

Surface Mount Ceramic Capacitor Products

IMPORTANT INFORMATION/DISCLAIMER

All product specifications, statements, information and data (collectively, the "Information") in this datasheet or made available on the website are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KYOCERA AVX's knowledge of typical operating conditions for such applications, but are not intended to constitute and KYOCERA AVX specifically disclaims any warranty concerning suitability for a specific customer application or use.

ANY USE OF PRODUCT OUTSIDE OF SPECIFICATIONS OR ANY STORAGE OR INSTALLATION INCONSISTENT WITH PRODUCT GUIDANCE VOIDS ANY WARRANTY.

The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KYOCERA AVX with reference to the use of KYOCERA AVX's products is given without regard, and KYOCERA AVX assumes no obligation or liability for the advice given or results obtained.

Although KYOCERA AVX designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Unless specifically agreed to in writing, KYOCERA AVX has not tested or certified its products, services or deliverables for use in high risk applications including medical life support, medical device, direct physical patient contact, water treatment, nuclear facilities, weapon systems, mass and air transportation control, flammable environments, or any other potentially life critical uses. Customer understands and agrees that KYOCERA AVX makes no assurances that the products, services or deliverables are suitable for any high-risk uses. Under no circumstances does KYOCERA AVX warrant or guarantee suitability for any customer design or manufacturing process.

Although all product–related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

KYDCERA AWXX The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Surface Mount Ceramic Capacitor Products

Table of Contents

How to Order

Part Number Explanation 1	

COG (NP0) Dielectric

General Specifications 3	
Specifications and Test Methods 4	
Capacitance Range	

U Dielectric

RF/Microwave C0G (NP0) Capacitors (RoHS)
RF/Microwave C0G (NP0) Capacitors (Sn/Pb)
RF/Microwave Automotive C0G (NP0) Capacitors (RoHS)
AEC Q200 Qualified Ultra Low ESR13
Designer Kits 15

X8R/X8L Dielectric

General Specifications	16
Specifications and Test Methods	18

X7R Dielectric

General Specifications
Specifications and Test Methods
Capacitance Range

X7S Dielectric

General Specifications	23
Specifications and Test Methods	
Capacitance Range	

X5R Dielectric

General Specifications	26
Specifications and Test Methods	27
Capacitance Range	28

Y5V Dielectric

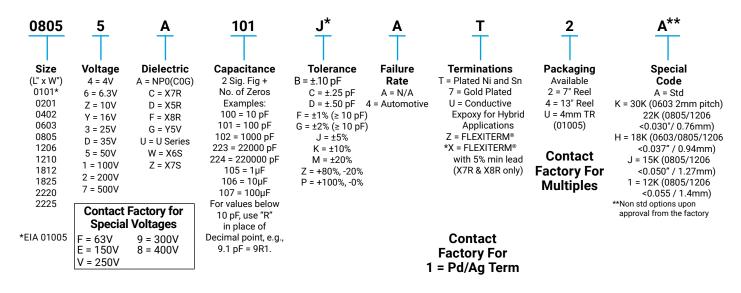
General Specifications	. 30
Specifications and Test Methods	. 31
Capacitance Range	. 32

MLCC Gold Termination - AU Series

General Specifications 3	3
Capacitance Range	4

MLCC Tin/Lead Termination "B" (LD Series)

C0G (NP0) -	- General Specifications	40
	Specifications and Test Methods	41
	Capacitance Range	42
X8R	General Specifications	44
	Specifications and Test Methods	45
	Capacitance Range	
X7R	General Specifications	47
	Specifications and Test Methods	
	Capacitance Range	
X5R	General Specifications	51
	Specifications and Test Methods	
	Capacitance Range	


Automotive MLCC
General Specifications
Capacitance Range
ADD for OOTO, Useh Delichility Applications
APS for COTS+ High Reliability Applications
General Specifications
Capacitance Range 60
MLCC with FLEXITERM®
General Specifications
Specifications and Test Methods
Capacitance Range
FLEXISAFE MLC Chips
General Specifications and Capacitance Range
Capacitor Array
Capacitor Array (IPC)
Automotive Capacitor Array (IPC)
Part & Pad Layout Dimensions
Low Inductance Capacitors
Introduction
LICC (Low Inductance Chip Capacitors)77
IDC (InterDigitated Capacitors)
LGA Low Inductance Capacitors
High Temperature MLCCs
AT Series – 200°C & 250°C Rated 88
High Voltage MLC Chips
For 600V to 5000V Applications
Tin/Lead Termination "B" - 600V to 5000V Applications
FLEXITERM® - 600V to 5000V Applications
For 600V to 3000V Automotive Applications - AEC-Q200
MIL-PRF-55681/Chips
CDR01 thru CDR06 108
CDR31 thru CDR35 110
MI CO Madia I Annita Man
MLCC Medical Applications
MM Series
Packaging of Chip Components
Embossed Carrier Configuration
•
Paper Carrier Configuration
Basic Capacitor Formulas
General Description
ประกอบสาม 2650 กฎแบบ
Surface Mounting Guide 128

KYDEER3 | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available AWXX online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

How to Order Part Number Explanation

Commercial Surface Mount Chips EXAMPLE: 08055A101JAT2A

* B, C & D tolerance for ≤10 pF values.

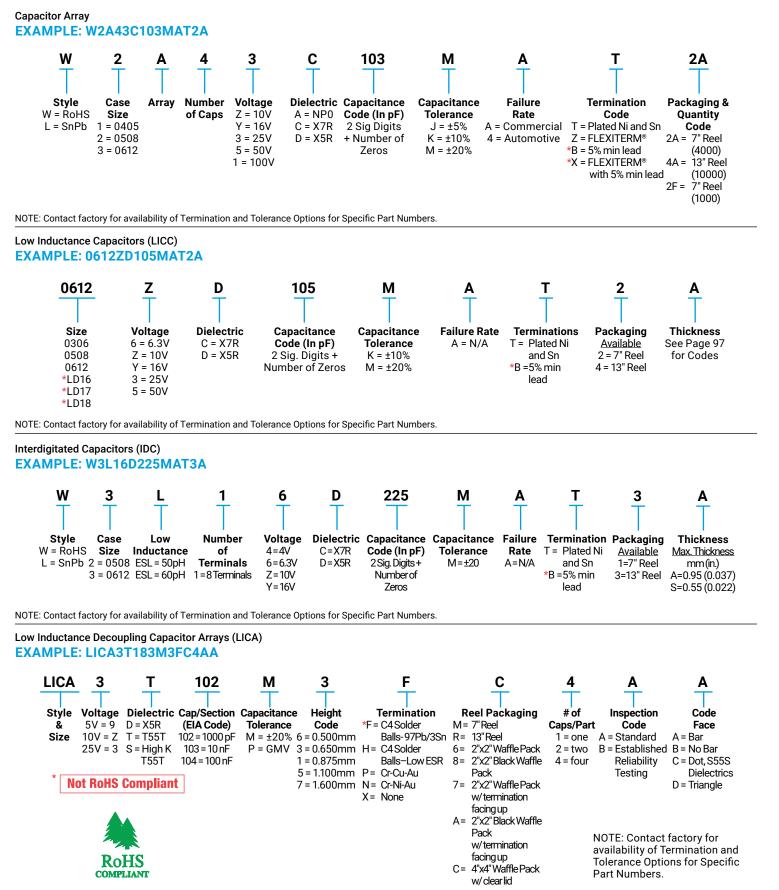
Standard Tape and Reel material (Paper/Embossed) depends upon chip size and thickness. See individual part tables for tape material type for each capacitance value.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. For Tin/Lead Terminations, please refer to LD Series

High Voltage MLC Chips EXAMPLE: 1808AA271KAT2A

1808	A	A	271	ĸ	A	Ţ	2	A
Style 0805 1206 1210 1808 1812 1825 2220 2225 3640	Voltage C = 600V/630V A = 1000V S = 1500V G = 2000V W = 2500V H = 3000V J = 4000V K = 5000V	Coefficient A = COG (2 C = X7R Exa 1,0 22,0	Capacitance Code significant digits + no. of zeros) amples: 10 pF = 100 100 pF = 101 000 pF = 102 000 pF = 223 000 pF = 224 1 μ F = 105	Capacitance Tolerance COG: J = ±5% K = ±10% M = ±20% X7R: K = ±10% M = ±20% Z = +80%, -20%	Failure Rate A=Not Applicable	Termination 1 = Pd/Ag T = Plated Ni and Sn B = 5% Min Pb Z = FLEXITERM® *X = FLEXITERM® with 5% min lead (X7R only)	Packaging/ Marking 2 = 7" Reel 4 = 13" Reel	Special Code A = Standard

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. For Tin/Lead Terminations, please refer to LD Series



For RoHS compliant products, please select correct termination style.

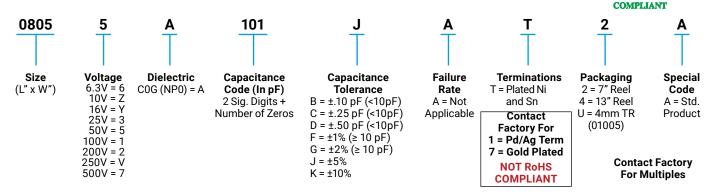
KUDEERA KW/KU
The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

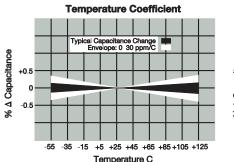
How to Order Part Number Explanation

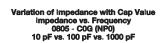


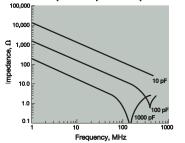
KUDEERA The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

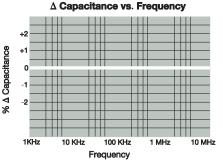
COG (NP0) Dielectric **General Specifications**

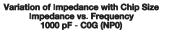

RoHS

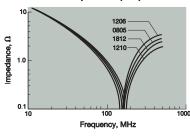

C0G (NP0) is the most popular formulation of the "temperature-compensating," EIA Class I ceramic materials. Modern C0G (NP0) formulations contain neodymium, samarium and other rare earth oxides.

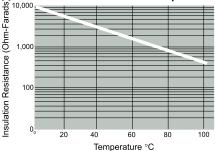

COG (NP0) ceramics offer one of the most stable capacitor dielectrics available. Capacitance change with temperature is 0 ±30ppm/°C which is less than ±0.3% C from -55°C to +125°C. Capacitance drift or hysteresis for C0G (NP0) ceramics is negligible at less than ±0.05% versus up to ±2% for films. Typical capacitance change with life is less than ±0.1% for COG (NP0), one-fifth that shown by most other dielectrics. COG (NP0) formulations show no aging characteristics.

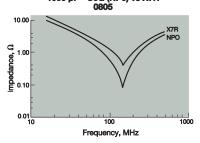

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)




NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.







Insulation Resistance vs Temperature

10.000

Variation of Impedance with Ceramic Formulation Impedance vs. Frequency 1000 pF - COG (NP0) vs X7R

KIDCERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

COG (NP0) Dielectric

Specifications and Test Methods

	ter/Test	NP0 Specification Limits	Measuring (
	perature Range	-55°C to +125°C	Temperature C			
	citance Q	Within specified tolerance <30 pF: Q≥ 400+20 x Cap Value ≥30 pF: Q≥ 1000	Freq.: 1.0 MHz ± 10% 1.0 kHz ± 10% fo Voltage: 1.0	r cap > 1000 pF Vrms ± .2V		
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with rated @ room tem			
Dielectric	c Strength	No breakdown or visual defects	Charge device with 250% seconds, w/charge and d to 50 mA Note: Charge device with for 500V d	ischarge current limited (max) 1 150% of rated voltage		
	Appearance	No defects				
Resistance to	Capacitance Variation	$\pm 5\%$ or $\pm .5$ pF, whichever is greater	Deflectio Test Time: 3			
Flexure	Q	Meets Initial Values (As Above)	V			
Stresses	Insulation Resistance	≥ Initial Value x 0.3	90 n	nm		
Solde	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic sold 0.5 sec			
	Appearance	No defects, <25% leaching of either end terminal				
	Capacitance Variation	$\leq \pm 2.5\%$ or $\pm .25$ pF, whichever is greater	 Dip device in eutectic solder at 260°C for 			
Resistance to	Q	Meets Initial Values (As Above)	60sec- onds. Store at	room temperature		
Solder Heat	Insulation Resistance	Meets Initial Values (As Above)	 for 24 ± 2hours before measuring electri properties. 			
	Dielectric Strength	Meets Initial Values (As Above)				
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes		
	Capacitance Variation	\leq ±2.5% or ±.25 pF, whichever is greater	Step 2: Room Temp	≤ 3 minutes		
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes		
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes		
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 hours at roor			
	Appearance	No visual defects				
	Capacitance Variation	\leq ±3.0% or ± .3 pF, whichever is greater	Charge device with twic chamber set at			
Load Life	Q (C=Nominal Cap)	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	for 1000 hou Remove from test cha			
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	room temperatu before me	re for 24 hours		
	Dielectric Strength	Meets Initial Values (As Above)				
	Appearance	No visual defects				
	Capacitance Variation	\leq ±5.0% or ± .5 pF, whichever is greater	Store in a test chamber s	et at 85°C ± 2°C/ 85% :		
	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF:	5% relative humidir (+48, -0) with rated	voltage applied.		
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature for 24 ± 2 ho			
	Dielectric Strength	Meets Initial Values (As Above)				

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

COG (NP0) Dielectric

Capacitance Range

PREFERRED SIZES ARE SHADED

SIZE		0101*	02	201		0402				0603						0805						1206			
Solderin		Reflow Only		w Only		low/W				eflow/W						ow/Wave						Reflow/W			
Packagir		All Paper		Paper		II Pape				All Pape						/Emboss	ed					per/Emb			
(L) Length	mm (in.)	0.40 ± 0.02 (0.016 ± 0.0008)	0.60 : (0.024 :	± 0.09 ± 0.004)		00 ± 0.1 40 ± 0.0				.60 ± 0. 063 ± 0.)1 ± 0.20 '9 ± 0.00	B)					3.20 ± 0. .126 ± 0.			
W) Width	mm	0.20 ± 0.02	0.30	± 0.09	0.	50 ± 0.1	10		C	.81 ± 0.	15		1.25 ± 0.20							1.60 ± 0.	.20				
vv) vvidtii	(in.)	(0.008 ± 0.0008)	•	± 0.004)	· ·	20 ± 0.0			`	032 ± 0.			(0.049 ± 0.008)						.063 ± 0.						
(t) Terminal	mm (in.)	0.10 ± 0.04 (0.004 ± 0.0016)	0.15 : (0.006 :	± 0.05 + 0.002)		25 ± 0.1 10 ± 0.0				0.35 ± 0. 014 ± 0.			0.50 ± 0.25 (0.020 ± 0.010)						0.50 ± 0. .020 ± 0.						
	WVDC	16	25	50	16	25	50	16	25	50	100	200	16	25	50	100	200	250	16	25	50	1020 1 0.	200	250	500
Сар	0.5		A	A	С	С	С	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
(pF)	1.0	В	A	A	C	С	C	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	1.2 1.5	B	A	A	C C	C C	C C	G G	G G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	1.3	B	A	A	c	c	C	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	2.2	В	А	A	С	С	С	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	2.7	B	A	A	C	<u>C</u>	C	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J J	J
	3.3 3.9	B	A A	A	C C	C C	C C	G G	G G	G	G G		J	J	J	J J	J	J	J	J	J	J	J	J	J
	4.7	В	А	А	С	С	С	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	5.6	В	A	A	С	С	С	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	6.8 8.2	B	A A	A	C C	C C	C C	G	G	G	G G		J	J	J	J	J	J	J	J	J	J	J	J	J
	10	B	A	A	C	C	C	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	12	В	А	A	С	С	С	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	15	B	A	A	C	<u>с</u>	C	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J J
	18 22	B	A	A	C C	C C	C C	G G	G G	G G	G G	G G	J J	J J	J J	J J	J J	J	J	J	J	J J	J	J J	J
	27	В	А	A	С	c	С	G	G	G	G	G	Ĵ	J	J	J	Ĵ	Ĵ	J	Ĵ	J	J	Ĵ	Ĵ	J
	33	В	A	A	C	С	C	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	39 47	B B	A A	A	C C	C C	C C	G G	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J	J J	J J
	56	B	A	A	C	C	C	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	68	В	А	A	С	С	С	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	82 100	B	A	A	C	<u>C</u>	C	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	120	в	A	A	C C	C C	C C	G G	G G	G	G G	G G	J	J	J	J	J	J	J	J	J	J	J	J	J
	150				c	c	c	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	180				С	С	С	G	G	G	G	G	J	J	J	J	J	N	J	J	J	J	J	J	J
	220 270				C C	C C	C C	G G	G G	G G	G G	G	J	J	J	J	N N	N N	J	J	J	J	J	J	J J
	330				C	c	C	G	G	G	G		J	J	J	J	N	N	J	J	J	J	J	J	J
	390				С	С	С	G	G	G	G		J	J	J	J	N	N	J	J	J	J	J	J	J
	470				C	C	C	G	G	G	G		J	J	J	J	N	N	J	J	J	J	J	J	J
	560 680				C C	C C	C C	G G	G G	G	G		J J	J J	J	J	N N	N N	J	J	J	J	J	J J	J J
	750				c	c	c	G	G	G	G		J	J	J	J	N	N	J	J	J	J	J	J	J
	820				С	С	С	G	G	G	G		J	J	J	J	N	N	J	J	J	J	J	J	J
	1000				С	С	С	G	G	G	G		J	J	J	J	N	N	J	J	J	J	J	J	J
	1200 1500							G G	G G	G G			J	J	J	J J	P P	P P	J	J	J	J	J	J P	J P
	1800							G	G	G			J	J	J	J	P	P	J	J	M	Р	Q	P	P
	2200							G	G	G			Р	P	P	Р	Р	P	J	J	M	P	Q	Р	Р
	2700 3300							G	G G	G			P P	P P	P P	P P	P P	P P	J	J	M	P P	Q Q	P X	<u>Р</u> Р
	3900							G	G	G			P	P	P	P	P	P	J	J	M	P	X	x	X
	4700							G	G	G			Р	Р	Р	P	P	P	J	J	м	Р	x	х	Х
	5600				1								P	P	P				J	J	M	P	X	X	X
	6800 8200												P P	P P	P P				M	M P	M P	P P	X X	X X	Х
Сар	0.010												P	P	P				P	P	P	P	X	X	
(μF)	0.012												Р	Р	Р				х	X	X	X			
	0.015				 ≪\\\/		۱ <u> </u>												X X	X X	X X	X X			
	0.018			<		2													X	X	X	X			
	0.027		\leq))	ÎT													х	Х	x				
	0.033	- L			\mathcal{I}	-	_												Х	X	X	Х			
	0.039 0.047	/		1															X X	X X	X X				
	0.047			-															X	X	X				
	0.082		11																						
140.00 0	0.1	11	05	50	11	05	50	14	05	50	100	000	14	05	50	100	000	050	X	X	X	100	000	050	500
WVDC SIZE		16 0101*	25 02	50	16	25 0402	50	16	25	50 0603	100	200	16	25	50	100 0805	200	250	16	25	50	100 1206	200	250	500
JIZE		0101	52			5402				0003												1200			

Letter	A	В	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max. Thickness	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.05 5)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
	PAPER									EMB	OSSED			

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

080420

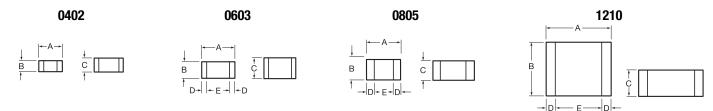
COG (NPO) Dielectric Capacitance Range

PREFERRED SIZES ARE SHADED

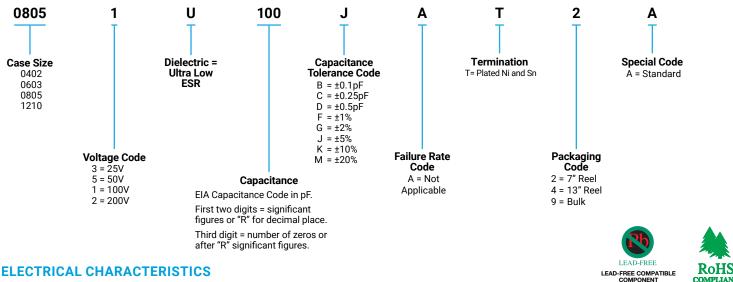
SIZE Soldering Packaging (L) Length W) Width	mm			1210																
Soldering Packaging (L) Length				1210																
Packaging (L) Length				Reflow Only	/				1812 Reflow Only				1825 Reflow Onl	v	-	2220 Reflow Only	v	R	2225 teflow Only	
	mm			per/Embos					II Embosse				Il Embosse			II Embosse			l Embosse	
				3.20 ± 0.20					4.50 ± 0.30				4.50 ± 0.30			5.70 ± 0.40			5.72 ± 0.25	
W) Width	(in.) mm		((0.126 ± 0.00 2.50 ± 0.20					.177 ± 0.01 3.20 ± 0.20				0.177 ± 0.01 6.40 ± 0.40			.225 ± 0.01 5.00 ± 0.40			225 ± 0.010 5.35 ± 0.25	
	(in.)			0.098 ± 0.00	18)			(0	.126 ± 0.00	8)		(0	0.252 ± 0.01	16)	(0	.197 ± 0.01	6)	(0.:	250 ± 0.010	0)
(t) Terminal	mm (in.)			0.50 ± 0.25 0.020 ± 0.01					0.61 ± 0.36 .024 ± 0.01				0.61 ± 0.36 0.024 ± 0.01			0.64 ± 0.39 .025 ± 0.01			0.64 ± 0.39 025 ± 0.01	
	WVDC	25	50	100	200	500	25	50	100	200	500	50	100	200	50	100	200	50	100	200
Сар	3.9																			
(pF)	4.7 5.6																			
	6.8																			
	8.2																			
	10	м	м	м	M	М	Р	Р	Р	P	Р					Ι.	>	-	W	
	12 15	M M	M	M M	M M	M M	P P	P P	P P	P P	P P						\langle		14	
	18	M	M	M	M	M	P	P	P	P	P					† (J. <u>I</u> -	
	22	М	М	м	м	м	Р	Р	Р	Р	Р									
	27 33	M	M	M M	M	M	P P	P P	P P	P P	P P					ł	4	-	-	
	39	M	M	M	M	M	P	P	P	P	P								1	
	47	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р									
	56	Р	P	P	P	P	Р	Р	P	P	P									
	68 82	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P									
	100	P	P	P	P	P	P	P	P	P	P									
	120	Ρ	Р	Р	Р	Р	Р	Р	Р	Р	Р									
	150 180	<u>Р</u> Р	P P	P P	P P	P P	P P	P P	P P	P P	P P									
	220	P	P	P	P	P	P	P	P	P	P									
	270	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р									
	330	Р	P	P	P	Р	Р	Р	P	P	P									
	390 470	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P									
	560	P	P	P	P	P	P	P	P	P	P									
	680	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р									
	820 1000	<u>Р</u> Р	P P	P P	P P	P P	P P	P P	P P	P P	P P	M	M	м				М	м	Р
	1200	P	P	P	P	P	P	P	P	P	P	M	M	M				M	M	P
	1500	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	м	м	м				М	м	Р
	1800	Р	P	P	P	P	Р	P	P	P	P	M	M	M				м	м	P
	2200 2700	P P	P P	P P	P P	P P	P P	P P	P P	P P	P Q	X X	X X	M M				M M	M M	P P
	3300	P	P	P	P	P	P	P	P	P	Q	X	X	X			Х	M	M	P
	3900	Р	Р	Р	Р	Р	Р	Р	Р	Р	Q	X	X	x			х	М	м	Р
	4700 5600	P P	P P	P P	P P	P P	P P	P P	P P	P P	Y Y	X X	X X	X X	X X	X X	X X	M	M	P P
	6800	P	P	P	X	X	P	P	Q	Q	Y	x	x	x	x	x	x	M	M	P
	8200	Р	Р	Р	x	х	Р	Р	Q	Q	Y	x	x	х	x	х	х	М	м	Р
Cap	0.010 0.012	P X	P X	X X	X X	X X	P P	P P	Q Q	Q X	Y Y	X X	X X	X X	X X	X X	X X	M M	M M	P P
(pF)	0.012	X	X	x	z	Z	P	P	Q	X	Y	X	x	X	X	x	X	M	M	P Y
	0.018	Х	Х	Z	Z		Р	Р	х	Х	Y	Х	Х	Х	x	Х	X	M	М	Y
	0.022	Х	x	Z	Z		Р	P	x	X		X	x	x	X	X		м	Y	Y
	0.027	X X	Z Z	Z Z	Z		Q Q	X X	X X	Z		X X	X X	Y	X X	X X		P X	Y Y	Y Y
	0.033	z	Z	z	2		x	x	z	Z		x	Â		Ŷ			x	Y	Y
	0.047	Z	Z	z			х	х	Z	z		х			Y			Х	Z	
	0.068						Z	Z	Z						Z		7	X	Z	
	0.082						Z Z	Z Z	Z Z						Z Z			X Z	Z Z	
	WVDC	25	50	100	200	500	25	50	100	200	500	50	100	200	50	100	200	50	100	200
	SIZE			1210					1812				1825			2220			2225	

Letter	A	В	С	E	G	J	К	М	N	Р	Q	х	Y	Z
Max. Thickness	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
	PAPER									EMBO	SSED			

KUDLERA The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.


U Dielectric RF/Microwave COG (NP0) Capacitors (RoHS) Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors

GENERAL INFORMATION


"U" Series capacitors are COG (NPO) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0603, 0805, and 1210.

DIMENSIONS: inches (millimeters)

Size	А	В	С	D	E
0402	0.039±0.004 (1.00±0.1)	0.020±0.004 (0.50±0.1)	0.024 (0.6) max	0.010 ± 0.006 (0.25 ± 0.15)	0.014 (0.36) min
0603	0.060±0.010 (1.52±0.25)	0.030±0.010 (0.76±0.25)	0.036 (0.91) max	0.010 ± 0.005 (0.25 ± 0.13)	0.030 (0.76) min
0805	0.079±0.008 (2.01±0.2)	0.049±0.008 (1.25±0.2)	0.045 (1.15mm) max	0.020 ± 0.010 (0.51 ± 0.254)	0.020 (0.51) min
1210	0.126±0.008 (3.2±0.2)	0.098±0.008 (2.49±0.2)	0.055 (1.40mm) max	0.025 ± 0.015 (0.635 ± 0.381)	0.040 (1.02) min

HOW TO ORDER

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz Size 0805 - 1.6 pF to 160 pF @ 1 MHz Size 1210 - 2.4 pF to 1000 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12}\,\Omega$ min. @ 25°C and rated WVDC $10^{11} \Omega$ min. @ 125° C and rated WVDC

Working Voltage (WVDC):

- Size Working Voltage
- 0402 50, 25 WVDC
- 0603 _ 200, 100, 50 WVDC
- 0805 _ 200, 100 WVDC
- 1210 200, 100 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

Equivalent Series Resistance Typical (ESR):

- 0402 See Performance Curve, page 300
- 0603 See Performance Curve, page 300
- 0805 See Performance Curve, page 300
- 1210 See Performance Curve, page 300

Marking

Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request).

MILITARY SPECIFICATIONS

Meets or exceeds the requirements of MIL-C-55681

😢 KUDEERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. ANAX .

