CSS-414G-11 SSA-LXB10IW SSB-LX2301SIW TOS-4102BR-N SSA-LXB10-IYG8W-1 ADI-AL4554-470 LPB-R0112051S DI-5GWB LTA-1000E LTL-57173HR HLMP-2655-EF000 HLMP-2820-FG000 KB-2600ID L-1043GDT L-875/4IDT L-875/4SRDT DC10EGWA LF1B-NA3P-2THWW2-3M LF1B-NC3P-2THWW2-3M LTL-2500G LTL-2685HR SSA-LXB10GW LTA-1000HR HLMP-2685 HLMP-2400 HLMP-2300 L-875/4YDT SSB-LXH100SRW SSBLX2620IW SSB-LX2400YW LPB-S01110101S DC10SURKWA LF1B-NA4P-2THWW2-3M LF1B-NB3P-2THWW2-3M KB2450SYKW KB2835CGKD L-1043IDT L-1043YDT L-835/2GDT LF1B-NF3P-2THWW2-3M HLCP-B100 HLMP-2450 HLMP-2800 HLCP-H100 HLMP-2300-EF000 HLMP-2400-EF000