COMPLIANT

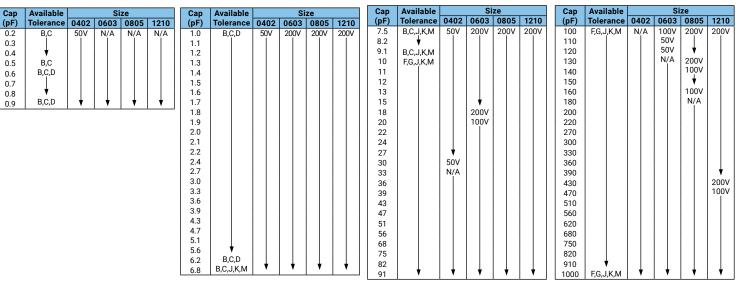
U Dielectric **RF/Microwave C0G (NP0) Capacitors (RoHS)** Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors

CAPACITANCE RANGE

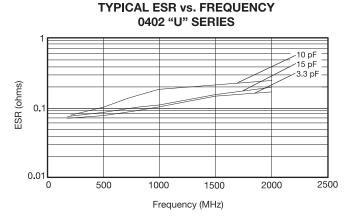
Cap

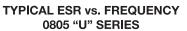
0.2

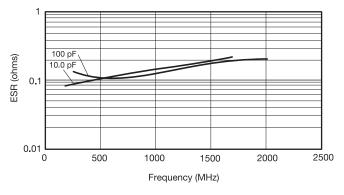
0.3


0.4

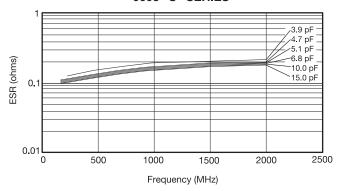
0.5

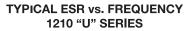

0.6

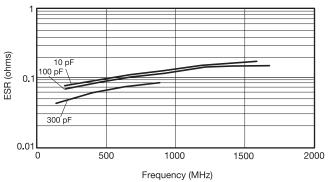

0.7


0.8 0.9

ULTRA LOW ESR, "U" SERIES

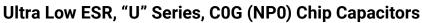


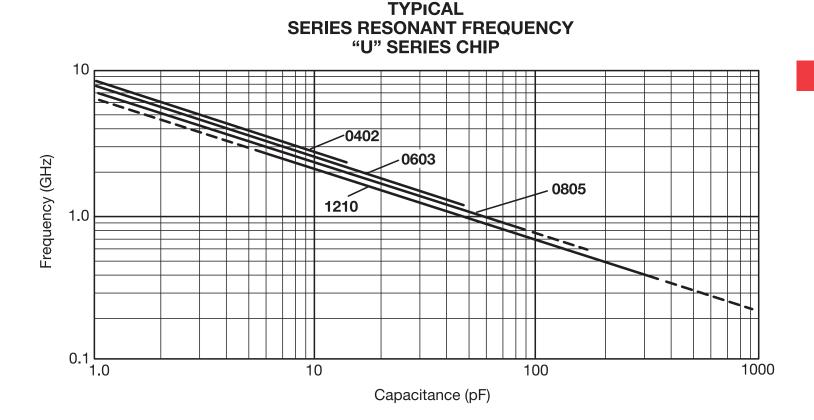




TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES

KYOCERa

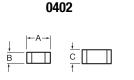


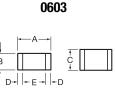

ESR Measured on the Boonton 34A

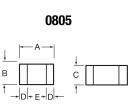
KUDEERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. 1 AVAX

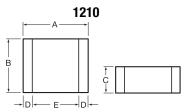
U Dielectric RF/Microwave C0G (NP0) Capacitors

KYDCERR AWXX The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

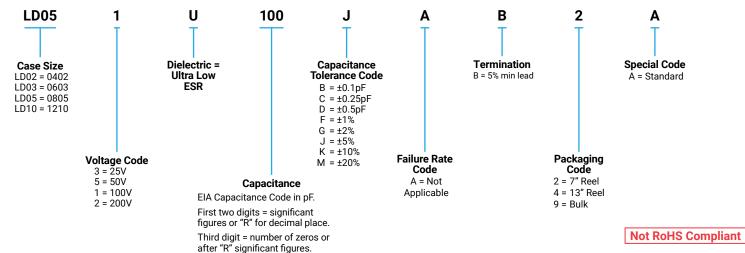

U Dielectric RF/Microwave COG (NP0) Capacitors (Sn/Pb) Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors




GENERAL INFORMATION


"U" Series capacitors are COG (NP0) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0603, 0805, and 1210.

DIMENSIONS: inches (millimeters)



Size	Α	В	С	D	E
0402	0.039±0.004 (1.00±0.1)	0.020±0.004 (0.50±0.1)	0.024 (0.6) max	0.010 ± 0.006 (0.25 ± 0.15)	0.014 (0.36) min
0603	0.060±0.010 (1.52±0.25)	0.030±0.010 (0.76±0.25)	0.036 (0.91) max	0.010±0.005 (0.25±0.13)	0.030 (0.76) min
0805	0.079±0.008 (2.01±0.2)	0.049±0.008 (1.25±0.2)	0.045 (1.15mm) max	0.020±0.010 (0.51±0.254)	0.020 (0.51) min
1210	0.126±0.008 (3.2±0.2)	0.098±0.008 (2.49±0.2)	0.055 (1.40mm) max	0.025±0.015 (0.635±0.381)	0.040 (1.02) min

HOW TO ORDER

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz Size 0805 - 1.6 pF to 160 pF @ 1 MHz Size 1210 - 2.4 pF to 1000 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12}\,\Omega$ min. @ 25°C and rated WVDC $10^{11}\,\Omega$ min. @ 125°C and rated WVDC

Working Voltage (WVDC):

Size	Working Voltage
------	-----------------

- 0402 50, 25 WVDC
- 0603 200, 100, 50 WVDC
- 0805 200, 100 WVDC
- 1210 200, 100 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

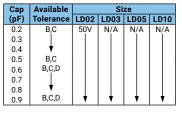
Equivalent Series Resistance Typical (ESR):

040 - See Performance Curve, page 306 0603 - See Performance Curve, page 306 0805 - See Performance Curve, page 306 1210 - See Performance Curve, page 306

Marking:

Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request).

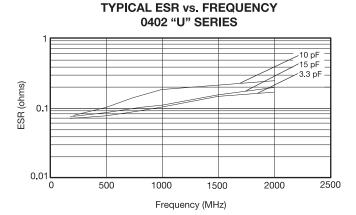
Military Specifications

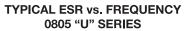

Meets or exceeds the requirements of MIL-C-55681

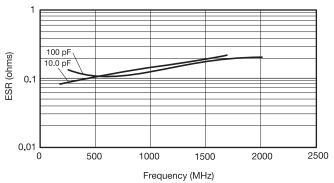
KINCERENTIAL The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

U Dielectric RF/Microwave C0G (NP0) Capacitors (Sn/Pb) Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors

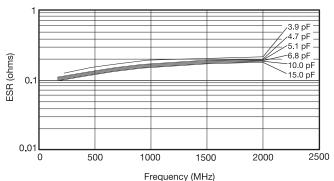
CAPACITANCE RANGE

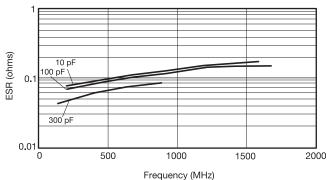



Сар	Available			Size			
(pF)	Tolerance	LD02	LD03	LD05	LD10		
1.0	B,C,D	50V	200V	200V	200V		
1.1							
1.2							
1.3							
1.4							
1.5							
1.6							
1.7							
1.8							
1.9							
2.0							
2.1							
2.2							
2.4							
2.7							
3.0							
3.3							
3.6							
3.9							
4.3							
4.7							
5.1							
5.6							
6.2	B,C,D	↓	↓	↓	+		
6.8	B,C,J,K,M	<u>'</u>	<u> </u>		L '		


I	0	Available		6	ze	-	0	A
	Cap					1.040	Cap	Av
	(pF)	Tolerance			LD05	LD10	(pF)	Tol
	7.5	B,C,J,K,M	50V	200V	200V	200V	100	F, C
	8.2	+					110	
	9.1	B,C,J,K,M					120	
	10	F,G,J,K,M					130	
	11						140	
	12						150	
	13						160	
	15			🕇			180	
	18			200V			200	
	20			100V			220	
	22						270	
	24						300	
	27		*				330	
	30		50V				360	
	33		N/A				390	
	36						430	
	39						470	
	43						510	
	47						560	
	51						620	
	56						680	
	68						750	
	75						820	
	82						910	
1	91	♥	♥	♥	♥	•	1000	F,C

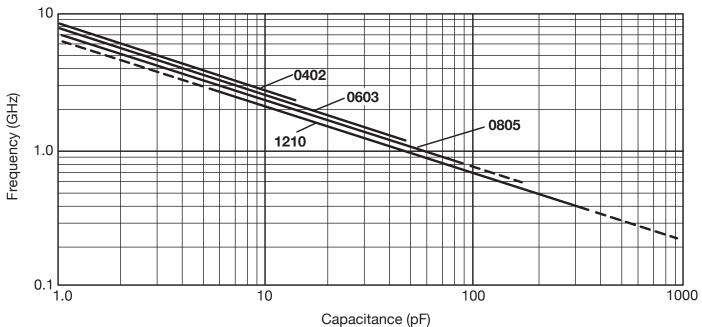
	Сар	Available	Size					
)	(pF)	Tolerance	LD02	LD03	LD05	LD10		
-	100	F,G,J,K,M	N/A	100V	200V	200V		
	110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		50V				
	120			50V	+			
	130			N/A	200V			
	140				100V			
	150				+			
	160				100V			
	180				N/A			
	200							
	220							
	270							
	300							
	330							
	360							
	390					•		
	430					200V		
	470					100V		
	510							
	560							
	620							
	680							
	750							
1	820							
	910	•						
	1000	F,G,J,K,M	•	1	1	1		


ULTRA LOW ESR, "U" SERIES



TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES

TYPICAL ESR vs. FREQUENCY 1210 "U" SERIES


ESR Measured on the Boonton 34A

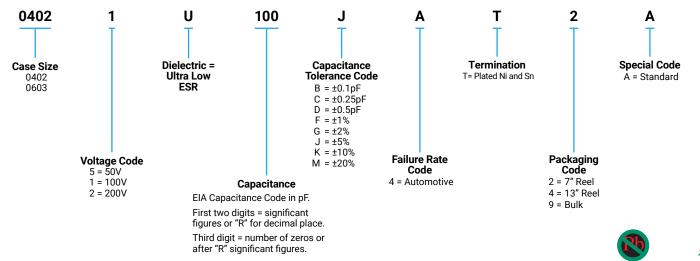
KUDEERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. /avax

RF/Microwave Capacitors RF/Microwave COG (NP0) Capacitors Ultra Low ESR "U" Series, COG (NP0) Capacitors (Sn/Pb)

U Dielectric 🔀 KYOCERa **RF/Microwave Automotive C0G (NP0) Capacitors (RoHS)** AEC Q200 Qualified Ultra Low ESR, "U" Series, C0G (NP0) Chip Capacitors

GENERAL INFORMATION

Automotive "U" Series capacitors are COG (NP0) chip capacitors specially designed for "Ultra" low ESR for applications in the automotive market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0402 and 0603.


DIMENSIONS: inches (millimeters)

0402 0603

				inch	es (mm)
Size	Α	В	С	D	E
0402	0.039±0.004 (1.00±0.1)	0.020±0.004 (0.50±0.1)	0.024 max (0.6)	N/A	N/A
0603	0.060±0.010 (1.52±0.25)	0.030±0.010 (0.76±0.25)	0.036 max (0.91)	0.010±0.005 (0.25±0.13)	0.030 min (0.76)

HOW TO ORDER

ELECTRICAL CHARACTERISTICS

Size 0402 - 0.2 pF to 22 pF @ 1 MHz
Size 0603 - 1.0 pF to 100 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12} \Omega$ min. @ 25°C and rated WVDC $10^{11} \Omega$ min. @ 125°C and rated WVDC

Working Voltage (WVDC):

Size Working Voltage

- 0402 100, 50, 25 WVDC
- 0603 200, 100, 50 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

Equivalent Series Resistance Typical (ESR):	
---	--

0402	-	See Performance Curve, page 303
------	---	---------------------------------

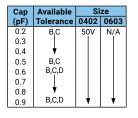
0603 See Performance Curve, page 303

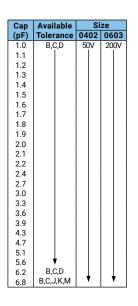
Automotive Specifications

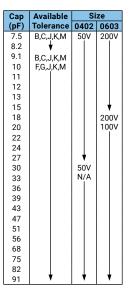
Meets or exceeds the requirements of AEC Q200

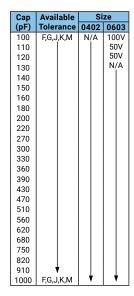
online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

LEAD-FREE

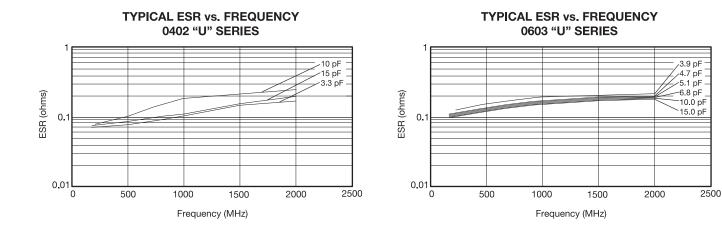

LEAD-FREE COMPATIBLE COMPONENT

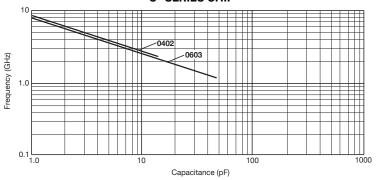

RoHS


COMPLIANT


U Dielectric KY<u>OCERa</u> **RF/Microwave Automotive C0G (NP0) Capacitors (RoHS)** AEC Q200 Qualified, Ultra Low ESR, "U" Series, C0G (NP0) Chip Capacitors

CAPACITANCE RANGE





ULTRA LOW ESR, "U" SERIES

TYPICAL SERIES RESONANT FREQUENCY **"U" SERIES CHIP**

KUDEERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. 1 AVAX

U Dielectric Designer Kits Communication Kits "U" Series

0402							
	Kit 50	000 UZ					
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance				
0.5		4.7					
1.0		5.6	B (± 0.1pF)				
1.5		6.8	в (± 0. трг)				
1.8	B (±0.1pF)	8.2					
2.2	ы (±0.трг <i>)</i>	10.0					
2.4		12.0	J (±5%)				
3.0		15.0] 5(±5%)				
3.6							

***25 each of 15 values

0603

	Kit 4000 UZ						
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance				
1.0		6.8					
1.2		7.5	B (±0.1pF)				
1.5		8.2					
1.8		10.0					
2.0		12.0					
2.4	D (10.1-F)	15.0					
2.7	B (±0.1pF)	18.0					
3.0		22.0	J (±5%)				
3.3		27.0					
3.9		33.0					
4.7		39.0					
5.6		47.0					

***25 each of 24 values

1	21	0
---	----	---

1210								
Kit 3500 UZ								
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance					
2.2		36.0						
2.7		39.0						
4.7		47.0						
5.1	B (±0.1pF)	51.0						
6.8		56.0						
8.2		68.0						
9.1		82.0						
10.0		100.0	J (±5%)					
13.0		120.0						
15.0		130.0						
18.0	J (± 5 %)	240.0						
20.0	J (1 J %)	300.0						
24.0		390.0						
27.0		470.0						
30.0		680.0						

***25 each of 30 values

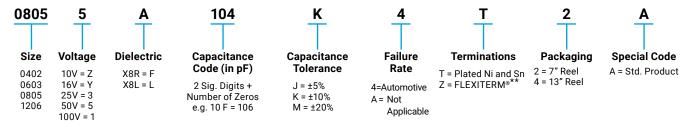
_ ∩	80	5
υ	ου	J.

0005							
Kit 3000 UZ							
Cap. Value PF	Tolerance	Tolerance					
1.0		15.0					
1.5		18.0					
2.2		22.0					
2.4		24.0					
2.7		27.0					
3.0	B (±0.1pF)	33.0					
3.3	в (±0.трг)	36.0	1(+5%)				
3.9		39.0	J (±5%)				
4.7		47.0					
5.6		56.0					
7.5		68.0					
8.2		82.0					
10.0	J (±5 %)	100.0					
12.0	J (1J %)	130.0					

***25 each of 30 values

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X8R/X8L Dielectric General Specifications


KYOCERA AVX has developed a range of multilayer ceramic capacitors designed for use in applications up to 150° C. These capacitors are manufactured with an X8R and an X8L dielectric material. X8R material has capacitance variation of $\pm 15\%$ between -55°C and +150°C. The X8L material has capacitance variation of $\pm 15\%$ between -55°C to 125°C to 125°C and +15/40% from +125°C to +150°C.

The need for X8R and X8L performance has been driven by customer requirements for parts that operate at elevated temperatures. They provide a highly reliable capacitor with low loss and stable capacitance over temperature.

They are ideal for automotive under the hood sensors, and various industrial applications. Typical industrial application would be drilling monitoring system. They can also be used as bulk capacitors for high temperature camera modules.

Both X8R and X8L dielectric capacitors are automotive AEC-Q200 qualified. Optional termination systems, tin, FLEXITERM® and conductive epoxy for hybrid applications are available. Providing this series with our FLEXITERM® termination system provides further advantage to customers by way of enhanced resistance to both, temperature cycling and mechanical damage.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

	Style		0603		0805			1206	
S	oldering	Ref	flow/W	ave	Reflow/Wave		Reflow/Wave		
	WVDC	25V	50V	100V	25V	50V	100V	25V	50V
221	220				J	J	J		
271	270	G	G		J	J	J		
331	pF 330	G	G		J	J	J		
471	470	G	G	G	J	J	J		
681	680	G	G	G	J	J	J		
102	1000	G	G	G	J	J	J	J	J
152	1500	G	G	G	J	J	J	J	J
222	2200	G	G	G	J	J	J	J	J
332	3300	G	G	G	J	J	J	J	J
472	4700	G	G	G	J	J	J	J	J
682	6800	G	G	G	J	J	J	J	J
103	uF 0.01	G	G	G	J	J	J	J	J
153	0.015	G	G		J	J	N	J	J
223	0.022	G	G		J	J	N	J	J
333	0.033	G	G		J	J		J	J
473	0.047	G	G		J	J		J	J
683	0.068	G			N	N		М	М
104	0.1				N	N		М	М
154	0.15				N	N		М	М
224	0.22				N			М	М
334	0.33							М	М
474	0.47							М	Q
684	0.68							Q	Q
105	uF 1							Q	Q
	WVDC	25V	50V	100V	25V	50V	100V	25V	50V
	Style		0603		0805		1206		

Size		0603	0805	1206	1210
Soldering		Reflow/Wave	Reflow/Wave	Reflow/Wave	Reflow/Wave
Packagi	Packaging A		Paper/Embossed	Paper/Embossed	Paper/Embossed
(L) Length	mm	1.60 ± 0.15	2.01 ± 0.20	3.20 ± 0.20	3.30 ± 0.4
	(in)	(0.063 ± 0.006)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.130 ± 0.016)
(W) Width	mm	0.81 ± 0.15	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20
	(in)	(0.032 ± 0.006)	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)
(t) Terminal mm		0.35 ± 0.15	0.50 ± 0.25	0.50 ± 0.25	0.50 ± 0.25
(in)		(0.014 ± 0.006)	(0.020 ± 0.010)	(0.020 ± 0.010)	(0.020 ± 0.010)

								X8							
	Size			0603			0805			12	06			1210	
S	olderin	ng	Ref	low/Wa	ave	Ref	low/Wa	ave		Reflow			Ref	flow/W	ave
		WVDC	25V	50V	100V	25V	50V	100V	16V	25V	50V	100V	10V	50V	100V
271	Сар	270	G	G											
331	(pF)	330	G	G	G	J	J	J							
471		470	G	G	G	J	J	J							
681		680	G	G	G	J	J	J							
102		1000	G	G	G	J	J	J		J	J				
152		1500	G	G	G	J	J	J		J	J	J			
182		1800	G	G	G	J	J	J		J	J	J			
222		2200	G	G	G	J	J	J		J	J	J			
272		2700	G	G	G	J	J	J		J	J	J			
332		3300	G	G	G	J	J	J		J	J	J			
392		3900	G	G	G	J	J	J		J	J	J			
472		4700	G	G	G	J	J	J		J	J	J			
562		5600	G	G	G	J	J	J		J	J	J			\mid
682		6800	G	G	G	J	J	J		J	J	J			
822		8200	G	G	G	J	J	J		J	J	J			
103	Cap	0.01	G	G	G	J	J	J		J	J	J			
123	(µF)	0.012	G	G		J	J	J		J	J	J			
153 183		0.015	G G	G		J	J	J J		J J	J	J			
223		0.018	-			J	J	-		-	J	J			
273		0.022	G G	G		J J	J J	J J		J J	J	J			
333		0.027	G	G		J	J	J N		J	J	J			
393		0.033	G	G		J	J	N		J	J	J			
473		0.039	G	G		J	J	N		J	J	J			
563		0.047	G	G		J	J	N		J	J	J			
683		0.068	G	G		J	J	N		J	J	J			
823		0.082	G	G		J	J	N		J	J	J			
104		0.002	G	G		J	J	N		J	J	M			
124		0.12	0	0		J	N			J	J	M			
154		0.15				Ĵ	N		J	J	J	Q			
184		0.18				N	N		J	J	J	ò			
224		0.22				N	N		J	J	J	Q		İ	
274		0.27				Ν			J	M	M	Q			
334		0.33				N			J	М	М	Q			
394		0.39				Ν			М	М	Р	Q		İ	
474		0.47				N			М	М	Р	Q			
684		0.68				Ν			М	М	Р	Q			
824		0.82				Ν			М	М	Р	Q			
105		1				Ν			М	М	Р	Q			
155		1.5							М	М					
225		2.2							М	М				Z	Z
475														Z	
106													Z		
		WVDC	25V	50V	100V	25V	50V	100V	16V	25V	50V	100V	10V	50V	100V
	SIZE			0603			0805			12	06			1210	

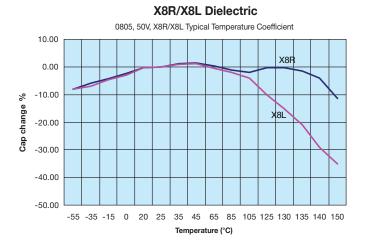
Letter	A	С	E	G	J	К	М	Ν	Р	Q	Х	Y	Z
Max. Thickness	0.33 (-0.013)	0.56 (-0.022)	0.71 (-0.028)	0.9 (-0.035)	0.94 (-0.037)	1.02 (-0.04)	1.27 (-0.05)	1.4 (-0.055)	1.52 (-0.06)	1.78 (-0.07)	2.29 (-0.09)	2.54 (-0.1)	2.79 (-0.11)
			PAPER						EMBO	SSED			

KUDEERA AVV/X The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X8R/X8L Dielectric General Specifications

APPLICATIONS FOR X8R AND X8L CAPACITORS

- · All market sectors with a 150°C requirement
- Automotive on engine applications
- Oil exploration applications
- Hybrid automotive applications
 - Battery control
 - Inverter / converter circuits
 - Motor control applications
- Water pump
- Hybrid commercial applications
- Emergency circuits
- Sensors
- Temperature regulation


KY<u>DCERa</u>

ADVANTAGES OF X8R AND X8L MLC CAPACI-TORS

- Both ranges are qualified to the highest automotive AEC-Q200 standards
- Excellent reliability compared to other capacitor technologies
- RoHS compliant
- · Low ESR / ESL compared to other technologies
- Tin solder finish
- FLEXITERM® available
- · Epoxy termination for hybrid available
- 100V range available

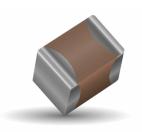
ENGINEERING TOOLS FOR HIGH VOLTAGE MLC CAPACITORS

- Samples
- Technical Articles
- Application Engineering
- Application Support

KUCERA The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X8R/X8L Dielectric

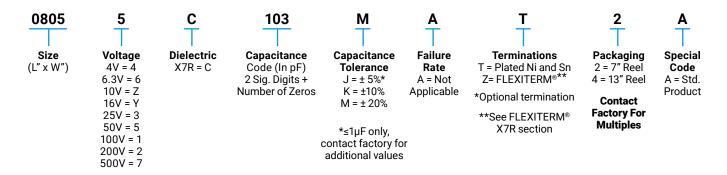
Specifications and Test Methods



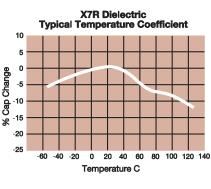
Parame	ter/Test	X8R/X8L Specification Limits	Measuring	Conditions
Operating Tem	perature Range	-55°C to +150°C	Temperature C	ycle Chamber
Сарас	itance	Within specified tolerance	Freg.: 1.0 k	۲Hz + 10%
Dissipati	on Factor	\leq 2.5% for \geq 50V DC rating \leq 3.5% for 25V DC and 16V DC rating	Voltage: 1.0	
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with rated @ room tem	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge current) mA (max) h 150% of rated voltage
	Appearance	No defects	Deflectio	n. 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 1	mm
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic solo 0.5 sec	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutection 60 seconds. Store at 24 ± 2 hours before r	room temperature for
	Insulation Resistance	Meets Initial Values (As Above)	properties.	J
	Dielectric Strength	Meets Initial Values (As Above)		1
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
	Appearance	No visual defects	-	
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 test chamber set	
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hoເ -	urs (+48, -0)
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h	
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	d voltage applied.
Traindity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature and humidity measu	y for 24 ± 2 hours befor
	Dielectric Strength	Meets Initial Values (As Above)	l	army

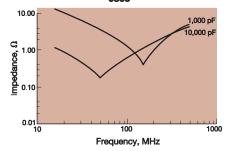
KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

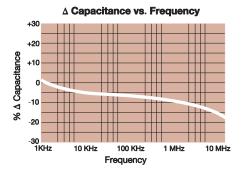
X7R Dielectric General Specifications

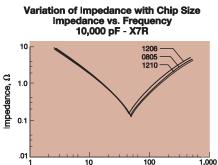

X7R formulations are called "temperature stable" ceramics and fall into EIA Class II materials. X7R is the most popular of these intermediate dielectric constant materials. Its temperature variation of capacitance is within ±15% from -55°C to +125°C. This capacitance change is non-linear.

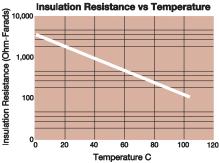
Capacitance for X7R varies under the influence of electrical operating con-ditions such as voltage and frequency.

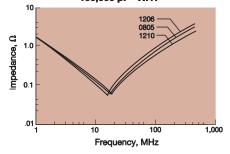

X7R dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable.


PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)




NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.





Variation of Impedance with Chip Size Impedance vs. Frequency 100.000 pF - X7R

KUCLERA The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Frequency, MHz

X7R Dielectric

Specifications and Test Methods

Paramete	r/Test	X7R Specification Limits	M	leasuring Conditions
Operating Tempe		-55°C to +125°C		perature Cycle Chamber
Capacit Dissipatior		Within specified tolerance ≤ 10% for ≥ 50V DC rating≤ 12.5% for 25V DC rating ≤ 12.5% for 25V and 16V DC rating ≤ 12.5% for ≤ 10V DC rating Contact Factory for DF by PN	Va	Freq.: 1.0 kHz ± 10% oltage: 1.0Vrms ± .2V p > 10μF, 0.5Vrm @ 120Hz
Insulation Re	esistance	100,000MΩ or 1000MΩ - μF, whichever is less		device with rated voltage for secs @ room temp/humidity
Dielectric S	Strength	No breakdown or visual defects	charge and disch	50% of rated voltage for 1-5 seconds, w/ narge current limited to 50 mA (max) th 150% of rated voltage for 500V devices.
	Appearance	No defects		
Resistance to	Capacitance Variation	≤ ±12%	-	Deflection: 2mm
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)	Te	est Time: 30 seconds
	Insulation Resistance	≥ Initial Value x 0.3		
Soldera	bility	≥ 95% of each terminal should be covered with fresh solder		in eutectic solder at 230 ± 5°C or 5.0 ± 0.5 seconds
	Appearance	No defects, <25% leaching of either end terminal	-	
·	Capacitance Variation	≤ ±7.5%	-	
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic room temperature for	solder at 260°C for 60 seconds. Store at 24 ± 2 hours before measuring electrical
	Insulation Resistance	Meets Initial Values (As Above)	_	properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)		and measure after 24 ± 2 hours at room temperature
	Appearance	No visual defects		nounting, perform heat treatment 150+0/- stabilise for 24+/-2 hour at room temp,
	Capacitance Variation	≤ ±12.5%		then measure.
Lond L'és	Dissipation Factor Insulation	≤ Initial Value x 2.0 (See Above)		i ≥ rated voltage in test chamber set at 2°C for 1000 hours (+48, -0).
Load Life	Resistance	≥ Initial Value x 0.3 (See Above)	Pre-treatment: After r	remove from test chamber, perform heat
	Dielectric Strength	Meets Initial Values (As Above)	treatment 150+0/-100 at roo	C for 2 hour, then stabilise for 24+/-2 hour om temp, then measure. A AVX for datasheet of specific parts.
	Appearance	No visual defects	Pre-treatment: After m	nounting, perform heat treatment 150+0/-
	Capacitance Variation	≤ ±12.5%	10C for 2 hour, then	stabilise for 24+/-2 hour at room temp, then measure.
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)		ber set at 85°C ± 2°C/ 85% ± 5% relative burs (+48, -0) with rated voltage applied.
runnuty	Insulation Resistance	≥ Initial Value x 0.3 (See Above)		remove from test chamber, perform heat
	Dielectric Strength	Meets Initial Values (As Above)	treatment 150+0/-100	C for 2 hour, then stabilise for 24+/-2 hour om temp, then measure.

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

PREFERRED SIZES ARE SHADED

SIZE		0101*			0201	1				04	02						06	03							08	05								1206				
Soldering	q	Reflow Only			flow (_		R	eflow	-	/e				R	eflow		'e	_		-	_	Re		/Wav	e				_	_		ow/W				_
Packaging		Paper/ Embossed			ll Pap					All P							All P									nbos									osse	d		
(L) Length	mm (in.)	0.40 ± 0.02 (0.016 ± 0.0008)			50 ± 0 24 ± 0	.09				1.00 : .040 :							1.60 ±									0.20								20 ± 0. 26 ± 0.				
W) Width	mm (in.)	0.20 ± 0.02 (0.008 ± 0.0008)			80 ± 0 1 ± 0	.09 .004)				0.50 : .020 :							0.81 ±									0.20 0.00								0 ± 0. 3 ± 0.				
(t) Terminal	mm (in.)	0.10±0.04 (0.004±0.0016)			5 ± 0 06 ± 0					0.25 : .010 :							0.35 ± .014 ±									0.25								50 ± 0. 20 ± 0.				
WVDC		16	6.3	10	16	25	50	6.3	10	16	25	50	100	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	500
Cap 100	101	В	Α	A	Α	A	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J													G	G	Ν	Ν	Ν
(pF) 150	151	В	Α	A	Α	Α	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J									G	G	G	G	G	G	Ν	Ν	Ν
220	221	В	Α	A	Α	Α	А	С	С	С	С	С	С	G	G	G	G	G	G	J	J	Е	Е	Е	Е	Е	Е	Е	J	J	J	J	J	J	J	Ν	Ν	Р
330	331	В	Α	A	Α	Α	А	С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	Ν	Ν	Р
470	471	В	Α	A	Α	Α	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	Ν	Ν	Р
680	681	В	Α	A	Α	Α	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	Ν	Ν	Р
1000	102	В	Α	A	Α	Α	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	Ν	Ν	Р
	152		Α	A	A	Α		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	Ν	Р
	222		Α	A	A	Α		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	Ν	Р
	332		Α	A	Α	Α		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	Ν	Ν	Р
	392		Α	A	A	A																												\square				
	472		Α	A	A	A		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	Ν	N	Р
	562		Α	A	A	A																												\square				
	682		Α	A	A	A		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	Р	Ρ	J	J	J	J	J	J		N	Р
· ·	103		Α	A	A	Α		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	Ρ	Ρ	J	J	J	J	J	J	Ν	N	Р
u /	123											-																	-					\vdash	-			
	153							С	С	С	С	E		G	G	G	G	G	J	J	J		J	J	J	J	J	Ρ	Ρ	J	J	J	J	J	J	N	N	Q
	183								0	0	-	-		0	0	0	0	0											-					\vdash			-	
	223 273		Α	A	A	<u> </u>		С	С	С	С	E		G	G	G	G	G	J	J	J		J	J	J	J	J	Ρ	Ρ	J	J	J	J	J	J	Р	Р	Q
	333			-				С	С	С	С	E		G	G	G	G	J	J				J	J	J	J	Р	Р	Р	J	J	J	J	J	J	Q	Q	Q
	393								U	U		E	<u> </u>	6	0	6	0	J	J				J	J	J	J	F	Г	F	J	J	5	J		J	Q I	Q	Q
	473			-				С	С	С	С	E		G	G	G	G	J	J				J	J	J	J	Ρ	Р	Ρ	J	J	J	J	J	J	Q	Q	Q
	683			-				C	c	c	C	E	-	G	G	G	G	J	J				J	J	J	J	P	P		J	J	J	J	J	P	Q	0	
	823			-				0	0	0		-		0	0	0	0	5	5				5	5	5	5				5	5	5	5		-	Q I	Q I	
			Α					С	С	С	С	E		G	G	G	G	J	J				J	J	J	J	Р	Р		J	J	J	J	J	Р	Q	Q	
	124		~	-												0	0						-	-	0	0				0	0		Ŭ		<u> </u>	4	<u> </u>	
	154													G	G	G	J	J					N	Ν	Ν	N	Р			К	К	К	к	К	Q	Q	Q	
				1		1		С	С	С	С			G	G	J	J	J				-	N	N	N	N	Р			K	K	ĸ	ĸ	ĸ	Q	Q	Q	1
	334			1									1	J	J	J	J	J					P	P	P	P	P			K	K	K	K	N	Q			1
	474			1		1		С	С			1	1	J	J	J	J	J					P	P	P	P	P			M	M	M	M	X	x		1	1
				1	1	1							1	J	J	J							Р	Р	Ρ					М	М	м	М	X	X		1	1
						1		С						J	J	J	J	К					Р	Р	Ρ	Р				М	М	м	М	X	X		1	1
				1	1	1						1		J	J	К				1			Р	Р	Р	Р				М	М	м	х	х	X		1	1
	475				1	1						1		K									Р	Р	Ρ					Х	Х	X	х	Z			1	
						1																Р	Р	Р						Х	Х	X	х					
22	226			1		1							1																	Х	Х						1	
47	476																							i													1	1
100	107																																					
WVDC		16	6.3	10	16	25	50	6.3	10	16	25	50	100	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	500
SIZE		0101*			0201						02						06									05								1206	_	-		

Letter	А	В	С	E	G	J	К	М	N	Р	Q	Х	Y	Z
Max. Thickness	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
		•	PA	PFR				•	•	FMBC	SSED	•		

NOTE: Contact factory for non-specified capacitance values

*EIA 01005

**Contact Factory for Specifications

KUDEERA KW/// The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

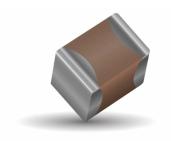
X7R Dielectric

Capacitance Range

PREFERRED SIZES ARE SHADED

	SIZE					1210						18	12				1825				2220				2225	
5	Soldering				R	eflow Or	nly					Reflo	w Only			R	eflow Or	nly		R	eflow Or	nly		R	eflow Or	nly
Р	ackaging				Pap	er/Embo	ssed					All Em	bossed			Al	I Emboss	sed	1	Al	Embos:	sed		All	Emboss	sed
(L) Len	gth	mm (in.)				3.30 ± 0. 130± 0.0		-					± 0.40 ± 0.016)				4.50 ± 0.4 177 ± 0.0				5.70 ± 0.9 224 ± 0.0				.70 ± 0.4 224 ± 0.0	
W) Wid	lth	mm (in.)				2.50 ± 0.3 098 ± 0.0							± 0.40 ± 0.016)				5.40 ± 0.4 252 ± 0.0				5.00 ± 0.4 197 ± 0.0				.30 ± 0.4 248 ± 0.0	
(t) Terr	ninal	mm (in.)				0.50 ± 0.2 020 ± 0.0							± 0.36 ± 0.014)).61 ± 0.3 024 ± 0.0).64 ± 0.3 025 ± 0.0				.64 ± 0.3)25 ± 0.0	
	W	/VDC	10	16	25	50	100	200	500	16	25	50	100	200	500	50	100	200	25	50	100	200	500	50	100	200
Сар		101																					L	7	~~~~	v —
(pF)		151																					1	<		15
	220	221				K	K	К	М															5) <u>tr</u> _
	330	331				K	K	K	М			N	N	N	N									$\overline{}$		
	470	471				К	К	к	М			N	N	N	N								Ļ	t	1	_
	680	681				К	К	к	М			N	N	N	N										L	L
		102	К	K	К	к	к	К	М	N	N	N	N	N	N	Х	X	X		Х	X	X	Х	х	X	X
	1500	152	К	К	К	К	К	К	М	N	N	N	N	N	N	Х	X	Х		х	X	X	Х	Х	X	X
	2200	222	K	К	К	К	К	К	М	N	N	N	N	N	N	Х	X	X		Х	X	X	Х	Х	X	X
	3300	332	K	К	K	К	К	К	Р	N	N	N	N	N	N	Х	X	Х		Х	Х	X	Х	Х	Х	Х
	4700	472	К	К	К	К	К	К	Р	N	N	N	N	N	Р	Х	X	Х		Х	X	X	Х	Х	Х	X
	6800	682	К	К	К	К	К	К	Р	N	N	N	N	N	Р	Х	X	Х		Х	X	X	Х	Х	Х	X
Сар		103	К	К	К	К	К	К	Р	N	N	N	N	N	Р	Х	X	Х		Х	X	X	Х	Х	Х	Х
(µF)		153	К	К	К	К	К	К	Р	N	N	N	N	N	Р	Х	X	Х		Х	X	X	Х	х	Х	Х
		223	К	К	К	К	К	Р	Q	N	N	N	N	N	Р	Х	X	Х		Х	X	X	Х	Х	Х	Х
	0.033	333	К	К	К	К	K	Р	Х	N	N	N	N	N	Х	Х	X	Х		Х	X	X	Х	Х	Х	Х
		473	К	К	К	К	К	Р	Х	N	N	N	N	Р	Х	Х	X	Х		Х	X	X	Х	Х	Х	X
	0.068	683	К	К	К	К	К	Р	Х	N	N	N	N	Р	Х	Х	X	Х		Х	X	X	Х	Х	Х	X
	0.1	104	К	К	К	К	К	Р	Х	N	N	N	P	Р	Х	Х	X	Х		Х	X	X	Х	Х	Х	X
		154	К	К	К	М	Р	Z	Z	N	N	N	Р	Р	Z	Х	X	Х		Х	X	Х	Х	Х	Х	X
	0.22	224	К	К	К	М	Р	Z		N	N	N	Р	Q	Z	Х	X	X		Х	X	X	Х	Х	Х	X
	0.33	334	К	К	К	М	Q	Z		N	N	N	Р	Х	Z	Х	X	Х		Х	X	X	Х	Х	Х	X
	0.47	474	М	М	М	Р	Q	Z		N	N	N	Q	Х	Z	Х	X	X		Х	X	X	Х	Х	Х	X
	0.68	684	М	М	Р	Х	X	Z		Q	Q	Q	Q	Z		Х	X	Х		Х	X	X	Z	Х	X	X
	1.0	105	Р	Р	Р	Х	Z			Q	Q	Q	X	Z		Х	X	Х		Х	X	X	7	Х	Х	X
	1.5	155	Ν	N	Z	Z	Z				Z	Z	Z			Х	X	Z		Х	X	Z		Х	Х	Z
	2.2	225	Х	Х	Z	Z	Z				Z	Z	Z			Х	X	Z		Х	Х	Z		х	Х	Z
	3.3	335	Х	Х	Z	Z	Z				Z	Z	Z			Х	X			Х	Z			Х	Х	
	4.7	475	Z	Z	Z	Z	Z				Z	Z	Z			Х	X			Z	Z			Х	X	
	10	106	Z	Z	Z	Z				Z	Z	Z				Z	Z			Z	Z			Z	Z	
	22	226	Z	Z	Z														Z							
	47	476	Z																							
	100	107																								
	WVDC		10	16	25	50	100	200	500	16	25	50	100	200	500	50	100	200	25	50	100	200	500	50	100	200
	SIZE					1210						18	812				1825				2220				2225	

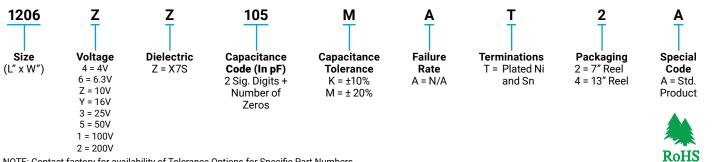
Letter	А	В	С	E	G	J	K	М	N	Р	Q	Х	Y	Z	7
Max.	0.33	0.22	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79	3.30
Thickness	(0.013)	(0.009)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)	(0.130)
			PAR	PER						F	MBOSSE)			


NOTE: Contact factory for non-specified capacitance values

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

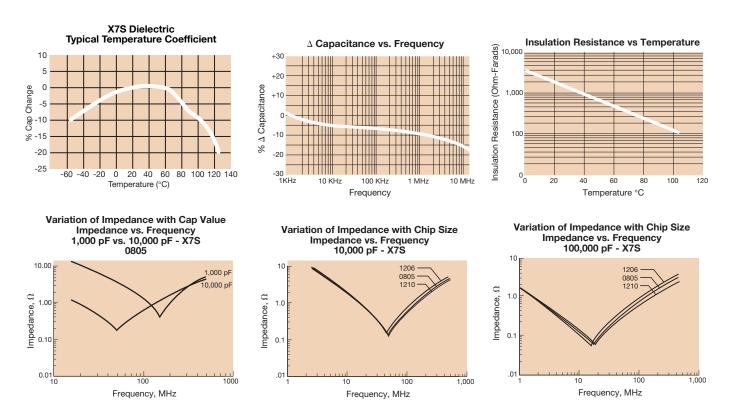
X7S Dielectric General Specifications

COMPLIANT



GENERAL DESCRIPTION

X7S formulations are called "temperature stable" ceramics and fall into EIA Class II materials. Its temperature variation of capacitances within ±22% from -55°C to +125°C. This capacitance change is non-linear.


Capacitance for X7S varies under the influence of electrical operating conditions such as voltage and frequency. X7S dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable.

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

TYPICAL ELECTRICAL CHARACTERISTICS

KIDCERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X7S Dielectric Specifications and Test Methods

Parame	ter/Test	X7S Specification Limits	Measuring (Conditions
Operating Tem	perature Range	-55°C to +125°C	Temperature C	ycle Chamber
	itance on Factor	Within specified tolerance $\leq 5.0\%$ for $\geq 100V$ DC rating $\leq 5.0\%$ for $\geq 25V$ DC rating $\leq 10.0\%$ for $\geq 10V$ DC rating $\leq 10.0\%$ for $\leq 10V$ DC ratingContact Factory for DF by PN	- Freq.: 1.0 k Voltage: 1.0' For Cap > 10 μF, 0.	Vrms ± .2V
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roo	
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50	and discharge current
	Appearance	No defects	Deflectio	
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	0 seconds 1mm/sec
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 m	
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.5	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
	Appearance	No visual defects	-	
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 r test chamber set	
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 ho	
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with ratec	
Humidity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 hours bef	ore measuring.

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X7S Dielectric Capacitance Range

PREFERRED SIZES ARE SHADED

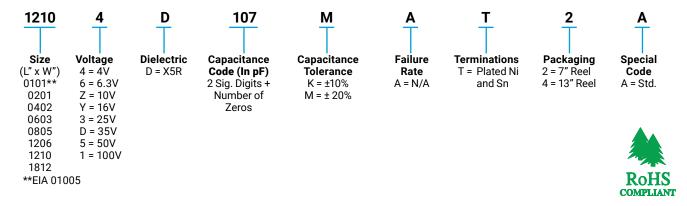
			-	—		[
SIZ	E	0	402	0603	0805		1206		1210
Solde	ring	Reflo	w/Wave	Reflow/Wave	Reflow/Wave		flow/W		Reflow Only
Packa	ging		Paper	All Paper	Paper/Embossed		r/Embo		Paper/Embossed
(L) Length	mm		± 0.10	1.60 ± 0.15	2.01 ± 0.20		20 ± 0.		3.20 ± 0.20
(L) Length	(in.)		± 0.004)	(0.063 ± 0.006)	(0.079 ± 0.008)	(0.1	26 ± 0.	008)	(0.126 ± 0.008)
W) Width	mm		± 0.10	0.81 ± 0.15	1.25 ± 0.20		60 ± 0.		2.50 ± 0.20
· ·	(in.)		± 0.004)	(0.032 ± 0.006)	(0.049 ± 0.008)		63 ± 0.		(0.098 ± 0.008)
(t)	mm		± 0.15	0.35 ± 0.15	0.50 ± 0.25		50 ± 0.		0.50 ± 0.25
Terminal	(in.)		± 0.006)	(0.014 ± 0.006)	(0.020 ± 0.010)		20 ± 0.		(0.020 ± 0.010)
	WVDC	4	6.3	6.3	4	10	50	100	6.3
Сар	100								
(pF)	150								
	220					ļ	-		
	330						-1-	~	
	470 680					~	\langle		
	1000							7)	$\mathcal{V} =$
	1500								
	2200								
	3300					ł		t	
	4700						1	· '	1
	4700 6800								
Сар	0.010								
	0.010								
(µF)	0.015								
	0.022		С						
	0.033		c						
	0.047								
			C C						
	0.10		C						
	0.15								
	0.22			G					
	0.33			G					
	0.47			G					
	1.0	E		G					
1	1.5	L		0	N				
	2.2	Е			N			Q	
	3.3	L .			N			<u> </u>	
	4.7				N	Q			
	10					4			
	22								Z
1	47								-
1	100								
	WVDC	4	6.3	6.3	4	10	50	100	6.3
	SIZE	-	402	0603	0805		1206		1210
		0	102	0005	0000		1200		1210

Letter	A	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.90	2.29	2.54	2.79
Thicknes	s (0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.075)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

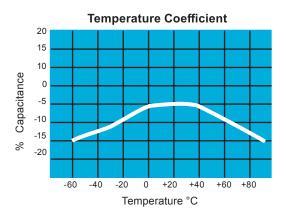
*Contact Factory for Specifications

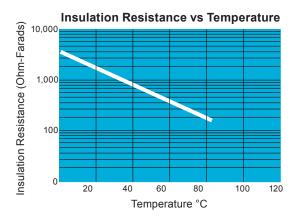
KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X5R Dielectric General Specifications



GENERAL DESCRIPTION


- · General Purpose Dielectric for Ceramic Capacitors
- EIA Class II Dielectric
- Temperature variation of capacitance is within $\pm 15\%$ from -55°C to +85°C
- Well suited for decoupling and filtering applications
- Available in High Capacitance values (up to 100μF)


PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

TYPICAL ELECTRICAL CHARACTERISTICS

KUCERA The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X5R Dielectric Specifications and Test Methods

Parame	ter/Test	X5R Specification Limits	Measuring C	
	perature Range	-55°C to +85°C	Temperature Cy	cle Chamber
Capac	itance	Within specified tolerance	_	
Dissipati	on Factor	≤ 2.5% for ≥ 50V DC rating ≤ 12.5% for 25V, 35V DC rating ≤ 12.5% Max. for 16V DC rating and lower Contact Factory for DF by PN	Freq.: 1.0 kl Voltage: 1.0\ For Cap > 10 μF, 0.	/rms ± .2V
Insulation	Resistance	10,000MΩ or 500MΩ - μF, whichever is less	Charge device with rate secs @ room te	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250% seconds, w/charge and di to 50 mA	scharge current limite
	Appearance	No defects	Deflection	n: 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 m	nm
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic solo ± 0.5 sec	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%	-	
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic 60seconds. Store at roor	n temperature for 24 ±
conter ricut	Insulation Resistance	Meets Initial Values (As Above)	2hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and hours at room	
	Appearance	No visual defects	Charge device with 1.5	K rated voltage in test
	Capacitance Variation	≤ ±12.5%	chamber set at 85°C ± (+48,	2°C for 1000 hours
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	Note: Contact factory for part numbers that are t	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	volta	
	Dielectric Strength	Meets Initial Values (As Above)	Remove from test chambo temperature for	
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber se 5% relative humidity for 10	
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	rated voltag	e applied.
Transity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature and 24 ± 2 hours before	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)		ne measuring.

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

PREFERRED SIZES ARE SHADED

Case Size		01	01*			0201					04	02						0603					0805						
Soldering			w Only			flow 0	nlv			F		/Wave	e				Ref	ow/W							ow/W	feve			
Packaging			nbossed			II Pape					All P							II Pap					·			ossed			
(L) Length	mm (in.)		± 0.02 0.0008)			50 ± 0. 24 ± 0.						± 0.20 ± 0.00						50 ± 0 53 ± 0)1 ± 0. 79 ± 0.				
W) Width	mm	0.20 :	± 0.02		0.3	30 ± 0.	09				0.50 :	± 0.20	,				0.0	80 ± 0	.20					1.2	25 ± 0.	.20			
,	(in.)	(0.008 ±				11 ± 0.						± 0.00						31 ± 0				(0.049 ± 0.008) 0.50 ± 0.25							
(t) Terminal	mm	0.10				$15 \pm 0.$						± 0.15						35 ± 0				0.50 ± 0.25 (0.020 ± 0.010)							
Valtara	(in.)	(0.004 ±	· · · · · ·	4		$\frac{10}{10}$		05	4	· · ·	10	± 0.00	6) 25	50	4	60		14 ± 0		25	50							50	
Voltage:	101	6.3	10 B	4	6.3	10	16	25	4	6.3	10	10	25	ວບ	4	6.3	10	16	25	35	50	4	0.3	10	10	25	30	50	
Cap (pF) 100			B					A																					
150	151		B					A						0															
220	221 331		B					A						C C															
	471		B					A						-															
470			_					A						C															
680 1000	681 102		B					A						C															
1500	102						A	A						C															
		B	В				A	A						C															
2200	222	B	B			A	A	A						C															
3300	332	B	В			A	A	A						С															
4700	472	B	B			A	A	A					C								G								
6800	682 103	B	B			A	A	A					C						0		G								
Cap (µF) 0.01	103	B	В			A	A	A					C C						G	G	G								
0.015		B										0	C						G	G	G							- NI	
0.022	223	B			A	A	A	A				C	C						G	G	G							N	
0.033	333	B										C							G	G	G							N	
0.047	473 689	B			A	A	A	A				C	С						G	G	G							N	
0.068		B									С	C C	С	С					G		G							N	
0.1	104 154	В			A	A	A	A			C	C	C	C					G G	G	G					N N	N	N	
	224	_									0	-	-	0				0	-								N		
0.22	334	В		A	A	A				С	С	С	С	С				G	G							N	N	N	
0.33	474	В			A				С	С	С	С	С	E				G G	G							N N	Р	Р	
0.47	684	В		A	A				U.		U		U U	E				G	J							N	Р	Р	
1.0	105			•	A	С	С		С	С	С	С	С		G	G	G	G	J	G	G				N	N	Р	Р	
1.5	105			A	A	U			U		U	U	U		6	6	6	6	J	G	6				IN	IN	P	P	
2.2	225			С	С	С			С	С	С	С	С		G	G		J	J	К	К			N	N	Р	Р	Р	
3.3	335			U		U			U		U	U	U		6	J	J J	J	J	N	N		N	N	IN	P	P	P	
4.7	475			С	С				E	E	E	E			J	J	J	G	к			N	P	J	N	N	Р	Р	
4.7	106								E	E	E	E			K	J	K	K	K			P	P	P	P	P	F		
22	226				-				E	G	L				K	K	K	K	K			P	P	P	P	P		\vdash	
47	476								L	0					K	K	I N					P	Р	P	-			\vdash	
100	107				-										K	K	-	-				-						\vdash	
Voltage:	107	6.3	10	4	6.3	10	16	25	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	
Case Size			01*	-	0.0	0201	10	20	0402					0603				0805											
0030 0120		51								0000																			

Letter	Α	В	С	E	G	J	К	М	N	Р	Q	X	Y	Z		
Max. Thickness	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)		
			PAI	PER			EMBOSSED									

PAPER and EMBOSSED available for 01005

NOTE: Contact factory for non-specified capacitance values $\ensuremath{^{+}\text{FIA}}\xspace$ 01005

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

PREFERRED SIZES ARE SHADED

Cas	e Size					1206		-			-	-	1210						-	1812	-						
	dering					low/W				Reflow Only								Reflow Only									
	caging				Paper			1					/Emb		1					Embos							
		mm				$\frac{20 \pm 0}{20 \pm 0}$							$\frac{20 \pm 0}{20 \pm 0}$							$50 \pm 0.$							
(L) Leng	gth	(in.)				26 ± 0.				(0.126 ± 0.016)								(0.177 ± 0.012)									
14/1 14/2 A		mm			<u>``</u>	50 ± 0.				2.50 ± 0.30								3.20 ± 0.20									
W) Wid	th	(in.)				53 ± 0				(0.098 ± 0.012)							(0.126 ± 0.008)										
(t) Termi	inal	mm			0.5	50 ± 0	.25			0.50 ± 0.25									0.	61 ± 0.	36						
		(in.)			(0.02	20 ± 0	.010)					(0.02	<u>20 ± 0.</u>	010)					(0.0	<u>24 ± 0.</u>	.014)						
	tage:		4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50				
Cap (pF)	100	101																									
	150	151																									
	220	221																									
	330	331																									
	470	471																									
	680	681																									
	1000	102																									
	1500	152																									
	2200	222																									
	3300	332					1																				
	4700	472																									
	6800	682																									
Cap (µF)	0.01	103																					<u> </u>				
	0.015	150																									
	0.022	223																									
	0.033	333																									
	0.047	473																									
	0.068	689																									
	0.1	104																									
	0.15	154																									
	0.22	224																					<u> </u>				
	0.33	334																									
	0.47	474					0	0					<u> </u>		Х	Х							<u> </u>				
	0.68	684					4	~															<u> </u>				
L	1.0	105					Q	Q	Q					Х	X	X											
<u> </u>	1.5	155					~	~	~					~									<u> </u>				
	2.2	225			Q	0	0	Q	0					Х	Z	Z											
	3.3	335		Q	Q	<u> </u>	4	v	4					~		-							<u> </u>				
	4.7	475	Х	X	X	X	X	X	Х			Z	Z	Z	Z	Z				<u> </u>							
	<u>4.7</u> 10	106	X	X	X	X	X	X	X		Х	X	Z	Z	Z	Z					Z						
	22	226	<u>х</u>	X	X	X	X	^	^	Z	Z	Z	Z	Z	2	2	Z	Z	Z	Z	2		<u> </u>				
	47	476	<u>х</u>	X	X	X	^			Z	Z	Z	Z	Z			2	2	2	2							
	100	107	X	X		^				Z	Z	2	Z	L													
Vol	tage:	107	4	^ 6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50				
	e Size		-	0.5	10	1206		55		-	0.5	10	1210	20	55			0.5	10	1812	23	55					
Cas						1200							1210							1012							

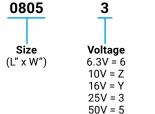
Letter	Α	В	С	E	G	J	K	М	Ν	Р	Q	X	Y	Z		
Max.	0.33	0.22	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79		
Thickness	(0.013)	(0.009)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)		
			PA	PER			EMBOSSED									


PAPER and EMBOSSED available for 01005

NOTE: Contact factory for non-specified capacitance values *EIA 01005

KUDEERA KW/// The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Y5V Dielectric General Specifications


GENERAL DESCRIPTION

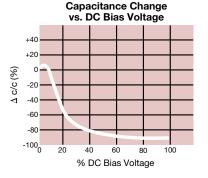
Y5V formulations are for general-purpose use in a limited temperature range. They have a wide temperature characteristic of +22% -82% capacitance change over the operating temperature range of -30°C to +85°C. These characteristics make Y5V ideal for decoupling applications within limited temperature range.

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

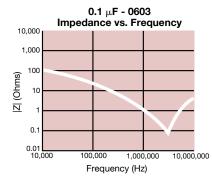
G

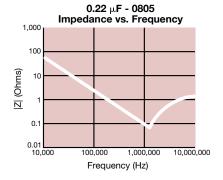
Capacitance Tolerance Z = +80 -20%

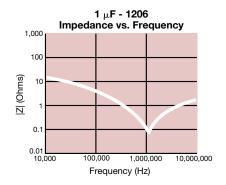
Ζ


Α

т




Temperature Coefficient +20 +10 0 % Δ Capacitance -10 -20 -30 -40 -50 -60 -70 -80 -35 +5 +25 +45 +65 +85 +105 +125 -55 -15 Temperature °C



Insulation Resistance (Ohm-Farads) 10,000 1,00 100 0 +50 +20 +30 +40 +60 +70 +80 +90 Temperature °C

Insulation Resistance vs. Temperature

KUDEERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Y5V Dielectric Specifications and Test Methods

Parame	ter/Test	Y5V Specification Limits	Measuring Conditions						
Operating Tem	perature Range	-30°C to +85°C	Temperature C	ycle Chamber					
Сарас	itance	Within specified tolerance	-						
Dissipati	on Factor	≤ 5.0% for ≥ 50V DC rating ≤ 7.0% for 25V DC rating ≤ 9.0% for 16V DC rating ≤ 12.5% for ≤ 10V DC rating	Freq.: 1.0 kHz ± 10% Voltage: 1.0Vrms ± .2V For Cap > 10 μF, 0.5Vrms @ 120Hz						
Insulation	Resistance	10,000MΩ or 500MΩ - μF, whichever is less	Charge device with rated @ room tem						
Dielectric	c Strength	No breakdown or visual defects	Charge device with 250% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max)						
	Appearance	No defects	– Deflection: 2mm						
Resistance to	Capacitance Variation	≤ ±30%	Test Time: 3	30 seconds 1mm/sec					
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)							
	Insulation Resistance	≥ Initial Value x 0.1	90	mm					
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutection for 5.0 ± 0.						
	Appearance	No defects, <25% leaching of either end terminal							
	Capacitance Variation	≤ ±20%							
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2					
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.					
	Dielectric Strength	Meets Initial Values (As Above)		1					
	Appearance	No visual defects	Step 1: -30°C ± 2°	30 ± 3 minutes					
	Capacitance Variation	≤ ±20%	Step 2: Room Temp	≤ 3 minutes					
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes					
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes					
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ±2 hours at ro						
	Appearance	No visual defects	-						
	Capacitance Variation	≤ ±30%	Charge device with twic						
Load Life	Dissipation Factor	≤ Initial Value x 1.5 (See Above)	for 1000 hou						
	Insulation Resistance	≥ Initial Value x 0.1 (See Above)	Remove from test chamb temperature for 24 ± 2 h						
	Dielectric Strength	Meets Initial Values (As Above)							
	Appearance	No visual defects	4						
	Capacitance Variation	≤ ±30%	Store in a test chamber s 5% relative humidi						
Load Humidity	Dissipation Factor	≤ Initial Value x 1.5 (See above)	(+48, -0) with rated	d voltage applied.					
Hamaty	Insulation Resistance	≥ Initial Value x 0.1 (See Above)	Remove from chamber and stabilize at room temperature and humidity for						
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 hours before measuring.						

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Y5V Dielectric Capacitance Range

PREFERRED SIZES ARE SHADED

SIZE		020	01			0402				06	603			08	05			12	06		1210			
Solderi	ng	Reflow	/ Only		Ref	low/W	/ave		I	Reflow	/Wav	e	F	Reflow	/Wav	е		Reflow	Mfeve	è	Reflow/Wave			e
Packag	ing	All Pa	aper		A	II Pap	er			All P	Paper		Pa	per/E	mbos	sed	Pa	per/Er	nboss	ed	Pa	per/Ei	mbos	sed
(L) Length	mm	0.60 ±	0.09		1.	00 ± 0.	.10			1.60 :	± 0.15			2.01	± 0.20			3.20 ±	£ 0.20		3.20 ± 0.20			1
(L) Length	(in.)	(0.024 ±	0.004)		(0.0	40 ± 0.	.004))	(0	0.063 :	± 0.00	6)	(0	0.079	± 0.00	8)	(().126 ±	£ 0.00	B)	(0.126 ± 0.008)			8)
W) Width	mm	0.30 ±	0.09		0.	50 ± 0.	.10			.81 ±	: 0.15			1.25 ± 0.20			1.60 ± 0.20				2.50 ± 0.20			
w) width	(in.)	(0.011 ±	0.004)		(0.0	20 ± 0.	.004))	(0	0.032 :	± 0.00	6)	(0	(0.049 ± 0.008)			(0.063 ± 0.008)				(0.098 ± 0.008)			8)
(t) Terminal	mm	0.15 ±	0.05		0.:	.25 ± 0.15				0.35	± 0.15			0.50	± 0.25			0.50 ±	£ 0.25			.50 ±	0.25	
	(in.)	(0.006 ±	0.002)		(0.010 ± 0.006))	(0.014 ±		± 0.00	6)	(0	0.020	± 0.01	0)	((0.020 ±	£ 0.01	D)	(0.020 ± 0.010		0)		
	WVDC	6.3	10	6	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50
Сар	820																				X) ,	W	
(pF)	1000		Α																-	Ľ	<		5	4
	2200		Α																	(5	7		T_
	4700		Α																			1		
Сар	0.010	Α	Α																		*	Ŧ		
(µF)	0.022	А																		I – I	L		I	i.
	0.047	Α				С																		
	0.10				С	C					G	G				K								
	0.22									G														
	0.33									G														
	0.47					С				G	G													
	1.0			С	С				G	G	J			Ν	N	Ν		М	М	М				Ν
	2.2				С				J					N	N				K	Q				
	4.7												Ν	N	N			Р	Q			N	N	
	10.0												Ν	Р			Q	Q	Х		Х	Q	Q	Z
	22.0																Q				Х	Z		
	47.0																							
	WVDC	6.3	10	6	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50
SIZE	SIZE 0201 0402						06	603			08	05			12	06			12	10				
Letter	A	С	E				К		М	N		P Q		X		Y	Z							
Max.	0.33	0.56	0.71	0.90 0.94			1.02	1	.27	1.4	0	1.52	1.52 1.78		2.2			2.79						
Thickness	(0.013)	(0.022)	(0.028)) (0.	.035)	(0.03	37)	(0.040)	(0.	050)	(0.05	55)	(0.060) (0.070) (0.09		090) (0.100) (0.11		110)							
			PAPER	2					EMBOSSED															

MLCC Gold Termination – AU Series

General Specifications

KYOCERA AVX will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of Gold. This termination is indicated by the use of a "7" or "G" in the 12th position of the KYOCERA AVX Catalog Part Number. This fulfills KYOCERA AVX's commitment to providing a full range of products to our customers. Please contact the factory if you require additional information on our MLCC Gold Termination.

PART NUMBER

AU03	Y 	G	104	ĸ	A	7	2	<u>A</u>
Size AU02 - 0402 AU03 - 0603 AU05 - 0805 AU06 - 1206 AU10 - 1210 AU12 - 1812 AU13 - 1825 AU14 - 2225 AU14 - 0306 AU17 - 0508 AU18 - 0612	Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 35V = D 50V = 5 100V = 1 200V = 2 500V = 7	Dielectric COG (NP0) = A X7R = C X5R = D	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance $B = \pm.10 \text{ pF} (<10 \text{ pF})$ $C = \pm.25 \text{ pF} (<10 \text{ pF})$ $D = \pm.50 \text{ pF} (<10 \text{ pF})$ $F = \pm1\% (\ge 10 \text{ pF})$ $G = \pm2\% (\ge 10 \text{ pF})$ $J = \pm5\%$ $K = \pm10\%$ $M = \pm20\%$	Failure Rate A = Not Applicable	Terminations G*=1.9 μ ^u to 7.87 μ" 7 = 100 μ" minimum	Packaging 2 = 7" Reel 4 = 13" Reel U = 4mm TR (01005) Contact Factory For Multiples*	Special Code A = Std. Product

* Contact factory for availability.

KYDEERA AWXXX The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Capacitance Range (NP0 Dielectric)

PREFERRED SIZES ARE SHADED

SIZE			AU02				J03				AU05						J06		
Solderii	ng		flow/Epo Vire Bond				/Epoxy/ Bond*				flow/Epc Vire Bond						/Epoxy/ Bond*		
Packagi	ina		All Paper				Paper				er/Embo					Paper/E		d	
(L) Length	mm	1	1.00 ± 0.1	0		1.60 :	± 0.15			2	2.01 ± 0.2	0					± 0.20		
., -	(in.) mm		040 ± 0.0				<u>± 0.006)</u> ± 0.15	-			079 ± 0.0						± 0.008) ± 0.20		
W) Width	(in.)		020 ± 0.0				± 0.15 ± 0.006)				.23 ± 0.2 049 ± 0.0						± 0.20 ± 0.008)		
(t) Terminal	mm).25 ± 0.1				± 0.15				0.50 ± 0.2						± 0.25		
	(in.) WVDC	(0. 	010 ± 0.0 25	50	16	25	<u>± 0.006)</u> 50	100	16	25	020 ± 0.0	10)	200	16	25	0.020	<u>± 0.010)</u> 100	200	500
Сар	0.5	C	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
(pF)	1.0	С	C	C C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	1.2 1.5	C C	C C	C	G G	G	GG	G G	J	J	J	J J	J	J	J	J	J	J J	J
	1.8	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	2.2 2.7	C C	C C	C C	GG	G G	GG	G G	J	J	J	J J	J	J J	J	J	J	J J	J
	3.3	<u>с</u>	C C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	3.9	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	4.7 5.6	<u>с</u> с	C C	C C	G	G	G G	G G	J	J	J	J J	J	J J	J	J	J	J J	J
	6.8	c	C C	c	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	8.2	С	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	10 12	C C	C C	C C	G G	G G	G G	G G	J	J	J	J J	J	J	J	J	J	J J	J
	15	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	18	C C	C C	C C	G G	G G	G	G G	J	J	J	J	J	J	J	J	J	J	J
	22 27	C		C	G	G	GG	G	J	J	J	J J	J	J	J	J	J	J J	J
	33	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	39 47	C C	C C	C C	G G	G G	GG	G G	J	J	J	J J	J J	J J	J	J	J	J J	J
	56	<u>с</u>	C C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	68	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	82 100	C C	C C	C C	G	G	G G	G G	J	J	J	J J	J	J J	J	J	J	J	J
	120	c	c	c	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	150	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	180 220	C C	C C	C C	G G	G G	GG	GG	J	J	J	J J	J	J	J	J	J	J J	J
	270	С	С	С	G	G	G	G	J	J	J	J	М	J	J	J	J	J	м
	330 390	C C	C C	C C	G G	G G	GG	G	J	J J	J	J J	M M	J J	J	J	J	J J	M
	470	c	C C	c	G	G	G		J	J	J	J	M	J	J	J	J	J	M
	560				G	G	G		J	J	J	J	М	J	J	J	J	J	M
	680 820				G	G	GG		J	J	J	J J	M M	J J	J	J	J	J M	Р
	1000				G	G	G		J	J	J	J	M	J	J	J	J	Q	
	1200 1500								J	J	J			J J	J J	J	J	Q Q	
	1800								J	J	J			J	J	M	M	Q	
	2200								J	J	N			J	J	м	Р		
	2700 3300								J	J	N			J J	J	M M	P P		
	3900								J	J				J	J	м	Р		
	4700								J	J				J	J	M	Р		
	5600 6800													J M	J M	М			
	8200		<u> </u>											М	М				
	0.010 0.012		I	_	I		I	I						М	М				
	0.012				\geq	\leq	-W												
	0.018	0	*	\sim			$)^{<}$	1-											
	0.022 0.027		(/	7		\mathcal{V}_{-}	ĮΤ											
	0.033		C		IL														
	0.039 0.047																		
	0.047				t			-											
	0.082		1	1	ľ	I	1	1											
	0.1 WVDC	16	25	50	16	25	50	100	16	25	50	100	200	16	25	50	100	200	500
	SIZE	.0	AU02				103				AU05		200				J06	200	000
Contact Fact																			

* Contact Factory

Letter	А	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
-			PAPER						EMBO	OSSED			

KUDEERA The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

PREFERRED SIZES ARE SHADED

SIZE		AU10					AU12				AU13			AU14	
Soldering		Reflow/Epo Wire Bond				Ref	low/Epo				Reflow/Epoxy	/	I	Reflow/Epoxy/	1
Packaging		Paper/Embo	-				ire Bond Emboss				Wire Bond* All Embosse	4		Wire Bond* All Embossed	
mm		3.20 ± 0.2					50 ± 0.3				4.50 ± 0.30	-		5.72 ± 0.25	
(L) Length (in.)		(0.126 ± 0.0				<u> </u>	77 ± 0.0				(0.177 ± 0.012	2)	(0.225 ± 0.010)
W) Width		2.50 ± 0.2					20 ± 0.2				6.40 ± 0.40			6.35 ± 0.25	、 、
(in.)		(0.098 ± 0.0 0.50 ± 0.2					26 ± 0.0 61 ± 0.3				(0.252 ± 0.010 0.61 ± 0.36)	(0.250 ± 0.010 0.64 ± 0.39)
(in.)	05	(0.020 ± 0.0)10)	500	0.5	(0.0	24 ± 0.0	14)	500	50	(0.024 ± 0.014			0.025 ± 0.015	
WVDC Cap 0.5	25 5	50 100	200	500	25	50	100	200	500	50	100	200	50	100	200
(pF) 1.0 1.2															
1.5															
1.8															-W-
2.7												· · · · · · · · · · · · · · · · · · ·	<)) <u></u>]T
3.9													\subseteq		
4.7														la a	
6.8														ΓtΙ	
8.2			$\left \right $	J					+						
12 15				J J											
18				J											
22 27				J J											
33 39				J J											
47				J											
56				J J											
82				J J											
120				J											
150				J J											
220 270				J J											
330				J											
390 470				M M											
560 680		1 1 1 1	J J	M M											
820	J	JJ	J	М											
1000 1200		1 1 1 1	J	M M	K K	K K	к к	K K	M M	M M	M	M M	M M	M M	P P
<u> </u>		1 1 1 1	M	М	K K	K K	K K	к к	M	M	M	M	M	M	<u>Р</u> Р
2200	J	JJ	Q		К	К	к	К	Р	М	М	м	М	М	Р
2700	-	<u>1 1</u> 1 1	Q		K K	K K	K K	P P	Q Q	M	M	M	M	M	P P
3900 4700		J M J M			K K	к к	K K	P P	Q Q	M	M	M	M	M M	P P
5600	J	J			K	K	М	Р	X	M	M	M	M	М	Р
6800 8200		1 J			K K	К М	M M	Х		M M	M	М	M M	M M	P P
0.010 0.012		1 J			K K	M M	М			M M	M		M M	M M	P P
0.015		-			М	М				М	М		М	М	Y
0.018					M M	M M				P P	M		M M	M Y	Y Y
0.027			$\left \right $		M	M			$\left - \right $	P P			P P	Y	Y
0.039					М	М				Р			Р		
0.047			$\left \right $		M	M			$\left - \right $	Р			P P		
0.082					м	M							Q		
0.1 WVDC	25 5	50 100	200	500	25	50	100	200	500	50	100	200	Q 50	100	200
SIZE		AU10					AU12				AU13			AU14	
* Contact Factory		A	C		E	G		1	К	M	N	P (x x	Y	Z
Max.		0.33	0.56	0.	.71	0.90	0.9	94	1.02	1.27	1.40	1.52 1.	78 2.29	2.54	2.79
Thickness		(0.013)	(0.022		028)	(0.035)	(0.0	37)	(0.040)	(0.050)	(0.055) (0.060) (0.0 EMBOSSED		0) (0.100)	(0.110)

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Capacitance Range (X7R Dielectric)

PREFERRED SIZES ARE SHADED

SIZE				J02					AU03	-						AU0								J06			
Solderin	q	R		/Ероху	/				ow/E		'						роху	/					eflow				
	•			Bond* Paper					ire Bo All Par							ire Bo	ond* boss	1					Wire per/E				
Packagir	<u> </u>			'aper ± 0.10					411 Pap 60 ± 0							r/Em 01 ±		ea				Ра	2.20 per/E				
(L) Length	mm (in.)	((± 0.10 ± 0.004	1)				60 ± 0 63 ± 0		`						0.20 0.008	2)				(0	3.20).126				
	mm	((± 0.00- ± 0.10	+)				$\frac{03 \pm 0}{81 \pm 0}$,					25 ±)				(0	1.60				
W) Width	(in.)	((± 0.004	1)				32 ± 0)						0.008	3)				(0	0.063				
	mm	(± 0.15	<u>')</u>				35 ± 0		/					50 ±		,					0.50				
(t) Terminal	(in.)	(0		± 0.006	5)				14 ± 0)						0.010))					0.020				
WVDC		10	16	25	50	63	10	16	25	50	100	200	63	10	16	25	50	100	200	63	10	16	25	50	100	200	500
Can	100																										
Cap (pF)	150																										
(р)	220				С				G																		
	330				С					G	G	G		J	J	J	J	J	J								K
	470				С					G	G	G		J	J	J	J	J	J								K
	680			L	С	L			L	G	G	G		J	J	J	J	J	J				ļ				К
	1000				С					G	G	G		J	J	J	J	J	J								K
	1500				С					G	G			J	J	J	J	J	J		J	J	J	J	J	J	M
	2200				C	<u> </u>				G	G			J	J	J	J	J	J		J	J	J	J	J	J	M
	3300			C	C					G	G			J	J	J	J	J	J		J	J	J	J	J	J	M
	4700		0	C C	С					G G	G			J	J	J	J	J	J		J	J	J	J	J	J	M
	6800 0.010		C C					G		G	G			J	J	J	J	J	J		J	J	J	J	J	J J	P
Сар	0.010		C					G	G	G	G			J J	J	J	J	J	J		J	J	JJ	JJ	J	M	Р
(µF)	0.015	С	C C						G	G				J	J	J	J	J	N		J	J	J	J	J	M	
	0.022	C	U U						G	G				J	J	J	J	N			J	J	J	J	J	M	
	0.033	U						G	G	G				J	J	J	J	N			J	J	J	J	J	M	
	0.047							G	G	G				J	J	J	J	N			J	J	J	J	J	P	
	0.000						G	G	G	G				J	J	J	J				J	J	J	J	M	P	
	0.15					G	G							J	Ĵ	Ĵ	N	N			J	Ĵ	J	Ĵ	Q		
	0.22					G	G							J	J	N	N	N			J	Ĵ	J	Ĵ	Q		
	0.33								1					N	N	N	N	N			J	J	M	P	Q		
	0.47													N	N	N	N	N			M	M	М	P	Q		
	0.68													Ν	N	N			1		м	М	Q	Q	Q		
	1.0													Ν	Ν	N					М	М		Q	Q		
	1.5																				Р	Q	Q				
	2.2															P*					Q	Q	Q				
	3.3																										
	4.7													P*							Q	Q					
	10																				Q*						
	22																			Q*							
	47																										
	100			0-			45		0-		1.55	000				6-		1.5.5	0000				6-		1.5.7	0.53	
	WVDC	10	16	25	50	63	10	16	25	50	100	200	63	10	16	25	50	100	200	63	10	16	25	50	100	200	500
	SIZE			AU02					AU03	5						AU0	5						AL	J06			_

* Contact Factory

Letter	А	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	DSSED			

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

MLCC Gold Termination – AU Series

Capacitance Range (X7R Dielectric)

PREFERRED SIZES ARE SHADED

SIZE					AU10						112			113		14
Soldering					flow/Epo						/Epoxy/			/Epoxy/		/Epoxy/
Packagin	-				Vire Bond er/Embos						Bond* bossed			Bond* bossed		Bond* bossed
Раскадія	g mm				$\frac{er}{Embos}$ 3.20 ± 0.2						± 0.30			t 0.30		± 0.25
(L) Length	(in.)				126 ± 0.2						± 0.30 ± 0.012)			± 0.30 ± 0.012)		± 0.23
	mm				2.50 ± 0.2						± 0.20		<u>``</u>	± 0.40		± 0.25
W) Width	(in.)			(0.	098 ± 0.0	08)				(0.126	± 0.008)		(0.252	± 0.016)	(0.250	± 0.010)
(t) Terminal	mm				0.50 ± 0.2						± 0.36			± 0.36		± 0.39
· · ·	(in.)				020 ± 0.0						± 0.014)			± 0.014)		± 0.015)
WVDC		10	16	25	50	100	200	500	50	100	200	500	50	100	50	100
Сар	100															
(pF)	150															
	220											l				·
	330 470											1	~	\langle	_W	/
	470 680										-		\leq		\sum	
	1000											(-	-			Т —
	1500	J	J	J	J	J	J	м								<u> </u>
	2200	J	J	J	J	J	J	M								
	3300	J	J	J	J	J	J	M						-		
	4700	J	J	J	J	J	J	м					ť	1		
	6800	J	J	J	J	J	J	м								
	0.010	J	J	J	J	J	J	М	K	К	K	К	М	М	M	Р
Cap (µF)	0.015	J	J	J	J	J	J	Р	ĸ	ĸ	к	Р	М	м	М	Р
(µr)	0.022	J	J	J	J	J	J	Q	К	К	К	Р	М	М	М	Р
	0.033	J	J	J	J	J	J	Q	K	К	K	X	М	М	M	Р
	0.047	J	J	J	J	J	J		К	К	К	Z	M	М	M	Р
	0.068	J	J	J	J	J	M		K	K	K	Z	M	M	M	Р
	0.10	J	J	J	J	J	M		K	K	K	Z	M	M	M	Р
	0.15 0.22	J J	J J	J J	J	M P	ZZ		K K	K K	P P		M M	M M	M M	P P
	0.22	J	J	J	J	Q	2		K	M	X X		M	M	M	P P
	0.47	M	M	M	M	Q			K	P			M	M	M	P
	0.68	М	М	Р	х	Х			М	Q			М	Р	М	Р
	1.0	Ν	Ν		Х	Z			М	X			М	Р	М	Р
	1.5	N	N	Z	Z	Z			Z	Z			М		M	Х
	2.2	X	X	Z	Z	Z			Z	Z					М	
	3.3 4.7	X X	X X	Z Z	Z Z				Z Z							
	4.7	z	Z	Z	2				2							
	22	2	2	2									<u> </u>			
	47															
	100															
	WVDC	10	16	25	50	100	200	500	50	100	200	500	50	100	50	100
	SIZE				AU10					AU	12		AU	13	AU	14

* Contact Factory

Letter	A	С	E	G	J	K	М	Ν	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	DSSED			

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

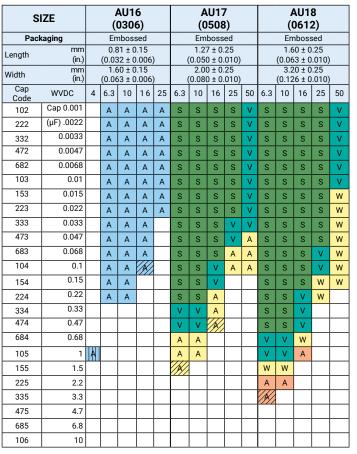
050219

MLCC Gold Termination – AU Series

PREFERRED SIZES ARE SHADED

	SIZE				AU	02						AUO:	3					AL	J05					AU	106					1	AU1	0				A	U12	2
s	Soldering	ļ			flow Vire							ow/E e Bo		y					/Epo Bono					flow Vire l							ow/E e Bo		у		R		w/Ep	ooxy/ nd*
Р	ackagin	a			All F	ape					Al	l Par	ber				Pap	er/Ei	mbo	ssec			Pape	er/Ei	mbo	ssed	1		Pa	nper/	/Emb	ooss	sed			All Er	nbos	ssed
(L) Leng		mm (in.)			1.00 : .040 :	± 0.1	0				1.6	50 ± 0 53 ± 0	.15)			;	2.01 :	± 0.20	0			;	3.20 : .126 :	± 0.20)				3.2	20 ± 0 26 ± 0	.20				4.5	0 ± 0. 7 ± 0.	
(W) Wid	lth	mm			0.50 :	± 0.1) D				0.8	31 ± 0	.15					1.25	± 0.2	0			· · ·	1.60 :	± 0.20)				2.5	50 ± 0	.20				3.2	0 ± 0.	20
、 <i>,</i>		(in.) mm		<u> </u>	.020 : 0.25 :							82 ± 0 85 ± 0)					± 0.0				<u> </u>	.063 : 0.50 :						<u>`</u>	98 ± 0 50 ± 0	_)			0.12	$\frac{5 \pm 0}{1 \pm 0}$,
(t) Term	ninal	(in.)			.010 :							4 ± 0)					± 0.2; ± 0.0					.020 :							20 ± 0)		(0.02		
	WVDC		4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	6.3	10	16	25	35	50	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	6.3	10	25	50
Сар		100																																				
(pF)		150																																				
		220																																				
		330						С																														
		470						С																														
		680						C																														
		1000						C																														
		1500						C C																														
		2200 3300						C																														
		4700					С								G																							
		6800					c								G																							
Сар		0.010					C								G																							
(µF)		0.015					С						G	G	G																							
V. 7		0.022				С	С						G	G	G						Ν																	
		0.033				С							G	G	G						Ν																	
		0.047				С	С						G	G	G						Ν																	
		0.068				С							G		G						Ν																	
		0.10		С		С	С						G		G				Ν		Ν																	
		0.15											G						Ν	Ν																		
		0.22		C*								G	G						Ν	N																		
		0.33										G	G						Ν								Q											
		0.47	C*									G							N						Q	Q												
		0.68				-			-	0	0	G	4			b1		b.	N	-	P*										-	V	V	X				
		1.0 1.5								G	G	G	J*			N N		N	N		P*				Q	Q						Х	Х	X				
		1.5 2.2	C*						G*	G*	J*	J*				N	N	N	N					Q	Q							Z	x					
		3.3	U			-			۳. ۲*	۳. ال	J*	J*	-		-	N	N		IN			Q	Q	Q I	ų						<u> </u>	2	^					
		4.7							J*	J*	J*						N	N*	N*			Q	Q	Q	Q						Q	Z						
		10							K*							P*	P*	P*				Q	Q	Q	Q*					х	z	z					z	
		22														P*						Q*	Q*	Q*					Z	Z	Z	Z						
		47																				Q*							Z*									
		100																										Z*	Z*									
		WVDC	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	6.3	10	16	25	35	50	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	6.3	10	25	50
		SIZE			AL	02					1	AUO:	3					AL	J05					AU	106						AU1	0				A	U12	2

* Contact Factory


Letter	А	С	E	G	J	К	М	Ν	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

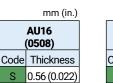
= *Optional Specifications – Contact Factory

NOTE: Contact factory for non-specified capacitance values

KUCERE The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

MLCC Gold Termination – AU Series AU16/AU17/AU18

Solid = X7R



S

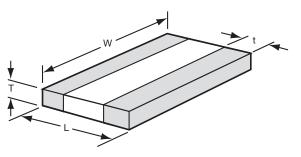
V

А

= X7S

0.56 (0.022)

0.76 (0.030)


1.02 (0.040)

1.27 (0.050)

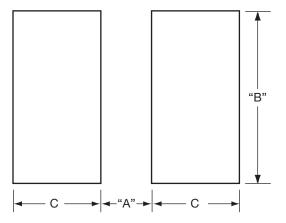
mm (in.) AU16 (0612) Thickness

Code S 0.76 (0.030) V 1.02 (0.040) W А

PHYSICAL DIMENSIONS AND **PAD LAYOUT**

PHYSICAL DIMENSIONS L

MM (IN.) W t 0 1


KY<u>OCERa</u>

AU16	0.81 ± 0.15	1.60 ± 0.15	0.13 min.
(0306)	(0.032 ± 0.006)	(0.063 ± 0.006)	(0.005 min.)
AU17	1.27 ± 0.25	2.00 ± 0.25	0.13 min.
(0508)	(0.050 ± 0.010)	(0.080 ± 0.010)	(0.005 min.)
AU18	1.60 ± 0.25	3.20 ± 0.25	0.13 min.
(0612)	(0.063 ± 0.010)	(0.126 ± 0.010)	(0.005 min.)

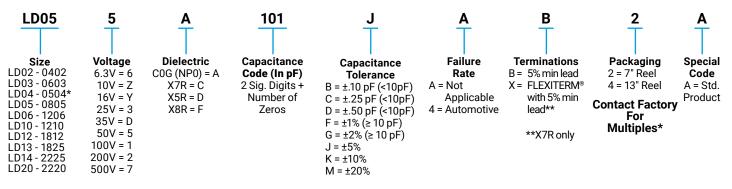
T - See Range Chart for Thickness and Codes

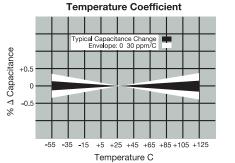
PAD LAYOUT DIMENSIONS **MM (IN.)**

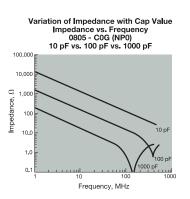
	Α	В	С
AU16 (0306)	0.31 (0.012)	1.52 (0.060)	0.51 (0.020)
AU17 (0508)	0.51 (0.020)	2.03 (0.080)	0.51 (0.020)
AU18 (0612)	0.76 (0.030)	3.05 (0.120)	0.635 (0.025)

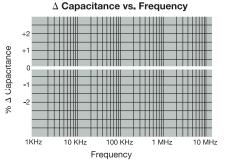
KIDERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

MLCC Tin/Lead Termination "B" (LD Series)

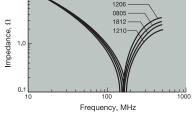

COG (NP0) - General Specifications

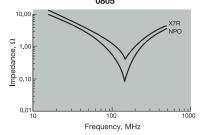

KYOCERA AVX will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the KYOCERA AVX Catalog Part Number. This fulfills KYOCERA AVX's commitment to providing a full range of products to our customers. KYOCERA AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.


PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION) Not RoHS Compliant



*LD04 has the same CV ranges as LD03.


NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.



Insulation Resistance vs Temperature

See FLEXITERM® section for CV options

Variation of Impedance with Ceramic Formulation Impedance vs. Frequency 1000 pF - COG (NPO) vs X7R 0805

KUDEERA AVVXX The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

MLCC Tin/Lead Termination "B" COG (NP0) – Specifications and Test Methods

Paramet	ter/Test	NP0 Specification Limits	Measuring	Conditions
Operating Tem	perature Range	-55°C to +125°C	Temperature C	Cycle Chamber
Сарас	itance	Within specified tolerance	Freq.: 1.0 MHz ± 10	
c	2	<30 pF: Q≥ 400+20 x Cap Value ≥30 pF: Q≥ 1000	1.0 kHz ± 10% fc Voltage: 1.0	Vrms ± .2V
Insulation I	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with 60 ± 5 secs @ roo	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device wit for 500V	and discharge current 0 mA (max) h 150% of rated voltage
	Appearance	No defects	Deflectio	
Resistance to Flexure	Capacitance Variation	$\pm 5\%$ or $\pm .5$ pF, whichever is greater	Test Time: 3	30 seconds 7 1mm/sec
Stresses	Q	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3		mm
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutection for 5.0 ± 0.	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater		
Resistance to Solder Heat	Q	Meets Initial Values (As Above)	Dip device in eutectic seconds. Store at room	temperature for 24 ± 2
oolder Heat	Insulation Resistance	Meets Initial Values (As Above)	hours before measurin	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	\leq ±2.5% or ±.25 pF, whichever is greater	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 hours at roo	
	Appearance	No visual defects	-	
	Capacitance Variation	\leq ±3.0% or ± .3 pF, whichever is greater	Charge device with twi	
Load Life	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	chamber set a for 1000 hou Remove from test chamb	ırs (+48, -0).
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	temperature before me	for 24 hours
	Dielectric Strength	Meets Initial Values (As Above)		-
	Appearance	No visual defects	_	
	Capacitance Variation	$\leq \pm 5.0\%$ or $\pm .5$ pF, whichever is greater	Store in a test chamber s	et at 85% + 2% / % 5%
Load Humidity	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	5% relative humid (+48, -0) with rate	ity for 1000 hours d voltage applied.
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature for 24 ± 2 h	
	Dielectric Strength	Meets Initial Values (As Above)		

KYDEER8 The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

MLCC Tin/Lead Termination "B" COG (NP0) – Capacitance Range

PREFERRED SIZES ARE SHADED

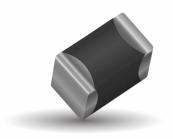
			•			I	E D]		
SIZE			LD02			LD	03				LD05					LD0	6		
Solder			eflow/Wa				/Wave				flow/Way					Reflow/			
Packag			All Pape .00 ± 0.1				aper ± 0.15				er/Embos .01 ± 0.20				P	aper/Em 3.20 ± (
(L) Length	mm (in.)		.00 ± 0.1 040 ± 0.0				± 0.15 ± 0.006)				.01 ± 0.20)79 ± 0.00				(3.20 ± 0 0.126 ± 0			
W) Width	mm		0.50 ± 0.1				± 0.15				.25 ± 0.20					1.60 ± 0			
w) width	(in.)		020 ± 0.0			(0.032 :					049 ± 0.00				(0.063 ± 0			
(t) Terminal	mm		0.25 ± 0.1				± 0.15				.50 ± 0.2					0.50 ± 0			
	(in.) WVDC	16	010 ± 0.0	50	16	<u>(0.014 :</u> 25	<u>± 0.006)</u> 50	100	16	25	020 ± 0.0 ² 50	10)	200	16	25	0.020 ± 0 50	100	200	500
Сар	0.5	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
(pF)	1.0	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	1.2	С	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	1.5 1.8	<u>С</u> С	C C	C C	GG	G	G	G	J J	J	J	J	J J	J	J	J	J	J	J
	2.2	c	c	c	G	G	G	G	J	J	J	J	J	J	J	J	J	Ĵ	Ĵ
	2.7	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	3.3	С	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	3.9 4.7	C C	C	C C	G	G	G	G G	J	J	J	J	J	J	J	J	J	J	J
	4.7	<u>с</u>	C C	C	GG	G	G	G	J J	J	J	J	J J	J	J	J	J	J	J
	6.8	С	С	С	G	G	G	G	J	J	Ĵ	J	J	J	J	J	J	Ĵ	J
	8.2	С	С	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	10 12	C C	C C	C C	G G	G	G	G G	J J	J J	J	J	J	J	J	J	J	J	J
	12	C	C	C	G	G	G	G	J	J	J	J	J J	J	J	J	J J	J	J
	18	С	C	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	22	С	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	27 33	<u>С</u> С	C C	C C	G	G	G G	G G	J J	J	J	J	J J	J	J	J	J	J	J
	33 39	C	C	C	GG	G	G	G	J	J J	J	J	J	J	J	J	J	J	J
	47	č	c	č	G	G	G	G	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ
	56	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	68 82	C C	C C	C C	GG	G	G	G G	J	J	J	J	J J	J	J	J	J	J	J
	100	<u>с</u>	C	C	G	G	G	G	J J	J	J	J	J	J	J	J	J	J	J
	120	č	c	č	G	G	G	G	Ĵ	J	J	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ
	150	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	180 220	C C	C C	C C	GG	GG	G	G G	J	J	J	J J	J J	J J	J	J	J J	J	J M
	270	c	c	c	G	G	G	G	J	J	J	J	M	J	J	J	J	J	M
	330	C	C	C	G	G	G	G	J	J	J	J	M	J	J	J	J	J	M
	390	С	С	С	G	G	G	G	J	J	J	J	М	J	J	J	J	J	М
	470 560	С	С	C	G G	GG	G		J J	J	J	J	M	J	J	J	J	J	M
	680				G	G	G		J	J	J	J J	IVI	J	J	J	J	J	M P
	820				G	G	G		J	J	J	J		J	J	J	J	M	
	1000				G	G	G		J	J	J	J		J	J	J	J	Q	
	1200 1500					G			J	J	J			J	J	J	J	Q	
	1800								J	J	J			J	J	M	M	ų į	\vdash
	2200								J	J	N			J	J	м	P		
	2700								J	J	N			J	J	M	P		\vdash
	3300 3900								J	J J				J J	J	M M	P P		
	4700								J	J				J	J	M	P		
	5600													J	J	М			
	6800													M	M				
Сар	8200 0.010													M	M				\vdash
(pF)	0.012														141				
	0.015		Ļ	7		W.													
	0.018 0.022		~	5		1	\langle												
	0.022		(-	\sum	IJ	Įт												
<u> </u>	0.033		t '	~				İ			İ					1			
	0.039																		
	0.047		ł		t														
	0.068 0.082				Í.	1													
	0.1																		
	WVDC	16	25	50	16	25	50	100	16	25	50	100	200	16	25		100	200	500
	SIZE		LD02			LD	03				LD05					LD0	6		

Letter	A	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMB	OSSED			

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

MLCC Tin/Lead Termination "B" COG (NP0) – Capacitance Range

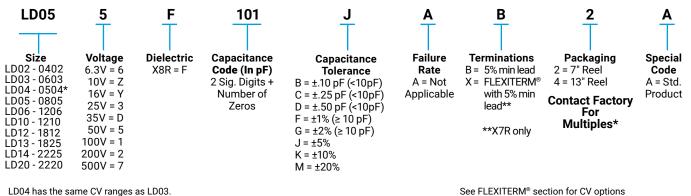
PREFERRED SIZES ARE SHADED


SIZE				LD10					LD12				LD13			LD14	
Soldering			R	eflow On	ly				Reflow Or	nly			Reflow Only			Reflow Only	
Packaging				er/Embos					II Embos				All Embossed			All Embossed	
	nm in.)			.20 + 0.2 126 ± 0.0					4.50 ± 0.3 .177 ± 0.0				4.50 ± 0.30 (0.177 ± 0.012))		5.72 ± 0.25 (0.225 ± 0.010	0
W) Width	nm in.)		2	1.50 ± 0.2 098 ± 0.0	0				3.20 ± 0.2 .126 ± 0.0	20			6.40 ± 0.40 (0.252 ± 0.016)			6.35 ± 0.25 (0.250 ± 0.010	
(t) Terminal	nm		0	.50 ± 0.2	5				0.61 ± 0.3	36			0.61 ± 0.36			0.64 ± 0.39	,
WV	in.) DC :	25	(0.0 50	020 ± 0.0 100	200	500	25	50	.024 ± 0.0 100	200	500	50	(0.024 ± 0.014) 100	200	50	(0.025 ± 0.015 100	200
(pF)	0.5 1.0 1.2																
	1.5 1.8 2.2															7-5	-w
	2.7 3.3															\leq	
4	3.9 4.7 5.6																
6	6.8 8.2															t ∎	ļ]
	10 12 15			_		J J											
	18 22					J J											
	27 33 39					J J J											
	47 56					J J											
	68 82 00					J J J											
1	20 50					J J											
2	80 20 70					J J											
3	30 90					J M											
5		J	J	J	J	M M M											
8	3 <u>20</u> 000	J	J J	J	J J	M M	K	K	К	К	M	М	M	М	M	M	Р
15	500	1 1 1	J J	J J	M M M	M M	K K	K K K	K K K	K K K	M M M	M M M	M M M	M M M	M M M	M M M	P P P
22 27	200	J	J	J	Q Q		K K	K K	к к	K P	P Q	M M	M M	M M	M M	M M	P P
39	00	1 1 1	JJ	J M M			P P P	P P P	P P P	P P P	Q Q Y	M M M	M M M	M M M	M M M	M M M	P P P
56	00 800	J	J				P P	P P	P Q	P Q	Y Y	M M	M M	M M	M M	M M	P P
Cap 0.0	010	J J	J J				P P P	P P P	Q Q Q	Q Q X	Y Y Y	M M M	M M M		M M M	M M M	P P P
0.0)15)18						P P	P P	Q X	X X	Y Y	M P	M M		M M	M M	Y Y
0.0 0.0 0.0							P Q Q	P X X	X X X	X Z Z		P P P			M P P	Y Y	Y Y
0.0)39)47						X X	X X	Z Z	Z Z		P P			P P		
0.0							Z Z Z	Z Z Z	Z Z Z						P Q Q		
SIZE	DC	25	50	100	200	500	25	50	100	200	500	50	100	200	50	100 LD14	200
3125				LD10					LD12				LD13			LU 14	

Letter	А	С	E	G	J	К	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMB	OSSED			

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X8R – General Specifications



KYOCERA AVX will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the KYOCERA AVX Catalog Part Number. This fulfills KYOCERA AVX's commitment to providing a full range of products to our customers. KYOCERA AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

Not RoHS Compliant

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

LD04 has the same CV ranges as LD03.

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

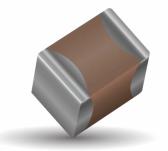
> KIDERRA | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X8R – Specifications and Test Methods

Paramet	ter/Test	X8R Specification Limits	Measuring	
Operating Tem	perature Range	-55°C to +150°C	Temperature C	ycle Chamber
Capac	itance	Within specified tolerance	Freq.: 1.0 k	(Hz + 10%
Dissipatio	on Factor	\leq 2.5% for \geq 50V DC rating \leq 3.5% for 25V DC and 16V DC rating	Voltage: 1.0	
Insulation I	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roc	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge current) mA (max) h 150% of rated voltage
	Appearance	No defects	Deflectio	n [.] 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 r	mm
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutection for 5.0 ± 0.1	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
	Appearance	No visual defects	1	
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 r test chamber set	
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h	
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	-	
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	d voltage applied.
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an 24 ± 2 hours bef	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)		ore measuring.

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

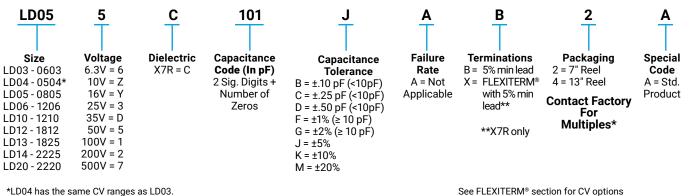
X8R – Capacitance Range


	SIZE	LD	03	LD	05	LD	06
	WVDC	25V	50V	25V	50V	25V	50V
271	Сар 270	G	G				
331	(pF) 330	G	G	J	J		
471	470	G	G	J	J		
681	680	G	G	J	J		
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
182	1800	G	G	J	J	J	J
222	2200	G	G	J	J	J	J
272	2700	G	G	J	J	J	J
332	3300	G	G	J	J	J	J
392	3900	G	G	J	J	J	J
472	4700	G	G	J	J	J	J
562	5600	G	G	J	J	J	J
682	6800	G	G	J	J	J	J
822	Cap 8200	G	G	J	J	J	J
103	(μF) 0.01	G	G	J	J	J	J
123	0.012	G	G	J	J	J	J
153	0.015	G	G	J	J	J	J
183	0.018	G	G	J	J	J	J
223	0.022	G	G	J	J	J	J
273	0.027	G	G	J	J	J	J
333	0.033	G	G	J	J	J	J
393	0.039	G	G	J	J	J	J
473	0.047	G	G	J	J	J	J
563	0.056	G		N	N	М	М
683	0.068	G		N	N	М	М
823	0.082			N	N	М	М
104	0.1			N	N	М	М
124	0.12			N	N	М	М
154	0.15			N	N	М	М
184	0.18			N		М	М
224	0.22			N		М	М
274	0.27					М	М
334	0.33					М	М
394	0.39					М	
474	0.47					М	
684	0.68						
824	0.82						
105	1						
	WVDC	25V	50V	25V	50V	25V	50V
	SIZE	LD	03	LD	05	LD	06

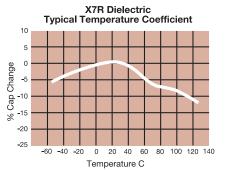
Letter	A	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED	·		

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

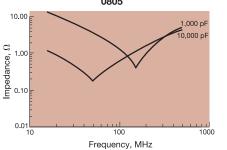
X7R – General Specifications

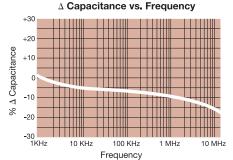


KYOCERA AVX will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the KYOCERA AVX Catalog Part Number. This fulfills KYOCERA AVX's commitment to providing a full range of products to our customers. KYOCERA AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

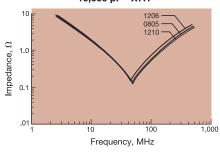

Not RoHS Compliant


PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

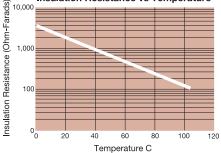


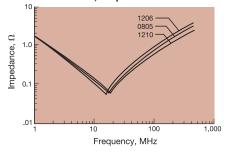

*LD04 has the same CV ranges as LD03.

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.








Variation of Impedance with Chip Size Impedance vs. Frequency 10,000 pF X7R

Variation of Impedance with Chip Size Impedance vs. Frequency 100,000 pF - X7R

KIDCERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X7R – Specifications and Test Methods

Paramet	er/Test	X7R Specification Limits	Measuring (Conditions
Operating Temp	perature Range	-55°C to +125°C	Temperature C	ycle Chamber
Capaci	tance	Within specified tolerance	-	
Dissipatio	on Factor	≤ 10% for ≥ 50V DC rating ≤ 12.5% for 25V DC rating ≤ 12.5% for 25V and 16V DC rating ≤ 12.5% for ≤ 10V DC rating	Freq.: 1.0 k Voltage: 1.0'	
Insulation F	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roo	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge current mA (max) 150% of rated voltage
	Appearance	No defects	Deflectio	n: 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 r	
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.5	
-	Appearance	No defects, <25% leaching of either end terminal	-	
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
-	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
-	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
-	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
-	Appearance	No visual defects		
-	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 r test chamber set	
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h	
	Dielectric Strength	Meets Initial Values (As Above)		
-	Appearance	No visual defects	-	
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	ty for 1000 hours
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	l voltage applied.
ramaty	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 hours bef	ore measuring.

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X7R – Capacitance Range

PREFERRED SIZES ARE SHADED

			•					_														ſ.				
SIZE			LD02		ļ			LD03							LD05							LD				
Soldering Packaging			low/V II Pap					low/V							low/W	<u>/ave</u> ossed						Reflow aper/Er				
	, mml		00 ± 0					60 ± 0							$01 \pm 0.$						Fc	3.20 ±		eu		
(L) Length	(in.)		40 ± 0					63 ± 0							79 ± 0.						()	0.126 ±		3)		
W) Width	mm (in.)		50 ± 0 20 ± 0				0.0	81 ± 0 32 ± 0	.15					1.1	25 ± 0. 49 ± 0.	.20					`	1.60 ± 0.063 ±	0.20			
	mm		20 ± 0 25 ± 0					32 ± 0 35 ± 0							$\frac{49 \pm 0}{50 \pm 0}$						(0.50 ±		5)		
(t) Terminal	(in.)		10 ± 0					14 ± 0							20 ± 0.						()	0.020 ±))		
WVDC		16	25	50	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	500
Сар	100																									
(pF)	150																									
	220			С																						
	330			С					G	G	G		J	J	J	J	J	J								K
	470			С					G	G	G		J	J	J	J	J	J								К
	680			С					G	G	G		J	J	J	J	J	J								К
	1000			С					G	G	G		J	J	J	J	J	J								K
	1500			С					G	G			J	J	J	J	J	J		J	J	J	J	J	J	М
	2200			С					G	G			J	J	J	J	J	J		J	J	J	J	J	J	М
	3300		С	C					G	G			J	J	J	J	J	J		J	J	J	J	J	J	M
	4700		С	C					G	G			J	J	J	J	J	J		J	J	J	J	J	J	M
	6800	С	С						G	G			J	J	J	J	J	J		J	J	J	J	J	J	Р
	0.010	С	С						G	G			J	J	J	J	J	J		J	J	J	J	J	J	Р
	0.015	С						G	G				J	J	J	J	J	J		J	J	J	J	J	M	
	0.022	С						G	G				J	J	J	J	J	N		J	J	J	J	J	M	
	0.033	С						G	G				J	J	J	J	N			J	J	J	J	J	M	
	0.047						G	G	G				J	J	J	J	N			J	J	J	J	J	М	
	0.068				ļ		G	G	G				J	J	J	J	N			J	J	J	J	J	Р	
	0.10		C*		-	G	G	G	G				J	J	J	J	N			J	J	J	J	P	P	
	0.15				G	G							J	J	J	N	N			J	J	J	J	Q		
	0.22				G	G							J	J	N	N	N			J	J	J	J	Q		
	0.33							*د					N	N	N	N	N			J	J	M	P P	Q		
	0.47							J^					N N	N N	N N	N	N			M M	M M	M Q	Q	QQ		
	1.0					J*	J*						N	N	N*					M	M	Q	Q	Q		
	1.5					J	J						IN	IN	IN					P	Q	Q	Q	Q		
	2.2				J*										P*					Q	Q	Q				
	3.3														-					Q	Q	ų v				
	4.7												P*	P*						0*	Q*	Q*				
	10											P*	P							0*	0*	Q				
	22																		0*	4	ų	~ _				
	47																		~							
	100																									
	WVDC	16	25	50	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	500
	SIZE		LD02					LD03							LD05											

Letter	А	С	E	G	J	К	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

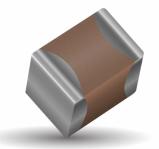
= Under Development

KUDEERA KW/// The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X7R – Capacitance Range

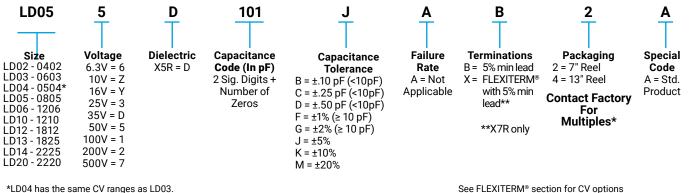
PREFERRED SIZES ARE SHADED

SIZE					LD10					LD			LC	013		LD			LC	014
Solderin	g				eflow On					Reflov			Reflo	w Only		Reflov				w Only
Packagir	ng				er/Embos					All Emb				bossed		All Em				bossed
(L) Length	mm				.20 + 0.2					4.50 ±				± 0.30			± 0.50			± 0.25
(<u>_)</u> _og	(in.)				26 ± 0.0					(0.177 ±				± 0.012)			± 0.020)			± 0.010)
W) Width	mm				50 ± 0.2	-				3.20 ±				± 0.40			± 0.40			± 0.25
, 	(in.)				98 ± 0.0					<u>(0.126 ±</u> 0.61 ±				<u>± 0.016)</u> ± 0.36		0.64 :	<u>± 0.016)</u>			± 0.010) ± 0.39
(t) Terminal	mm (in.)				.50 ± 0.2 120 ± 0.0					(0.024 ±				± 0.36 ± 0.014)			± 0.39 ± 0.015)			± 0.39 ± 0.015)
WVDC		10	16	25	50 ± 0.0	10)	200	500	50	100	200	500	50	100	25	50	100	200	50	100
Cap	100	10	10	23	- 30	100	200	300	- 50	100	200	300	30	100		- 30	100	200	50	100
(pF)	150																			
(P1)	220																		 €	1
	330							1					1			1	-1	\sim		
	470																$\langle -$)) fi	r i
	680																			-
	1000																			
	1500	J	J	J	J	J	J	M										* t′l		
	2200	J	J	J	J	J	J	M									I		I	
	3300	J	J	J	J	J	J	M												
	4700	J	J	J	J	J	J	M												
	6800 0.010	J	J	J	J	J	J	M	K	К	К	K	M	м	I	X	X	X	M	Р
	0.010	J	J	J	J	J	J	P	K	K	ĸ	P R	M	M		X	x	x	M	P
	0.013	J	J	J	J	J	J	Q	K	K	K	P	M	M		x	x	x	M	P
	0.022	J	J	J	J	J	J	0	K	K	K	X	M	M		X	X	X	M	P
	0.047	J	J	J	J	J	J		ĸ	ĸ	ĸ	z	м	M		x	x	x	M	P
	0.068	J	J	J	J	J	M		K	K	K	z	M	М		X	X	X	M	P
	0.10	J	J	J	J	J	М		K	K	К	Z	М	М		Х	X	Х	М	Р
	0.15	J	J	J	J	М	Z		K	K	Р		М	М		Х	X	X	М	Р
	0.22	J	J	J	J	Р	Z		K	K	Р		М	М		Х	X	Х	М	Р
	0.33	J	J	J	J	Q			K	М	Х		М	М		Х	X	Х	М	Р
	0.47	М	М	М	М	Q			K	Р			М	М		Х	X	X	М	Р
	0.68	M	M	P	X	X			M	Q			M	P		X	X		M	P
	1.0	N	N	P Z	X	Z			M Z	X			M	Р		X	X		M	P X
	1.5 2.2	N X	N X	Z	Z Z	Z Z			Z	ZZ			M			X X	X X		M M	X
	3.3	X	X	Z	Z	2			Z	2						X	Z		IVI	
	4.7	x	x	z	z				z	z						x	Z			
	10	z	z	z	z				~	-						z	z			
	22	Z	Z	_	_										Z	_	_			
	47	Z														1				
	100																			
	WVDC	10	16	25	50	100	200	500	50	100	200	500	50	100	25	50	100	200	50	100
SIZE					LD10					LD	12		LD	013		LD	20		LC	014


Letter	A	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	DSSED			

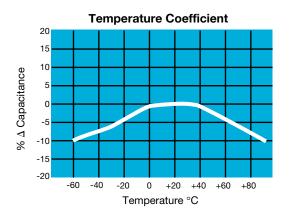
KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

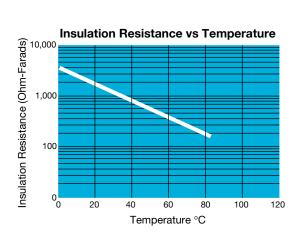
X5R – General Specifications



KYOCERA AVX will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the KYOCERA AVX Catalog Part Number. This fulfills KYOCERA AVX's commitment to providing a full range of products to our customers. KYOCERA AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

Not RoHS Compliant


PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)



*LD04 has the same CV ranges as LD03.

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

TYPICAL ELECTRICAL CHARACTERISTICS

KIDERRA | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X5R – Specifications and Test Methods

Paramet	ter/Test	X5R Specification Limits	Measuring	Conditions
Operating Tem	perature Range	-55°C to +85°C	Temperature C	ycle Chamber
Capac	itance	Within specified tolerance		
Dissipatio	on Factor	≤ 2.5% for ≥ 50V DC rating ≤ 3.0% for 25V, 35V DC rating ≤ 12.5% Max. for 16V DC rating and lower Contact Factory for DF by PN	Freq.: 1.0 k Voltage: 1.0 For Cap > 10 μF, 0	Vrms ± .2V
Insulation I	Resistance	10,000MΩ or 500MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roc	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50	and discharge current
	Appearance	No defects	Deflectio	n: 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 r	mm
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.9	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ±
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties
	Dielectric Strength	Meets Initial Values (As Above)		1
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
	Appearance	No visual defects		Martala II
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 chamber set at 85°C : (+48, -0). Note: Contac	± 2°C for 1000 hours
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	specification part numl < 1.5X rate	bers that are tested a
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb	
	Dielectric Strength	Meets Initial Values (As Above)	temperature for 24 ± 2 h	ours before measurin
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	voltage applied.
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an 24 ± 2 hours bef	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)		ere medodning.

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X5R – Capacitance Range

PREFERRED SIZES ARE SHADED

					•						60						Œ						Œ														
SIZ	E			L	002					L	D03	3					LD	05					LD	06					L	.D10)				LD1	12	
Solder	ring		R	eflov	v/W	ave				Reflo	w/V	Vave	9			Re	flow	/Wav	e			Re	eflow	/Wav	ve			- 1	Reflo	w/W	/ave						
Packag	ging				Pape						Pap				P			nbos		d	P		r/En			d		Pa			osse	ed					
L) Length	mm				± 0.					1.60								: 0.20					.20 ±) ± 0							
, ,	(in.) mm				± 0.0 ± 0.1	004)			((0.8			6)					0.00					126 ±			_		(($\frac{5 \pm 0}{5 \pm 0}$.008))		┝──			
N) Width	(in.)					004)			(0	0.032 0.032			6)					0.00					.00 <u>+</u>)63 ±					((.008))					
t) Terminal	mm				± 0.					0.35								0.25					.50 ±) ± 0		·					
WVD	(in.)	1	(0.	010	± 0.0	006)	50		((0.014	$\frac{1 \pm 0}{16}$	$\frac{125}{125}$	5) 35	50	63	<u>(0.0</u> 110	120 ± 16	0.01	0)	50	63		120 ± 16			50	1	((6 3	1020	$\frac{16}{16}$.010)) 35	50	6.3	10	25	50
Сар	100	-	0.5	10	10	25	50	-	0.5	10	10	25	55	50	0.5	10	10	23	55	50	0.5	10	10	25	55	50	-	0.5	10	10	25	55	50	0.5	10	25	50
(pF)	150																																				
(P.)	220						С																														
	330						С																				1							L			
	470						С																									\geq	\leq	<u>•</u> _N	√->	/	
	680						С																					7	<	~	<	_		` ٦	ر (Ŧ	
	1000						С																											\bot	1	Ľ	
	1500						С																								4	7					
	2200						С																								-	F.					
	3300						С																														
	4700					С								G																							
	6800					C								G				\vdash																\vdash	\vdash		-
Cap	0.010					C C						6	G	G																							
(µF)	0.015 0.022				С	C C						G	G	G G						N																	
	0.022				C	C	<u> </u>					G	G	G				\vdash		N								_						├──┦	\vdash		-
	0.033				c	С						G	G	G						N																	
	0.068				c							G		G						N															i		
	0.10			С	C	С						G		G				Ν		N																	
	0.15											G						Ν	Ν																		
	0.22		C*								G	G						Ν	Ν							Q											
	0.33										G	G						Ν																\square			
	0.47	C*	C*								G							Ν						Q	Q								Х		i		
	0.68										G							Ν																\square	Ш		
	1.0	C*	C*	C*					G	G	G	J*					Ν	Ν		P*				Q	Q						Х	Х	Х				
	1.5																						-	-							-						
	2.2	C*						G*	G*	J*	J*					N	Ν	Ν			X	V	Q	Q							Z	Х		\vdash	\vdash		_
	3.3 4.7							*ل *ل	J*	J*	J*				N	N N	N*	N*			X X	X X	х	х						0	Z						
	4.7 10							J^ K*	"J"	J.,					N P	P	P N^	IN"			X X	X X	X	X					x	Q Z	Z					Z	
	22						-	N.4		-					P*	F	F	\vdash	\vdash		X	X	X	X				Z	Z	Z	Z			\vdash	\vdash	2	-
	47																				x	~	~	~				Z*	2	2	2						
	100																										Z*	z									
	WVDC	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	6.3	10	16	25	35	50	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	6.3	10	25	5
	SIZE			L	002					L	DO	3					LD	05					LD	06					L	D10)				LD1	12	

Letter	A	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSFD			

*Optional Specifications - Contact factory

NOTE: Contact factory for non-specified capacitance values

KUDEERA KW/// The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Automotive MLCC General Specifications

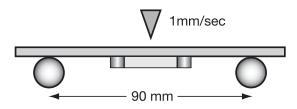
GENERAL DESCRIPTION

KYOCERA AVX has supported the Automotive Industry requirements for Multilayer Ceramic Capacitors consistently for more than 25 years. Products have been developed and tested specifically for automotive applications and all manufacturing facilities are QS9000 and VDA 6.4 approved.

KYOCERA AVX is using AECQ200 as the qualification vehicle for this transition. A detailed qualification package is available on request and contains results on a range of part numbers.

HOW TO ORDER

0805	5	<u>A</u>	104	ĸ	4	Ţ	2	A
Size 0402 0603 0805 1206 1210 1812	Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 35V = D 50V = 5 100V = 1 200V = 2 500V = 7	Dielectric NP0 = A X7R = C X8R = F	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros e.g. 10 F = 106	Capacitance Tolerance $B = \pm 0.1pF (<10pF)^*$ $C = \pm 0.25pF (<10pF)^*$ $D = \pm 0.5pF (<10pF)^*$ $F = \pm 1\%^*$ $G = \pm 2\%^*$ $J = \pm 5\% (<=1\mu F)$ $K = \pm 10\%$ $M = \pm 20\%$ *NPO only	NOTE: Conta	U = Conductive Epo **X7R X8R only	4 = 13" Reel	


COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON

	Commercial	Automotive
Administrative	Standard Part Numbers. No restriction on who purchases these parts.	Specific Automotive Part Number. sed to control supply of product to Automotive customers.
Lot Qualification (Destructive Physical Analysis - DPA)	As per EIA RS469	Increased sample plan stricter criteria.
Visual/Cosmetic Quality	Standard process and inspection	100% inspection
Application Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing.

All Tests have Accept/Reject Criteria 0/1

FLEXITERM FEATURES

- a) Bend Test
 - The capacitor is soldered to the PC Board as shown:

Typical bend test results are shown below:

Style	Conventional	Soft Term
0603	>2mm	>5
0805	>2mm	>5
1206	>2mm	>5

 a) Temperature Cycle testing FLEXITERM[®] has the ability to withstand at least 1000 cycles between -55°C and +125°C

Automotive MLCC-NP0

Capacitance Range

SIZ	ZE	04	02		06	03				0805					12	206		
Solde	ering	Reflow	/Wave		Reflow	/Wave			Re	eflow/Wa	ive				Reflow	/Wave		
WV		25V	50V	25V	50V	100V	200V	25V	50V	100V	200V	250V	25V	50V	100V	200V	250V	500V
0R5	0.5	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R0	1.0	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R2	1.2	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R5	1.5	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R8	1.8	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
2R2	2.2	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
2R7	2.7	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
3R3	3.3	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
3R9	3.9	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
4R7	4.7	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
5R6	5.6	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
6R8	6.8	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
8R2	8.2	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
100	10.0	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
120	12	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
150	15	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
180	18	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
220	22	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
270	27	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
330	33	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
390	39	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
470	47	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
510	51	C	С	G	G	G	G	J	J	J	N	N	J	J	J	J		
560	56	С	C	G	G	G	G	J	J	J	N	N	J	J	J	J		
680	68	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J		
820	82	C C	C C	G	G	G	G	J	J	J	N	N	J	J	J	J		
101	100 120	C	C	G	G G	G G	G	J J	J	J	N N	N	J J	J	J	J		
121 151	120			G G	G	G		J	J	J J	N	N N	J	J J	J	J J		
181	180			G	G	G		J	J	J	N	N	J	J	J	J		
221	220			G	G	G		J	J	J	N	N	J	J	J	J		
271	270			G	G	G		J	J	J	N	N	J	J	J	J		
331	330			G	G	G		J	J	J	N	N	J	J	J	J		
391	390			G	G	<u> </u>		J	J	J			J	J	J	J		
471	470			G	G			J	J	J			J	J	J	J		
561	560			G	G			J	J	J			J	J	J	J		
681	680			G	G			J	J	J			J	J	J	J		
821	820			Ŭ	Ū			J	J	J			J	J	J	J		
102	1000		1					J	J	J			J	J	J	J		
	1200		1					Ŭ		Ū			Ŭ			Ŭ		
	1500																	
	1800																	
	2200								1						1	1		
	2700								1									
	3300																	
392	3900											1						
472	4700									1		1						
103	10nF																	
WV		25V	50V	25V	50V	100V	200V	25V	50V	100V	200V	250V	25V	50V	100V	200V	250V	500V
Siz			02		l	03				0805		1			1	206		
01/			~-		0										12			

Letter	А	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Automotive MLCC - X7R

Capacitance Range

s	ize		0402		1			0603						08	05						1206						12	10			18	312	<u> </u>		22	220		
Solo	dering	R	Reflow/W	ave			R	eflow/W	ave					Reflow	/Wave					Re	flow/W	ave					Reflo	w Only			Reflo	w Only			Reflo	w Only		
(L) Length	mm (in.)	((1 ± 0.1 0.04 ± 0.0					1.6 ± 0.1 .063 ± 0.						2.01 (0.079)					3.2 ± 0. 126 ± 0.							± 0.2 ± 0.008))			± 0.3 ± 0.012)				± 0.5 ± 0.02)		
(W)	mm		0.5 ± 0.					0.81 ± 0.							± 0.2						1.6 ± 0.							± 0.2				± 0.2				0.4		
Width (t)	(in.) mm		0.02 ± 0.0					.032 ± 0. 0.35 ± 0.				<u> </u>		(0.049	± 0.008) : 0.25						063 ± 0.						<u>`</u>	± 0.008))		· ·	± 0.008) ± 0.36				± 0.016) ± 0.39		
Terminal	(in.)		0.01 ± 0.0					.014 ± 0.						(0.02							.02 ± 0.2							± 0.01)				± 0.014)				± 0.015)	,	
	VDC	16V	25V	50V	10V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	500V	16V	25V	50V	100V		250V	50V	100V	25V	50V	100V	200V	250V	500V
101	100																												М	Q								
221	220	С		С	G	G	G	G	G	G																			м	Q								
271	270	С	С	С	G	G	G	G	G	G												<u> </u>							M	Q								
331 391	330 390	C C	C C	C C	G	G	G	G	G	G																			M	Q								
471	470	c	c	c	G	G	G	G	G	G	-																		M	Q							\rightarrow	
561	560	c	c	c	G	G	G	G	G	G																			M	Q								
681	680	c	c	c	G	G	G	G	G	G																			M	Q								
821	820	С	С	С	G	G	G	G	G	G																			м	Q								
102	1000	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	К	К	К	к	м	Q	к	К						
122	1220	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	к	к	К	К	М	Q	К	К						
152	1500	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	к	К	к	к	М	Q	к	К						
182	1800	С	C	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	К	К	К	К	М	Q	К	K						
222 272	2200 2700	C C	C C	C C	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	к к	к к	к к	к к	M	Q	к к	K K						
332	3300	C	C	C	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	ĸ	ĸ	ĸ	ĸ	M	Q	ĸ	K				-+	-+	
392	3900	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	ĸ	ĸ	ĸ	ĸ	M	Q	ĸ	K						
472	4700	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	ĸ	ĸ	ĸ	ĸ	M	Q	к	ĸ						
562	5600	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	к	к	К	к	м	Q	к	к						
682	6800	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	к	к	к	к	М	Q	К	К						
822	8200	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	к	к	К	К	М	Q	к	К						
	Cap 0.01	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	К	к	К	К	М	Q	К	К						
123	(uF) 0.012	C	-		G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		К	К	K	К	M	Q	К	K	<u> </u>					
153 183	0.015	C C			G	G	G	G	G	<u> </u>		J	J	J	N N	N N	N N	J J	J	J	J	J	J	-	к к	K K	K K	к к	M	Q	K K	к к	<u> </u>					
223	0.018	c			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		ĸ	ĸ	ĸ	ĸ	M	Q	ĸ	ĸ					\rightarrow	
273	0.022	c		-	G	G	G	G	J			J	J	J	N	N	N	J	J	J	J	J	J		к	к	ĸ	ĸ	M	Q	к	к	-					_
333	0.033	С			G	G	G	G	J			J	J	J	N	N	N	J	J	J	J	J	J		к	к	к	к	м	Q	к	К						
393	0.039				G	G	G	G	J			J	J	J	N	N	N	J	J	J	J	м	м		К	К	к	к	м	Q	к	К						
473	0.047				G	G	G	G	J			J	J	J	N	N	N	J	J	J	М	М	М		К	К	К	К	М	Q	К	К						
563	0.056		-	L	G	G	G	G	J			J	J	J	N	<u> </u>		J	J	J	м	М	м		К	К	К	м	м	Q	к	К	L					
683	0.068		-		G	G	G	G	J	-	-	J	J	J	N	-		J	J	J	м	м	м		K	K	ĸ	м	м	Q	ĸ	K						
823 104	0.082	-	+		G	G	G	G	J		<u> </u>	J	J	J	N N	<u> </u>		J	J	J	M	M	M	<u> </u>	к к	ĸ	к к	M	Q	QQ	ĸ	к к	<u> </u>			$ \rightarrow $	$ \rightarrow $	х
104	0.12	-	+		G	J	J		1	-	-	J	J	N	N	-		J	J	M	M	Q	Q		ĸ	ĸ	ĸ	P	Q	Q	ĸ	ĸ				-+	-+	^
154	0.12		+	1	G	J	J		1	1	-	M	N	N	N	-	-	J	J	M	M	Q	Q	-	K	K	ĸ	P	Q	Q	ĸ	ĸ	-					_
224	0.22		1	1	G	J	J	1	1	1		M	N	N	N		1	J	M	M	Q	Q	Q		M	M	M	P	Q	Q	M	M	1			-+	\rightarrow	
334	0.33											N	N	N	N			J	м	Р	Q				Р	Р	Р	Q	Z	Z	х	х						
474	0.47											N	N	N	N			м	М	Р	Q				Р	Р	Р	Q			х	х						
684	0.68							1	<u> </u>	<u> </u>		N	N	N	N	L		м	Q	Q	Q				Р	Р	Q	х			х	х						
105	1				 					<u> </u>		N	N	N	N	<u> </u>		M	Q	Q	Q	<u> </u>			P	Q	Q	Z	ļ		X	X		Z	Z	X	X	
155	1.5	-										N N	N N	-				Q	Q	Q	Q		<u> </u>		P Z	Q Z	Z	Z	<u> </u>		X Z	X Z		ZZ	Z	Z	Z	
225 335	2.2	-	+					-	+	+		N	IN					Q Q	Q	Q	Q	-			X	Z	Z	Z			Z	2		Z	Z	$ \rightarrow$	$ \rightarrow$	
475	4.7		+	1			1	1	1	1					-	1		Q	Q	Q		1			x	Z	Z	Z			Z	<u> </u>	1	Z	Z			
106	10		1					1	1	1						1						1			Z	Z	Z		1		Z		Z	Z	Z	-+	-+	
226	22																					Ĺ							İ.				Z					
	VDC	16V	_	50V	10V	16V	25V		100V	200V	250V	16V	25V	50V		200V	250V	16V	25V	50V	100V	200V	250V	500V	16V	25V	50V	_	200V	250V	50V	100V	25V	50V			250V	500V
s	ize		0402					0603						08	05				_		1206		_	_			12	210	_	_	18	312			22	220		

Letter	A	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.04)	(0.05)	(0.055)	(0.060)	(0.07)	(0.09)	(0.1)	(0.11)
			PAPER						EMB	OSSED			

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Automotive MLCC - X8R

Capacitance Range

	SIZE			0603			0805		12	06
	Soldering	J		Reflow/Wave			Reflow/Wave		Reflow	/Wave
WVDC	W	VDC	25V	50V	100V	25V	50V	100V	25V	50V
472	pF	4700	G	G	G	J	J	J	J	J
562		5600	G	G	G	J	J	J	J	J
682		6800	G	G	G	J	J	J	J	J
822		8200	G	G	G	J	J	J	J	J
103	uF	0.01	G	G	G	J	J	J	J	J
123		0.012	G	G		J	J	N	J	J
153		0.015	G	G		J	J	N	J	J
183		0.018	G	G		J	J	N	J	J
223		0.022	G	G		J	J	N	J	J
273		0.027	G	G		J	J		J	J
333		0.033	G	G		J	J		J	J
393		0.039	G	G		J	J		J	J
473		0.047	G	G		J	J		J	J
563		0.056	G			N	N		М	М
683		0.068	G			N	N		М	М
823		0.082				N	N		М	М
104		0.1				N	N		М	М
124		0.12				N	N		М	М
154		0.15				N	N		М	М
184		0.18				N			М	М
224		0.22				N			М	М
274		0.27							М	М
334		0.33							М	М
394		0.39							М	М
474		0.47							М	Q
684		0.68							Q	Q
824		0.82							Q	Q
105		1							Q	Q
WVDC		/DC	25V	50V	100V	25V	50V	100V	25V	50V
	SIZE			0603			0805		12	06

Letter	А	C	E	G	J	К	М	N	Р	Q	Х	Y	Z
Max. Thickness	0.33 (0.013)	0.56 (0.022)	0.71 (0.028)	0.90	0.94	1.02	1.27 (0.050)	1.40	1.52	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
		(0:022)	PAPER	(0.000)	(0.007)	(0.0.0)	(0.000)	(0.000)	· /)SSED	(0.020)	(01100)	(01110)

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

APS for COTS+ High Reliability Applications

General Specifications Surface Mount NP0, X7R and X8R/L MLCCs

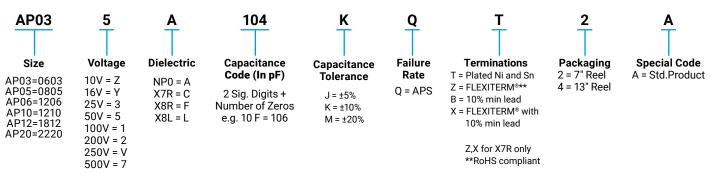
KYOCERA AVX's APS COTS+ series of multilayer ceramic capacitors offers the customer a high reliability solution with an ultralow failure rate, <1ppb, in a variety of case sizes and voltages. The APS range encompasses a wide range of dielectric types to meet the customer's requirements from low temperature/voltage capacitance change dielectric, NP0, to high preforming capacitance voltage X7R to high temperature reliability dielectrics, X8R/L.

APS capacitors have a wider capacitance range than MIL spec parts that satisfies the need for higher CV demands and board space saving requirements. Each production lot is extensively tested and removes the requirement for customer specific drawings. The testing regime uses many of the MIL-STD test methods as per MIL-PRF-55681 and has a field failure rate of less than 1 ppb. The APS testing series uses KYOCERA AVX's unique in-house maverick testing detection system that eliminates infant mortality failures.

Applications suitable for APS include Industrial, Telecommunications, Aviation, and Military. The APS is available with a range of different termination finishes, Flexiterm®, Nickel / Tin and Tin with Pb1. Flexiterm® technology delivers improved thermo-mechanical stress resistance.

APS RELIABILITY TEST SUMMARY

- 100% Visual Inspection
- DPA
- IR, DF, Cap, DWV
- Maverick Lot Review
- Thermal Shocl
- 85/85 Testing
- Additional Life Testing
- C of C with every Order
- Quarterly Data Package


HOW TO ORDER

FEATURES

- The APS range has been extensively reliability tested as standard resulting in an ultralow failure rate, ≤1ppb
- The APS range is available with Flexiterm[®] that deliver's high thermo-mechanical stress resistance.
- High CV range enabling board space saving requirements.

Dielectric	Temperature/Percentage Cap Change
NP0	-30ppm +30ppm from -55°C + 125°C
X7R	-15% +15% from -55°C to + 125°C
X8R	-15% +15% from -55°C to + 150°C
X8L	-15% +40% from -55°C to + 150°C

KYOCERa

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Number.

KINCERENTIAL The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

APS COTS+ NP0 Series

Capacitance Range

Size	AP	03 = 06	03	AP	05 = 08	05		AF	P06 = 12	06			AP10	P10 = 1210 ivv 100V 200V 100V 200V 100V			
WVDC	25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	500V	25V	50V	J J M M J M M M			
100 10pF	G	G	G	J	J	J	J	J	J	J	J						
120 12	G	G	G	J	J	J	J	J	J	J	J						
150 15	G	G	G	J	J	J	J	J	J	J	J						
180 18	G	G	G	J	J	J	J	J	J	J							
220 22	G	G	G	J	J	J	J	J	J	J							
270 27	G	G	G	J	J	J	J	J	J	J							
330 33	G	G	G	J	J	J	J	J	J	J							
390 39	G	G	G	J	J	J	J	J	J	J							
470 47	G	G	G	J	J	J	J	J	J	J							
510 51	G	G	G	J	J	J	J	J	J	J							
560 56	G	G	G	J	J	J	J	J	J	J							
680 68	G	G	G	J	J	J	J	J	J	J							
820 82	G	G	G	J	J	J	J	J	J	J							
101 100	G	G	G	J	J	J	J	J	J	J			ļ	ļ			
121 120	G	G	G	J	J	J	J	J	J	J			ļ	ļ			
151 150	G	G	G	J	J	J	J	J	J	J			ļ	ļ	ļ		
181 180	G	G	G	J	J	J	J	J	J	J							
221 220	G	G	G	J	J	J	J	J	J	J							
271 270	G	G	G	J	J	J	J	J	J	J							
331 330	G	G	G	J	J	J	J	J	J	J							
391 390	G	G		J	J	J	J	J	J	J							
471 470	G	G		J	J	J	J	J	J	J							
561 560				J	J	J	J	J	J	J			ļ				
681 680				J	J	J	J	J	J	J			ļ				
821 820				J	J	J	J	J	J	J							
102 1000				J	J	J	J	J	J	J		J	-				
122 1200												J	-				
152 1500												J	-				
182 1800												J					
222 2200												J	J	M	M		
272 2700																	
332 3300																	
392 3900																	
472 4700			ļ														
103 10nF WVDC	25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	500V	251/	E0V/	1001/	2001/		
Size		03 = 06			05 = 08		237		P06 = 12		5007	237	25V 50V 100V 200V AP10 = 1210				
Size	AP	03 = 06	5	AP	05 = 08	03		AF	12 = 10	00			APIU	- 1210			

Letter	А	С	E	G	J	К	М	Ν	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
-			PAPER	•			~		EMBO	SSED			

TS 16949, ISO 9001Certified

APS COTS+ X7R Series

Capacitance Range

	Size		AP	03 = 06	503			AP	05 = 0	805				AP06 =	1206				AP10 :	= 1210)	AP12	= 1812	AP2	20 = 22	220
	WVDC	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100V
102	Cap 1000	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	K	K	K	ĸ	K	К			
182	(pF) 1800	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	К			
222	2200	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
332	3300	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	К	К	K	К			
472	4700	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	К	К	К	K	К			
103	0.01	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	К			
123	0.012	G	G	G			J	J	J	М		J	J	J	J	J		K	К	К	К	K	К			
153	0.015	G	G	G			J	J	J	М		J	J	J	J	J		K	К	К	К	K	К			
183	0.018	G	G	G			J	J	J	М		J	J	J	J	J		К	К	К	К	К	К			
223	0.022	G	G	G			J	J	J	М		J	J	J	J	J		К	К	К	К	К	К			
273	0.027	G	G	G			J	J	J	М		J	J	J	J	J		К	K	K	К	К	К			
333	0.033	G	G	G			J	J	J	М		J	J	J	J	J		K	K	К	К	К	К			
473	0.047	G	G	G			J	J	J	М		J	J	J	М	J		K	К	К	К	К	К			
563	0.056	G	G	G			J	J	J	М		J	J	J	М	J		K	K	К	М	К	К			
683	0.068	G	G	G			J	J	J	М		J	J	J	М	J		К	К	K	М	К	К			
823	0.082	G	G	G			J	J	J	М		J	J	J	М	J		K	К	К	М	К	К			
104	0.1	G	G	G			J	J	М	М		J	J	J	М	J		K	K	K	М	К	К			
124	0.12						J	J	М	N		J	J	м	М			К	K	K	Р	К	К			
154	0.15						М	Ν	М	N		J	J	м	М			K	К	K	Р	К	К			
224	0.22						М	N	М	N		J	М	М	Q			М	М	М	Р	М	М			
334	0.33						N	Ν	М	N		J	М	Р	Q			Р	Р	Р	Q	X	Х			
474	0.47						N	Ν	М	N		М	М	Р	Q			Р	Р	Р	Q	Х	Х			
684	0.68						N	N	N			М	Q	Q	Q			P	P	Q	X	X	X			
105	Cap 1.0						N	Ν	N*			M	Q	Q	Q*			P	Q	Q	Z*	X	X			
155	(µF) 1.5											Q	Q	Q				P	Q	Z	Z	X	X			
225	2.2											Q	Q	Q				Z	Z	Z	Z*	Z	Z			
335	3.3											Q						X	Z	Z	Z	Z				
475	4.7											Q						X	Z	Z		Z*				
106	10																	Z	Z*					-	Z	Z*
226	22	161/	251/	FOV	1001	2001/	161	251	FOV	1001	2001	161/	251	50V	1001/	2001/	E001	161/	25V	FOV	1001	501/	1001/	Z	50V	1001
	WVDC	107	6V 25V 50V 100V 200V AP03 = 0603			16V	25V	50V		200V	16V	25V		100V	200V	500V	16V	<u> </u>	50V	100V	50V	100V	25V		100V	
	Size		AP	03 = 06	503			AP	05 = 0	805				APU6 =	= 1206				AP10 :	= 1210	,	AP12	= 1812	AP2	20 = 22	220

*Not currently available with lead plating finish, contact plant for further information.

Letter	А	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

TS 16949, ISO 9001Certified

KUDEERA KW/// The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available inline at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

APS COTS+ X8R/L Series

Capacitance Range

X8R

	SIZE	AP03 =	= 0603	AP05 :	= 0805	AP06 =	1206
	WVDC	25V	50V	25V	50V	25V	50V
331	Cap 330	G	G	J	J		
471	(pF) 470	G	G	J	J		
681	680	G	G	J	J		
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
222	2200	G	G	J	J	J	J
332	3300	G	G	J	J	J	J
472	4700	G	G	J	J	J	J
682	6800	G	G	J	J	J	J
103	Cap 0.01	G	G	J	J	J	J
153	(µF) 0.015	G	G	J	J	J	J
223	0.022	G	G	J	J	J	J
333	0.033	G	G	J	J	J	J
473	0.047	G	G	J	J	J	J
683	0.068	G		N	Ν	М	M
104	0.1			N	Ν	М	M
154	0.15			N	Ν	М	M
224	0.22			N		М	M
334	0.33					М	М
474	0.47					М	
684	0.68						
105	1						
	WVDC	25V	50V	25V	50V	25V	50V
	SIZE	06	03	08	05	120	6

X8L

	SIZE		AP03 = 060	3		AP05 = 080	5		AP06	= 1206	
	WVDC	25V	50V	100V	25V	50V	100V	16V	25V	50V	100V
331	Cap 330		G	G		J	J				
471	(pF) 470		G	G		J	J				
681	680		G	G		J	J				
102	1000		G	G		J	J				
152	1500		G	G		J	J			J	J
222	2200		G	G		J	J			J	J
332	3300		G	G		J	J			J	J
472	4700		G	G		J	J			J	J
682	6800		G	G		J	J			J	J
103	Cap 0.01		G	G		J	J			J	J
153	(µF) 0.015	G	G		J	J	J			J	J
223	0.022	G	G		J	J	J			J	J
333	0.033	G	G		J	J	N			J	J
473	0.047	G	G		J	J	N			J	J
683	0.068	G	G		J	J				J	J
104	0.1	G	G		J	J				J	М
154	0.15				J	N		J	J	J	Q
224	0.22				N	N		J	J	J	Q
334	0.33				N			J	M	Р	Q
474	0.47				N			М	M	Р	
684	0.68							М			
105	1							М			
	WVDC	25V	50V	100V	25V	50V	100V	16V	25V	50V	100V
	SIZE		0603			0805			12	06	

Κ

1.02

(0.040)

М

1.27

(0.050)

J

0.94

(0.037)

Ζ

2.79

(0.110)

Y

2.54

(0.100)

COMPLIAN

TS 16949, ISO 9001Certified

А

0.33

(0.013)

С

0.56

(0.022)

Е

0.71

(0.028)

PAPER

G

0.90

(0.035)

Letter

Max. Thickness

KUDEERA KW/// The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

082917

Ν

1.40

(0.055)

Ρ

1.52

(0.060)

EMBOSSED

Q

1.78

(0.070)

Х

2.29

(0.090)

MLCC with FLEXITERM®

General Specifications

GENERAL DESCRIPTION

With increased requirements from the automotive industry for additional component robustness, KYOCERA AVX recognized the need to produce a MLCC with enhanced mechanical strength. It was noted that many components may be subject to severe flexing and vibration when used in various under the hood automotive and other harsh environment applications.

To satisfy the requirement for enhanced mechanical strength, KYOCERA AVX had to find a way of ensuring electrical integrity is maintained whilst external forces are being applied to the component. It was found that the structure of the termination needed to be flexible and after much research and development, KYOCERA AVX launched FLEXITERM[®]. FLEXITERM[®] is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor with an X7R dielectric. The industry standard for flexure is 2mm minimum. Using FLEXITERM[®], KYOCERA AVX provides up to 5mm of flexure without internal cracks. Beyond 5mm, the capacitor will generally fail "open".

As well as for automotive applications FLEXITERM[®] will provide Design Engineers with a satisfactory solution when designing PCB's which may be subject to high levels of board flexure.

PRODUCT ADVANTAGES

- High mechanical performance able to withstand, 5mm bend test guaranteed
- Increased temperature cycling performance, 3000 cycles and beyond
- Flexible termination system
- Reduction in circuit board flex failures
- Base metal electrode system
- Automotive or commercial grade products available
- AECQ200 Qualified
- Approved to VW 80808 Specification

APPLICATIONS

High Flexure Stress Circuit Boards

· e.g. Depanelization: Components near edges of board.

Variable Temperature Applications

- Soft termination offers improved reliability performance in applications where there is temperature variation.
- · e.g. All kind of engine sensors: Direct connection to battery rail.

Automotive Applications

- · Improved reliability.
- Excellent mechanical performance and thermo mechanical performance.

HOW TO ORDER

0805	5	C	104	K	A	Z	2	<u>A</u>
Style 0603 0805 1206 1210 1812 2220	Voltage 6 = 6.3V Z = 10V Y = 16V 3 = 25V 5 = 50V 1 = 100V 2 = 200V	Dielectric C = X7R F = X8R	Capacitance Code (In pF) 2 Sig Digits + Number of Zeros e.g., 104 = 100nF	Capacitance Tolerance J = ±5%* K = ±10% M = ±20% *≤1µF only	Failure Rate A=Commercial 4 = Automotive	Terminations Z = FLEXITERM® For FLEXITERM® with Tin/Lead termination see LD Series	Packaging 2 = 7" Reel 4 = 13" Reel	Special Code A = Std.Product

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

KUDEERA AVVXX The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

MLCC with FLEXITERM® **Specifications and Test Methods**

KYOCERa

LOADING KNIFE

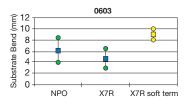
MOUNTING

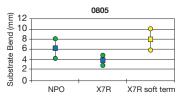
CONTROL

PERFORMANCE TESTING

AEC-0200 Qualification:

- Created by the Automotive Electronics Council
- Specification defining stress test qualification for passive components


Testing:


Key tests used to compare soft termination to AEC-Q200 qualification:

- Bend Test
- **Temperature Cycle Test** .

BOARD BEND TEST RESULTS

AEC-Q200 Vrs FLEXITERM® Bend Test

1210

X7R

X7R soft term

TABLE SUMMARY

Typical bend test results are shown below:

Style	Conventional Termination	FLEXITERM [®]
0603	>2mm	>5mm
0805	>2mm	>5mm
1206	>2mm	>5mm

TEMPERATURE CYCLE TEST PROCEDURE

Test Procedure as per AEC-0200:

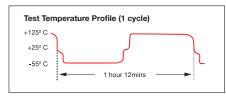
The test is conducted to determine the resistance of the component when it is exposed to extremes of alternating high and low temperatures.

Substrate Bend (mm)

12 10

8

6


4

2

0

NPO

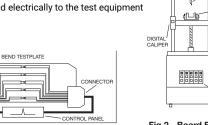
- Sample lot size quantity 77 pieces
- TC chamber cycle from -55°C to +125°C for 1000 cycles
- Interim electrical measurements at 250, 500, 1000 cycles .
- Measure parameter capacitance dissipation factor, insulation resistance

BOARD BEND TEST PROCEDURE

According to AEC-Q200

Test Procedure as per AEC-Q200: Sample size: 20 components Span: 90mm Minimum deflection spec: 2 mm

- Components soldered onto FR4 PCB (Figure 1)
- Board connected electrically to the test equipment (Figure 2)



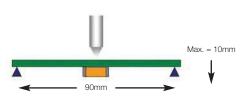
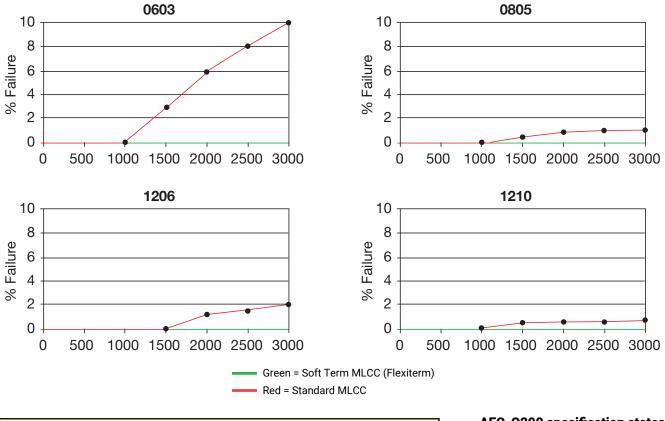

Fig 1 - PCB layout with electrical connections

Fig 2 - Board Bend test equipment

ENHANCED SOFT TERMINATION BEND **TEST PROCEDURE**

Bend Test

The capacitor is soldered to the printed circuit board as shown and is bent up to 10mm at 1mm per second:


- · The board is placed on 2 supports 90mm apart (capacitor side down)
- The row of capacitors is aligned with the load stressing knife

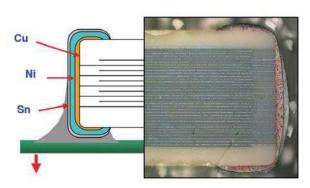
- · The load is applied and the deflection where the part starts to crack is recorded (Note: Equipment detects the start of the crack using a highly sensitive current detection circuit)
- The maximum deflection capability is 10mm

KIDCERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. 1 AVAX

BEYOND 1000 CYCLES: TEMPERATURE CYCLE TEST RESULTS

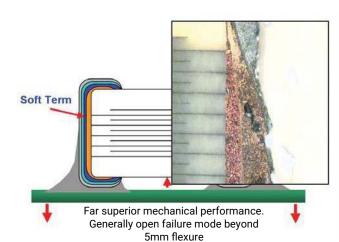
Soft Term - No Defects up to 3000 cycles

FLEXITERM[®] TEST SUMMARY


- Qualified to AEC-Q200 test/specification with the exception of using 3000 temperature cycles (up to +150°C bend test guaranteed greater than 5mm).
- FLEXITERM[®] provides improved performance compared to standard termination systems.

WITHOUT SOFT TERMINATION

AEC-Q200 specification states 1000 cycles compared to 3000 temperature cycles.


KY<u>ocera</u>

- · Board bend test improvement by a factor of 2 to 4 times.
- Temperature Cycling:
- 0% Failure up to 3000 cycles
- No ESR change up to 3000 cycle

Major fear is of latent board flex failures.

WITH SOFT TERMINATION

KUDEERA The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

MLCC with FLEXITERM®

Capacitance Range X8R Dielectric

	SIZE	06	03	08	05	12	06
Sc	oldering	Reflow	/Wave	Reflow	/Wave	Reflow	/Wave
	WVDC	25V	50V	25V	50V	25V	50V
271	Cap 270	G	G				
331	(pF) 330	G	G	J	J		
471	470	G	G	J	J		
681	680	G	G	J	J		
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
182	1800	G	G	J	J	J	J
222	2200	G	G	J	J	J	J
272	2700	G	G	J	J	J	J
332	3300	G	G	J	J	J	J
392	3900	G	G	J	J	J	J
472	4700	G	G	J	J	J	J
562	5600	G	G	J	J	J	J
682	6800	G	G	J	J	J	J
822	8200	G	G	J	J	J	J
	Cap 0.01	G	G	J	J	J	J
	(µF) 0.012	G	G	J	J	J	J
153	0.015	G	G	J	J	J	J
183	0.018	G	G	J	J	J	J
223	0.022	G	G	J	J	J	J
273	0.027	G	G	J	J	J	J
333	0.033	G	G	J	J	J	J
393	0.039	G	G	J	J	J	J
473	0.047	G	G	J	J	J	J
563	0.056	G		N	N	M	M
683	0.068	G		N	N	M	M
823	0.082			N	N	M	M
104	0.1			N	N	M	M
124 154	0.12			N	N	M	M
154	0.15			N N	N	M	M
224							
274	0.22			N		M	M
334	0.27					M	M
334	0.33					M	171
474	0.39					M	
684	0.47					IVI	
824	0.08						
105	0.02						
	WVDC	25V	50V	25V	50V	25V	50V
	SIZE	06			05		06

Letter	А	С	E	G	J	К	М	N	Р	Q	Х	Y	Z
Max. Thickness	0.33 (0.013)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
			PAPER						EMBO	SSED			

TS 16949, ISO 9001Certified

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

MLCC with FLEXITERM®

Capacitance Range X7R Dielectric

	Size			0402		1			06	03					0	805						120	5				12	10		18	12		2220	
	Solderi	na	Refl	ow/V	Vave	1		R	eflow	/Wave					Reflo	w/Wa	ve				Re	flow/\	Nave				Reflov	v Only	/	Reflov	v Only	Re	flow O	nlv
	WVDC		16V	25V	50V	10V	16V	25V	50V	100 V	200V	250V	16V	25V	50V	100 V	200V	250V	16V	25V	50V	100 V	200V	250V	500V	16V	25V	50V	100V	50V	100 V	25V	50V	100 V
221	Cap	220	С	С	С											С																		
271	(pF)	270	С	С	C																													
331		330	С	C	C																													
391		390	С	С	C																													
471		470	С	С	C																													
561		560	С	С	C																													
681		680	С	С	С																													
821		820	С	C	C																													
102		1000	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	Κ	K	K	K	N	N			
182		1800	С	С	C		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	Κ	Κ	K	K	N	N			
222		2200	С	C	C		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	Κ	Κ	K	K	N	N			
332		3300	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	Κ	Κ	K	K	N	N			
472		4700	С	С	C		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	Κ	K	K	N	N			
103	Сар	0.01	С				G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	Κ	K	K	N	N			
123	(µF)	0.012	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		Κ	Κ	K	K	N	N			
153		0.015	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	Κ	K	K	N	N			
183		0.018	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	Κ	K	K	N	N			
223		0.022	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	Κ	K	K	N	N			
273		0.027	С				G	G	G				J	J	J	Ν	N	N	J	J	J	J	J	J		K	Κ	K	K	N	N			
333		0.033	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		Κ	Κ	K	K	N	N			
473		0.047					G	G	G				J	J	J	Ν	N	N	J	J	J	М	J	J		Κ	Κ	K	K	N	N			
563		0.056					G	G	G				J	J	J	N			J	J	J	М	J	J		K	Κ	K	M	N	N			1
683		0.068					G	G	G				J	J	J	N			J	J	J	М	J	J		Κ	Κ	K	M	N	N			
823		0.082					G	G	G				J	J	J	N			J	J	J	М	J	J		K	Κ	K	M	N	N			
104		0.1	С				G	G	G				J	J	J	N			J	J	J	М	J	J		K	Κ	K	M	N	N			
124		0.12											J	J	N	Ν			J	J	М	М				Κ	K	K	Р	N	N			
154		0.15											М	N	N	N			J	J	М	М				K	K	K	P	N	N			
224		0.22				G	J	J	J				М	Ν	Ν	N			J	М	М	Q				М	М	M	Р	N	N			
334		0.33											Ν	Ν	N	N			J	М	Р	Q				Р	Р	P	Q	X	Х			
474		0.47				J	J	J					Ν	Ν	Ν	N			М	М	Р	Q				Р	Р	P	Q	Х	Х			
684		0.68											Ν	Ν	Ν	N			М	Q	Q	Q				Р	Р	Q	Х	Х	Х			
105		1											Ν	N	N	N			М	Q	Q	Q				Р	Q	Q	Z	X	Х			
155		1.5											Ν	Ν					Q	Q	Q					Р	Q	Z	Z	Х	Х			
225		2.2											Ν	N					Q	Q	Q					Х	Ζ	Z	Z	Z	Z			
335		3.3																	Q	Q						Х	Z	Z	Z	Z				
475		4.7																	Q	Q						Х	Ζ	Z	Z	Z				Z
106		10																								Ζ	Z	Z					Z	Z
226		22																														Ζ		
	WVDC		16V			10V	16V	25V			200V	250V	16V	25V	50V	100 V	200V	250V	16V	25V	50V			250V	500V	16V			100 V	50V	100 V	25V		100 V
	Size			0402					06	03					C	805						120	5				12	10		18	12		2220	

Letter	A	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
	PAPER					EMBOSSED							

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

FLEXISAFE MLC Chips

General Specifications and Capacitance Range For Ultra Safety Critical Applications

KYOCERA AVX have developed a range of components specifically for safety critical applications.

Utilizing the award-winning FLEXITERM[™] layer in conjunction with the cascade design previously used for high voltage MLCCs, a range of ceramic capacitors is now available for customers who require components designed with an industry leading set of safety features.

The FLEXITERM[™] layer protects the component from any damage to the ceramic resulting from mechanical stress during PCB assembly or use with end customers. Board flexure type mechanical damage accounts for the majority of MLCC failures. The addition of the cascade structure protects the component from low insulation resistance failure resulting from other common causes for failure; thermal stress damage, repetitive strike ESD damage and placement damage. With the inclusion of the cascade design structure to complement the FLEXITERM[™] layer, the FLEXISAFE range of capacitors has unbeatable safety features. Flexisafe capacitors are qualified in accordance with AEC-Q200 standard. AEC-Q200 detailed qualification data is available on request

HOW TO ORDER

FS05	5	C │	104	K ⊤	Q ⊤	Z ↓	2 ⊤	A ↓
Size FS03 = 0603 FS05 = 0805 FS06 = 1206 FS10 = 1210	Voltage 16V = Y 25V = 3 50V = 5 100V = 1	Dielectric X7R = C	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros e.g. 10µF =106	Capacitance Tolerance J = ±5% K = ±10% M = ±20%	Failure Rate A = Commercial 4 = Automotive Q = APS	Terminations Z = FLEXITERM™ *X = FLEXITERM™ with 5% min lead *Not RoHS Compliant	Packaging 2 = 7" Reel 4 = 13" Reel	Special Code A = Std.Product

CAPACITANCE RANGE FLEXISAFE X7R

SI	SIZE FS03 = 0603					FS05 =	= 0805		FS06 = 1206			FS10 = 1210			
W١	/DC	16	25	50	100	16	25	50	100	16	25	50	16	25	50
102	1000	G	G	G	G	J	J	J	J	J	J	J			
182	1800	G	G	G	G	J	J	J	J	J	J	J			
222	2200	G	G	G	G	J	J	J	J	J	J	J			
332	3300	G	G	G	G	J	J	J	J	J	J	J			
472	4700	G	G	G	G	J	J	J	J	J	J	J			
682	6800	G	G	G	G	J	J	J	J	J	J	J			
103	0.01	G	G	G	G	J	J	J	J	J	J	J			
123	0.012	G	G	G		J	J	J	J	J	J	J			
153	0.015	G	G	G		J	J	J	J	J	J	J			
183	0.018	G	G	G		J	J	J	J	J	J	J			
223	0.022	G	G	G		N	Ν	N	Ν	J	J	J			
273	0.027					N	Ν	N	Ν	J	J	J			
333	0.033					N	Ν	N	Ν	J	J	J			
473	0.047					N	N	N	Ν	М	M	М			
563	0.056					N	N	N	N	М	M	М			
683	0.068					N	N	N	N	М	M	M			
823	0.082					N	N	N	N	М	M	М			Ļ
104	0.1					N	N	N	N	М	M	М			Ļ
124	0.12									М	M	М			ļ
154	0.15									М	М	М	Q	Q	Q
224	0.22												Q	Q	Q
334	0.33												Q	Q	Q
474	0.47												Q	Q	Q

Letter	G	J	М	N	Q		
Max. Thickness	0.90 (0.035)	0.94 (0.037)	1.27 (0.050)	1.40 (0.055)	1.78 (0.070)		
	PAF	PER	EMBOSSED				

KUDEERA AVV/C The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

BENEFITS OF USING CAPACITOR ARRAYS

KYOCERA AVX capacitor arrays offer designers the opportunity to lower placement costs, increase assembly line output through lower component count per board and to reduce real estate requirements.

Reduced Costs

Placement costs are greatly reduced by effectively placing one device instead of four or two. This results in increased throughput and translates into savings on machine time. Inventory levels are lowered and further savings are made on solder materials, etc.

Space Saving

Space savings can be quite dramatic when compared to the use of discrete chip capacitors. As an example, the 0508 4-element array offers a space reduction of >40% vs. 4 x 0402 discrete capacitors and of >70% vs. 4 x 0603 discrete capacitors. (This calculation is dependent on the spacing of the discrete components.)

Increased Throughput

Assuming that there are 220 passive components placed in a mobile phone:

A reduction in the passive count to 200 (by replacing discrete components with arrays) results in an increase in throughput of approximately 9%.

A reduction of 40 placements increases throughput by 18%.

For high volume users of cap arrays using the very latest placement equipment capable of placing 10 components per second, the increase in throughput can be very significant and can have the overall effect of reducing the number of placement machines required to mount components:

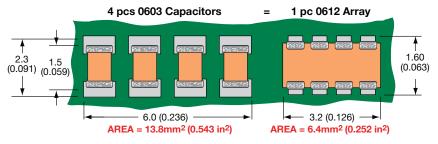
🔀 KYOCERa

If 120 million 2-element arrays or 40 million 4-element arrays were placed in a year, the requirement for placement equipment would be reduced by one machine.

During a 20Hr operational day a machine places 720K components. Over a working year of 167 days the machine can place approximately 120 million. If 2-element arrays are mounted instead of discrete components, then the number of placements is reduced by a factor of two and in the scenario where 120 million 2-element arrays are placed there is a saving of one pick and place machine.

Smaller volume users can also benefit from replacing discrete components with arrays. The total number of placements is reduced thus creating spare capacity on placement machines. This in turn generates the opportunity to increase overall production output without further investment in new equipment.

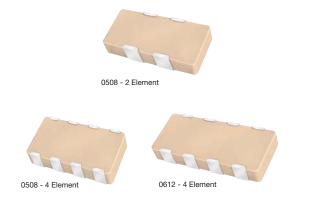
4 pcs 0402 Capacitors = 1 pc 0508 Array


AREA = 7.0mm² (0.276 in²)

W2A (0508) Capacitor Arrays

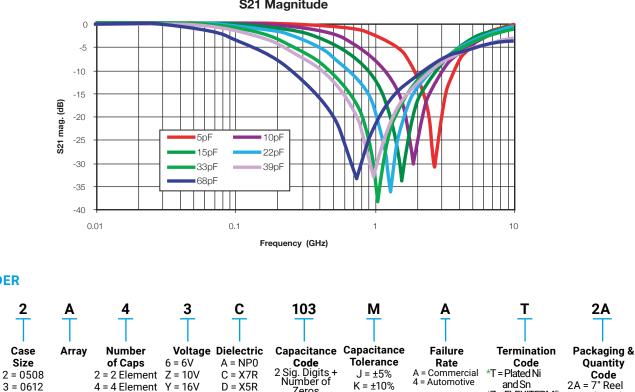
The 0508 4-element capacitor array gives a PCB space saving of over 40% vs four 0402 discretes and over 70% vs four 0603 discrete capacitors.

AREA = 3.95mm² (0.156 in²)


W3A (0612) Capacitor Arrays

The 0612 4-element capacitor array gives a PCB space saving of over 50% vs four 0603 discretes and over 70% vs four 0805 discrete capacitors.

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.



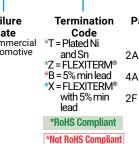
GENERAL DESCRIPTION

KYOCERA AVX is the market leader in the development and manufacture of capacitor arrays. The array family of products also includes the 0612 4-element device as well as 0508 2-element and 4-element series, all of which have received widespread acceptance in the marketplace.

KYOCERA AVX capacitor arrays are available in X5R, X7R and NP0 (C0G) ceramic dielectrics to cover a broad range of capacitance values. Voltage ratings from 6.3 Volts up to 100 Volts are offered. KYOCERA AVX also now offers a range of automotive capacitor arrays qualified to AEC-Q200 (see separate table).

Key markets for capacitor arrays are Mobile and Cordless Phones, Digital Set Top Boxes, Computer Motherboards and Peripherals as well as Automotive applications, RF Modems, Networking Products, etc.

AVX Capacitor Array - W2A41A***K S21 Magnitude


Style Case W = ŘoHS

HOW TO ORDER

W

2

L = SnPb3 = 0612

(4000)

13" Reel =

(10000) = 7" Reel

(1000)

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

M = ±20%

KIDCERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

032417

Zeros

3 = 25V

5 = 50V

1 = 100V

	SIZE		W	2 = 05	08	W	3 = 061	2
# E	lemen	ts		4			4	
	oldering		Re	flow/Wa	ave	Re	flow/Wa	ve
	ackaqinq			er/Embos			er/Embos	
		mm	1.30 ± 0.15			1.60 ± 0.150		
Length		(in.)	(0.	051 ± 0.0	06)	(0.063 ± 0.006)		
Width		mm (in.)		2.10 ± 0.1 083 ± 0.0			.20 ± 0.20 126 ± 0.00	
Max.		mm	(0.	0.94	00)	(0.	1.35	,0)
Thicknes		(in.)		(0.037)			(0.053)	
	WVDC		16	25	50	16	25	50
1R0	Сар	1.0						
1R2	(pF)	1.2						
1R5		1.5						
1R8 2R2		1.8 2.2						
2R2 2R7		2.2						
3R3		3.3						
3R9		3.9						
4R7		4.7						
5R6		5.6						
6R8		6.8						
8R2		8.2						
100		10						
120		12						
150		15						
180		18						
220		22						
270 330		27 33						
390		39 39						
470		47						
560		56						
680		68						
820		82						
101		100						
121		120						
151		150						
181		180						
221		220						
271		270						
331 391		330 390						
471		390 470						
561		560						
681		680						
821		820						
102		1000				i i		
122		1200						
152		1500						
182		1800						7
222		2200						
272		2700						
332		3300						
392 472		3900						
472 562		4700 5600						
682		5600 6800						
822		8200						
özZ		ŏ∠uU						

= Supported Values

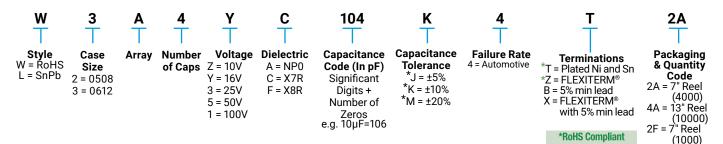
KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

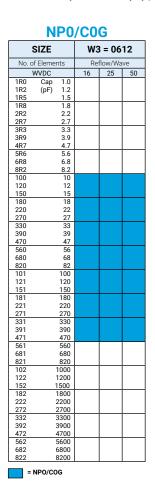
Capacitor Array Capacitance Range – X7R

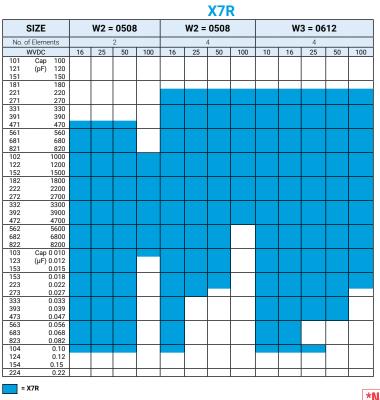
	SIZE	- 1			N2 -	050	8			V	12 -	050	Q			V	V3 =	061	2	
±	Elements					2	0			V		4	0			V	<u>v</u> 5 - 4		2	
п	Soldering					v/Wav	e		Reflow/Wave				Reflow/Wave							
	Packaqinq			All Paper			Paper/Embossed				Paper/Embossed									
Lengt		ım 🛛		1.30 ± 0.15				(± 0.15	-				1.60 ±					
	()	n.) ım		((± 0.00 ± 0.15				((± 0.00 ± 0.15				((0.063 :	± 0.00 ± 0.20	6)	
Width		n.)		((± 0.13 ± 0.00				(0		± 0.15 ± 0.00				((3.20 :).126 :		8)	
Max.		im				94	-)					94	-/					35	-/	
Thick	ness (ir	n.)				037))37)					(0.0			
101	WVDC Cap 1	00	6	10	16	25	50	100	6	10	16	25	50	100	6	10	16	25	50	100
121		20																		
151		50																		
181		80																		
221 271		20 70																		
331		30																		
391	3	90																		
471		70																		
561 681		60 80																		
821		20																		
102	10	00																		
122	12																			
152	<u>15</u> 18																			
222	22																			
272	27	00																		
332	33																			
392 472	39 47																			
562	56																			
682	68																			
822	82																			
103 123	Cap 0.0 (μF) 0.0																			
153	(µr) 0.0																			
183	0.0																			
223 273	0.0 0.0																			
333	0.0																<u> </u>			
393	0.0																			
473	0.0																			
563 683	0.0 0.0																			
823	0.0																			
104	0.	10																		
124		12																		
154		15 18																		
224	0.	22																		
274		27																		<u> </u>
334 474		33 47																		
564		56																		
684	0.	68																		
824		82																		
105		1.0		\vdash																
155		1.5																		
185	1	1.8																		
225		2.2																		
335 475		3.3 4.7																		
106		10			L															
226		22																		
476		47																		
107	1	00					1	L												

KUCERE KWXC The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Capacitor Array Automotive Capacitor Array (IPC)

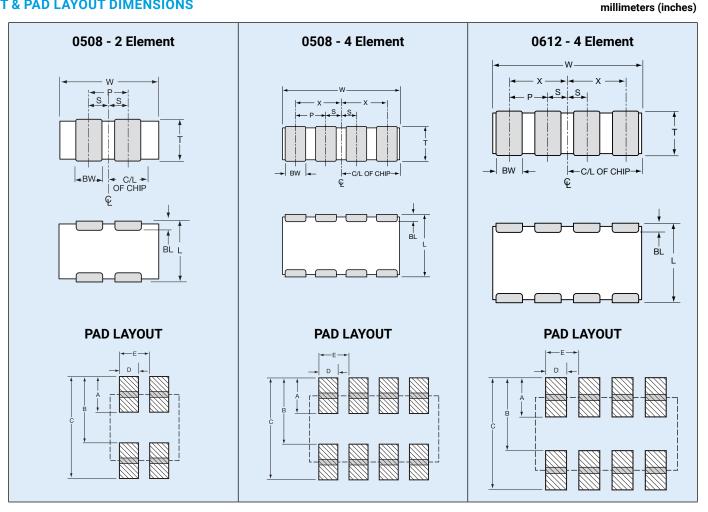



As the market leader in the development and manufacture of capacitor arrays KYOCERA AVX is pleased to offer a range of AEC-Q200 qualified arrays to compliment our product offering to the Automotive industry. Both the KYOCERA AVX 0612 and 0508 4-element capacitor array styles are qualified to the AEC-Q200 automotive specifications.


AEC-Q200 is the Automotive Industry qualification standard and a detailed qualification package is available on request. All KYOCERA AVX automotive capacitor array production facilities are certified to ISO/TS 16949:2002.

HOW TO ORDER

*Contact factory for availability by part number for K = ±10% and J = ±5% tolerance.



For RoHS compliant products

 CANCE The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. 1 AVAX

PART & PAD LAYOUT DIMENSIONS

PART DIMENSIONS

0508 - 2 Element

L	W	Т	BW	BL	Р	s
1.30 ± 0.15	2.10 ± 0.15	0.94 MAX	0.43 ± 0.10	0.33 ± 0.08	1.00 REF	0.50 ± 0.10
(0.051 ± 0.006)	(0.083 ± 0.006)	(0.037 MAX)	(0.017±0.004)	(0.013 ± 0.003)	(0.039 REF)	(0.020 ± 0.004)

0508 - 4 Element

L	W	Т	BW	BL	Р	Х	S
1.30 ± 0.15	2.10 ± 0.15	0.94 MAX	0.25 ± 0.06	0.20 ± 0.08	0.50 REF	0.75 ± 0.10	0.25 ± 0.10
(0.051 ± 0.006)	(0.083 ± 0.006)	(0.037 MAX)	(0.010 ± 0.003)	(0.008 ± 0.003)	(0.020 REF)	(0.030 ± 0.004)	(0.010 ± 0.004)

0612 - 4 Element

L	w	Т	BW	BL	Р	Х	S
1.60 ± 0.20	3.20 ± 0.20	1.35 MAX	0.41 ± 0.10		0.76 REF	1.14 ± 0.10	0.38 ± 0.10
(0.063±0.008)	(0.126 ± 0.008)	(0.053 MAX)	(0.016 ± 0.004)	(0.007+0.010) -0.003	(0.030 REF)	(0.045±0.004)	(0.015±0.004)

PAD LAYOUT DIMENSIONS

0508 - 2 Element

Α	В	C	D	E
0.68	1.32	2.00	0.46	1.00
(0.027)	(0.052)	(0.079)	(0.018)	(0.039)

0508 - 4 Element

Α	В	С	D	E
0.56	1.32	1.88	0.30	0.50
(0.022)	(0.052)	(0.074)	(0.012)	(0.020)

0612 - 4 Element

Α	В	С	D	E
0.89	1.65	2.54	0.46	0.76
(0.035)	(0.065)	(0.100)	(0.018)	(0.030)

KUCERE The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Low Inductance Capacitors Introduction

The signal integrity characteristics of a Power Delivery Network (PDN) are becoming critical aspects of board level and semiconductor package designs due to higher operating frequencies, larger power demands, and the ever shrinking lower and upper voltage limits around low operating voltages. These power system challenges are coming from mainstream designs with operating frequencies of 300MHz or greater, modest ICs with power demand of 15 watts or more, and operating voltages below 3 volts.

The classic PDN topology is comprised of a series of capacitor stages. Figure 1 is an example of this architecture with multiple capacitor stages.

An ideal capacitor can transfer all its stored energy to a load instantly. A real capacitor has parasitics that prevent instantaneous transfer of a capacitor's stored energy. The true nature of a capacitor can be modeled as an RLC equivalent circuit. For most simulation purposes, it is possible to model the characteristics of a real capacitor with one capacitor, one resistor, and one inductor. The RLC values in this model are commonly referred to as equivalent series capacitance (ESC), equivalent series resistance (ESR), and equivalent series inductance (ESL).

The ESL of a capacitor determines the speed of energy transfer to a load. The lower the ESL of a capacitor, the faster that energy can be transferred to a load. Historically, there has been a tradeoff between energy storage (capacitance) and inductance (speed of energy delivery). Low ESL devices typically have low capacitance. Likewise, higher capacitance devices typically have higher ESLs. This tradeoff between ESL (speed of energy delivery) and capacitance (energy storage) drives the PDN design topology that places the fastest low ESL capacitors as close to the load as possible. Low Inductance MLCCs are found on semiconductor packages and on boards as close as possible to the load.

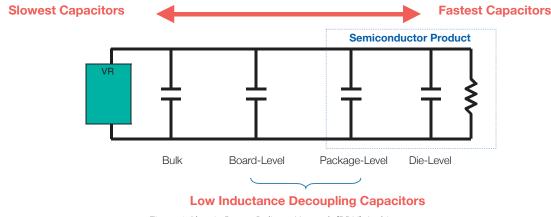


Figure 1 Classic Power Delivery Network (PDN) Architecture

LOW INDUCTANCE CHIP CAPACITORS

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL. A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer side of its rectangular shape.

When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC.

INTERDIGITATED CAPACITORS

The size of a current loop has the greatest impact on the ESL characteristics of a surface mount capacitor. There is a secondary method for decreasing the ESL of a capacitor. This secondary method uses adjacent opposing current loops to reduce ESL. The InterDigitated Capacitor (IDC) utilizes both primary and secondary methods of reducing inductance. The IDC architecture shrinks the distance between terminations to minimize the current loop size, then further reduces inductance by creating adjacent opposing current loops.

An IDC is one single capacitor with an internal structure that has been optimized for low ESL. Similar to standard MLCC versus LICCs, the reduction in ESL varies by EIA case size. Typically, for the same EIA size, an IDC delivers an ESL that is at least 80% lower than an MLCC.

😢 KUDEERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. 1 AVAX

Low Inductance Capacitors

Introduction

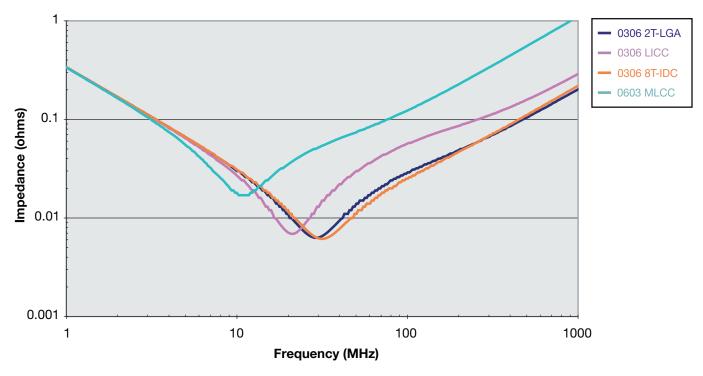
LAND GRID ARRAY (LGA) CAPACITORS

Land Grid Array (LGA) capacitors are based on the first Low ESL MLCC technology created to specifically address the design needs of current day Power Delivery Networks (PDNs). This is the 3rd low inductance capacitor technology developed by KYOCERA AVX. LGA technology provides engineers with new options. The LGA internal structure and manufacturing technology eliminates the historic need for a device to be physically small to create small current loops to minimize inductance.

The first family of LGA products are 2 terminal devices. A 2 terminal 0306 LGA delivers ESL performance that is equal to or better than an 0306 8 terminal IDC. The 2 terminal 0805 LGA delivers ESL performance that approaches the 0508 8 terminal IDC. New designs that would have used 8 terminal IDCs are moving to 2 terminal LGAs because the layout is easier for a 2 terminal device and manufacturing yield is better for a 2 terminal LGA versus an 8 terminal IDC.

LGA technology is also used in a 4 terminal family of products that KYOCERA AVX is sampling and will formerly introduce in 2008. Beyond 2008, there are new multi-terminal LGA product families that will provide even more attractive options for PDN designers.

LOW INDUCTANCE CHIP ARRAYS (LICA®)


The LICA® product family is the result of a joint development effort between KYOCERA AVX and IBM to develop a high performance MLCC family of decoupling capacitors. LICA was introduced in the 1980s and remains the leading choice of designers in high performance semiconductor packages and high reliability board level decoupling applications.

🔇 KYOCERa

LICA[®] products are used in 99.999% uptime semiconductor package applications on both ceramic and organic substrates. The C4 solder ball termination option is the perfect compliment to flip-chip packaging technology. Mainframe class CPUs, ultimate performance multi-chip modules, and communications systems that must have the reliability of 5 9's use LICA[®].

LICA[®] products with either Sn/Pb or Pb-free solder balls are used for decoupling in high reliability military and aerospace applications. These LICA[®] devices are used for decoupling of large pin count FPGAs, ASICs, CPUs, and other high power ICs with low operating voltages.

When high reliability decoupling applications require the very lowest ESL capacitors, $LICA^{\oplus}$ products are the best option.

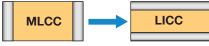
470 nF 0306 Impedance Comparison

Figure 2 MLCC, LICC, IDC, and LGA technologies deliver different levels of equivalent series inductance (ESL).

Low Inductance Ceramic Capacitors LICC (Low Inductance Chip Capacitors) 0306/0508/0612 RoHS Compliant

GENERAL DESCRIPTION

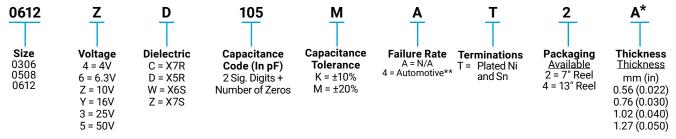
The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL.


A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer sides of its rectangular shape. The image on the right shows the termination differences between an MLCC and an LICC.

When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC.

KYOCERA AVX LICC products are available with a lead-free finish of plated Nickel/Tin.

KYOCERa

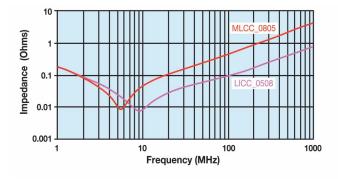


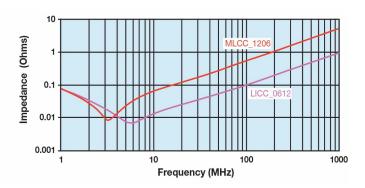
PERFORMANCE CHARACTERISTICS

Capacitance Tolerances	K = ±10%; M = ±20%
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C
Temperature Coefficient	X7R, X5R = ±15%; X7S = ±22%
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	4V, 6.3V = 6.5% max; 10V = 5.0% max; 16V = 3.5% max; 25V = 3.0% max
Insulation Resistance (@+25°C, RVDC)	100,000M Ω min, or 1,000M Ω per μF min.,whichever is less

ROHS COMPLIANT

HOW TO ORDER




*See the thickness tables on the next page.

**Select voltages for Automotive version, contact factory

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

TYPICAL IMPEDANCE CHARACTERISTICS

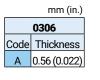
KUDEERA The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

081919

Low Inductance Ceramic Capacitors

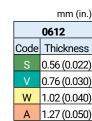
LICC (Low Inductance Chip Capacitors) 0306/0508/0612 RoHS Compliant

	SIZE			0306					0508					0612)	
	SIZE ckaging			nboss			<u> </u>		nboss			<u> </u>		1boss		
Lenath	mm			31 + 0.			1.27 + 0.25				1.60 + 0.25					
Length	(in.)		(0.032 ± 0.006)						50 ± 0.			(0.063 ± 0.010) 3.20 + 0.25				
Width	mm (in.)		1.60 + 0.15 (0.063 ± 0.006))0 + 0. 30 ± 0.					20 + 0 26 ± 0			
Cap Code	WVDC	4	6.3	10	16	25	6.3	10	16	25	50	6.3	10	16	25	50
102	Cap 0.001		Α	Α	Α	Α	V	V	V	V	V	S	S	S	S	V
222	(µF) .0022		Α	Α	Α	А	S	S	S	S	V	S	S	S	S	V
332	0.0033		А	А	Α	А	S	S	S	S	V	S	S	S	S	V
472	0.0047		Α	А	Α	А	S	S	S	S	V	S	S	S	S	V
682	0.0068		Α	А	А	Α	S	S	S	S	V	S	S	S	S	V
103	0.01		А	А	Α	Α	S	S	S	S	V	S	S	S	S	V
153	0.015		Α	А	Α	Α	S	S	S	S	V	S	S	S	S	W
223	0.022		Α	А	Α	Α	S	S	S	S	V	S	S	S	S	W
333	0.033		Α	А	Α		S	S	S	۷	V	S	S	S	S	W
473	0.047		Α	А	Α		S	S	S	۷	А	S	S	S	S	W
683	0.068		Α	А	Α		S	S	S	А	Α	S	S	S	V	W
104	0.1		Α	А	VK/		S	S	V	Α	Α	S	S	S	V	W
154	0.15		Α	А			S	S	V			S	S	S	W	W
224	0.22		Α	А			S	S	Α			S	S	V	W	
334	0.33						۷	V	А			S	S	V		
474	0.47						V	V	/K/			S	S	V		
684	0.68						А	Α				V	۷	W		
105	1	A					Α	А				V	۷	А		
155	1.5						/K/					W	W			
225	2.2											А	А			
335	3.3											(K)				
475	4.7															
685	6.8															
106	10															

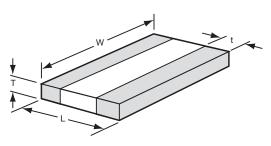

Solid = X7R

= X5R

1.02 (0.040)


|||||| = X7S

= X6S

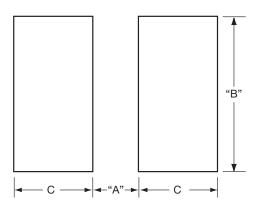


А

PHYSICAL DIMENSIONS AND

PAD LAYOUT

KY<u>OCERa</u>


PHYSICAL DIMENSIONS

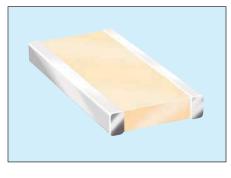
			MM (IN.)
Size	L	W	t
0206	0.81 ± 0.15	1.60 ± 0.15	0.13 min.
0306	(0.032 ± 0.006)	(0.063 ± 0.006)	(0.005 min.)
0508	1.27 ± 0.25	2.00 ± 0.25	0.13 min.
0508	(0.050 ± 0.010)	(0.080 ± 0.010)	(0.005 min.)
0612	1.60 ± 0.25	3.20 ± 0.25	0.13 min.
0012	(0.063 ± 0.010)	(0.126 ± 0.010)	(0.005 min.)

T - See Range Chart for Thickness and Codes

PAD LAYOUT DIMENSIONS

			MM (IN.)
Size	Α	В	C
0306	0.31 (0.012)	1.52 (0.060)	0.51 (0.020)
0508	0.51 (0.020)	2.03 (0.080)	0.76 (0.030)
0612	0.76 (0.030)	3.05 (0.120)	0.635 (0.025)

Low Inductance Capacitors with SnPb Terminations LD16/LD17/LD18 Tin-Lead Termination "B"


GENERAL DESCRIPTION

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL.

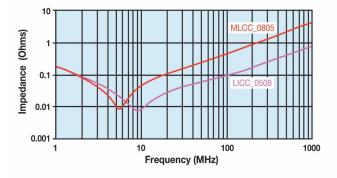
A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer sides of its rectangular shape. The image on the right shows the termination differences between an MLCC and an LICC.

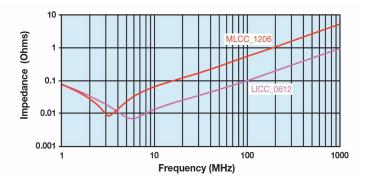
When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC.

AVX LICC products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues.

PERFORMANCE CHARACTERISTICS

Capacitance Tolerances	K = ±10%; M = ±20%
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C
Temperature Coefficient	X7R, X5R = ±15%; X7S = ±22%
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	4V, 6.3V = 6.5% max; 10V = 5.0% max; 16V = 3.5% max; 25V = 3.0% max
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μF min.,whichever is less


HOW TO ORDER



*See the thickness tables on the next page.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

TYPICAL IMPEDANCE CHARACTERISTICS

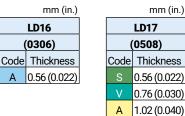
KUDEERA AVV/C The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Low Inductance Capacitors with SnPb Terminations

LD16/LD17/LD18 Tin-Lead Termination "B"

-	SIZE	(0.032 ± 0.006)					(LD17 0508	3)		(LD18	2)		
Length	mm (in.)						1.2	27 ± 0. 50 ± 0.	25 010)	Embossed 1.60 ± 0.25 (0.063 ± 0.010)					
Width	mm (in.)	(1.60 ± 1.063 ±		5))0 ± 0. 30 ± 0.					20 ± 0. 26 ± 0.		
Cap Code	WVDC	6.3	10	16	25	6.3	10	16	25	50	6.3	10	16	25	50
102	Cap 0.001	А	А	A	Α	S	S	S	S	۷	S	S	S	S	V
222	(µF) .0022	А	А	A	А	S	S	S	S	۷	S	S	S	S	V
332	0.0033	А	Α	A	А	S	S	S	S	۷	S	S	S	S	V
472	0.0047	А	Α	A	Α	S	S	S	S	۷	S	S	S	S	V
682	0.0068	А	Α	A	Α	S	S	S	S	۷	S	S	S	S	V
103	0.01	А	Α	A	А	S	S	S	S	۷	S	S	S	S	V
153	0.015	А	Α	A	Α	S	S	S	S	۷	S	S	S	S	W
223	0.022	А	Α	A	А	S	S	S	S	۷	S	S	S	S	W
333	0.033	А	Α	A		S	S	S	V	۷	S	S	S	S	W
473	0.047	А	Α	Α		S	S	S	V	А	S	S	S	S	W
683	0.068	А	Α	A		S	S	S	А	Α	S	S	S	V	W
104	0.1	А	Α	(K)		S	S	V	А	Α	S	S	S	V	W
154	0.15	А	Α			S	S	V			S	S	S	W	W
224	0.22	А	Α			S	S	Α			S	S	V	W	
334	0.33					۷	V	Α			S	S	V		
474	0.47					V	V	/K/			S	S	V		
684	0.68					Α	А				V	۷	W		
105	1					А	Α				V	V	Α		
155	1.5					K					W	W			
225	2.2										Α	Α			
335	3.3										K				
475	4.7														
685	6.8														
106	10														

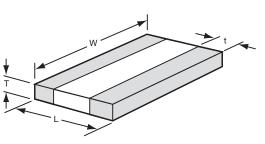
Solid = X7R


LD16

(0306)

Α

mm (in.)



= X6S
mm (in

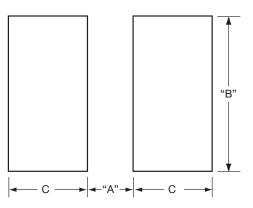
	mm (in.)									
LD18										
(0612)										
Code Thickness										
S	0.56 (0.022)									
V	0.76 (0.030)									
W	1.02 (0.040)									
А	1.27 (0.050)									

PHYSICAL DIMENSIONS AND

PAD LAYOUT

KY<u>OCERa</u>

....


PHYSICAL DIMENSIONS

			MM (IN.)
Size	L	W	t
LD16	0.81 ± 0.15	1.60 ± 0.15	0.13 min.
(0306)	(0.032 ± 0.006)	(0.063 ± 0.006)	(0.005 min.)
LD17	1.27 ± 0.25	2.00 ± 0.25	0.13 min.
(0508)	(0.050 ± 0.010)	(0.080 ± 0.010)	(0.005 min.)
LD18	1.60 ± 0.25	3.20 ± 0.25	0.13 min.
(0612)	(0.063 ± 0.010)	(0.126 ± 0.010)	(0.005 min.)

T - See Range Chart for Thickness and Codes

PAD LAYOUT DIMENSIONS

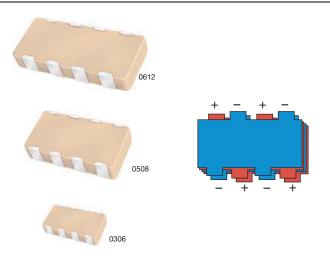
			MM (IN.)
Size	Α	В	C
LD16 (0306)	0.31 (0.012)	1.52 (0.060)	0.51 (0.020)
LD17 (0508)	0.51 (0.020)	2.03 (0.080)	0.76 (0.030)
LD18 (0612)	0.76 (0.030)	3.05 (0.120)	0.635 (0.025)

KUDERA | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available AWXX online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

041416

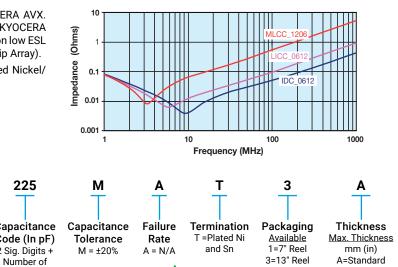
IDC Low Inductance Capacitors (RoHS) IDC (InterDigitated Capacitors) 0306/0612/0508

GENERAL DESCRIPTION

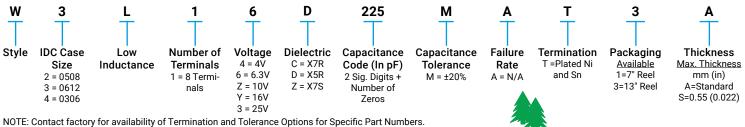

Inter-Digitated Capacitors (IDCs) are used for both semiconductor package and board level decoupling. The equivalent series inductance (ESL) of a single capacitor or an array of capacitors in parallel determines the response time of a Power Delivery Network (PDN). The lower the ESL of a PDN, the faster the response time. A designer can use many standard MLCCs in parallel to reduce ESL or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC devices are available in versions with a maximum height of 0.95mm or 0.55mm.

IDCs are typically used on packages of semiconductor products with power levels of 15 watts or greater. Inter-Digitated Capacitors are used on CPU, GPU, ASIC, and ASSP devices produced on 0.13µ, 90nm, 65nm, and 45nm processes. IDC devices are used on both ceramic and organic package substrates. These low ESL surface mount capacitors can be placed on the bottom side or the top side of a package substrate. The low profile 0.55mm maximum height IDCs can easily be used on the bottom side of BGA packages or on the die side of packages under a heat spreader.

IDCs are used for board level decoupling of systems with speeds of 300MHz or greater. Low ESL IDCs free up valuable board space by reducing the number of capacitors required versus standard MLCCs. There are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors.


The Inter-Digitated Capacitor (IDC) technology was developed by KYOCERA AVX. This is the second family of Low Inductance MLCC products created by KYOCERA AVX. IDCs are a cost effective alternative to KYOCERA AVX's first generation low ESL family for high-reliability applications known as LICA (Low Inductance Chip Array).

KYOCERA AVX IDC products are available with a lead-free finish of plated Nickel/ Tin.



XKYOCERa

TYPICAL IMPEDANCE

HOW TO ORDER

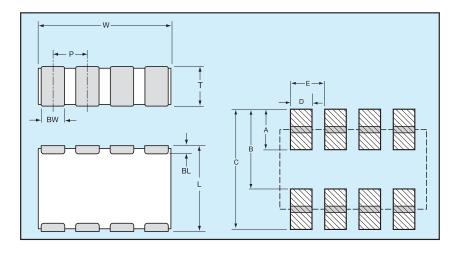
PERFORMANCE CHARACTERISTICS

Capacitance Tolerance	±20% Preferred
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C
Temperature Coefficient	±15% (0VDC), ±22% (X7S)
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	≤ 6.3V = 6.5% max; 10V = 5.0% max; ≥ 16V = 3.5% max
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μF min.,whichever is less

Dissipation Factor	No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current
CTE (ppm/C)	12.0
Thermal Conductivity	4-5W/M K
Terminations Available	Plated Nickel and Solder

RoHS COMPLIANT

😢 KUDEERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.


IDC Low Inductance Capacitors (RoHS)

IDC (InterDigitated Capacitors) 0306/0612/0508

SIZE	W4 =	0306		W2 =	Thin	0508	3		W2	2 = 05	608		W	3= Tł	nin 06	12		W3	3 = 06	512	-	W3	= TH	ICK 0	612
Max. mm	0.5	55		0.55.			0.95				0.55			0.95				1.22							
Thickness (in.)	(0.0	22)		(0.022	2)			(0.037	')			(0.0	022)			(0.037	7)		(0.048)			
WVDC	4	6.3	4	6.3	10	16	25	4	6.3	10	16	25	4	6.3	10	16	4	6.3	10	16	25	4	6.3	10	16
Cap (µF) 0.010																									
0.022																									
0.033																									
0.047																									
0.068																									
0.10																									
0.22																									
0.33																									
0.47																									
0.68																									
1.0																									
1.5																									
2.2																									
3.3																									

PHYSICAL DIMENSIONS AND PAD LAYOUT

Consult factory for additional requirements

PHYSICAL CHIP DIMENSIONS

MILLIMETERS (INCHES)

	SIZE	W	L	BW	BL	Р
	0206	1.60 ± 0.20	0.82 ± 0.10	0.25 ± 0.10	0.20 ± 0.10	0.40 ± 0.05
	0306	(0.063 ± 0.008)	(0.032 ± 0.006)	(0.010 ± 0.004)	(0.008± 0.004)	(0.015 ± 0.002)
ſ	0508	2.03 ± 0.20	1.27 ± 0.20	0.30 ± 0.10	0.25 ± 0.15	0.50 ± 0.05
	0508	(0.080 ± 0.008)	(0.050 ± 0.008)	(0.012 ± 0.004)	(0.010± 0.006)	(0.020 ± 0.002)
ſ	0612	3.20 ± 0.20	1.60 ± 0.20	0.50 ± 0.10	0.25 ± 0.15	0.80 ± 0.10
	0012	(0.126 ± 0.008)	(0.063 ± 0.008)	(0.020 ± 0.004)	(0.010 ± 0.006)	(0.031 ± 0.004)

PAD LAYOUT DI-MENSIONS

SIZE	Α	В	С	D	Е
0306	0.38	0.89	1.27	0.20	0.40
	(0.015)	(0.035)	(0.050)	(0.008)	(0.015)
0508	0.64	1.27	1.91	0.28	0.50
	(0.025)	(0.050)	(0.075)	(0.011)	(0.020)
0612	0.89	1.65	2.54	0.45	0.80
	(0.035)	(0.065)	(0.010)	(0.018)	(0.031)

KUCERE The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

IDC Low Inductance Capacitors (SnPb) IDC (InterDigitated Capacitors) 0306/0612/0508

GENERAL DESCRIPTION

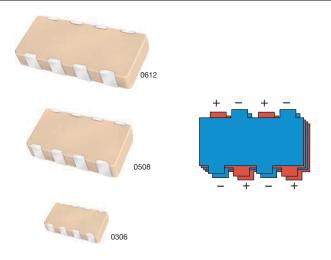
Inter-Digitated Capacitors (IDCs) are used for both semiconductor package and board level decoupling. The equivalent series inductance (ESL) of a single capacitor or an array of capacitors in parallel determines the response time of a Power Delivery Network (PDN). The lower the ESL of a PDN, the faster the response time. A designer can use many standard MLCCs in parallel to reduce ESL or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC devices are available in versions with a maximum height of 0.95mm or 0.55mm.

IDCs are typically used on packages of semiconductor products with power levels of 15 watts or greater. Inter-Digitated Capacitors are used on CPU, GPU, ASIC, and ASSP devices produced on 0.13µ, 90nm, 65nm, and 45nm processes. IDC devices are used on both ceramic and organic package substrates. These low ESL surface mount capacitors can be placed on the bottom side or the top side of a package substrate. The low profile 0.55mm maximum height IDCs can easily be used on the bottom side of BGA packages or on the die side of packages under a heat spreader.

IDCs are used for board level decoupling of systems with speeds of 300MHz or greater. Low ESL IDCs free up valuable board space by reducing the number of capacitors required versus standard MLCCs. There are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors.

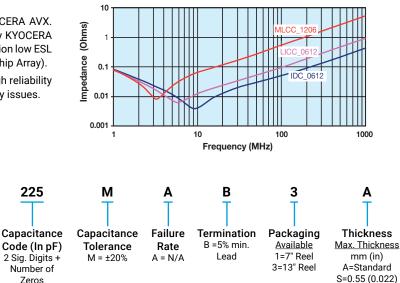
The Inter-Digitated Capacitor (IDC) technology was developed by KYOCERA AVX. This is the second family of Low Inductance MLCC products created by KYOCERA AVX. IDCs are a cost effective alternative to KYOCERA AVX's first generation low ESL family for high-reliability applications known as LICA (Low Inductance Chip Array).

KYOCERA AVX IDC products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues.


1

Number of

Terminals


1 = 8 Termi-

nals

KYOCERa

TYPICAL IMPEDANCE

*Not RoHS Compliant

HOW TO ORDER

3

IDC Case

Size

2 = 0508

3 = 0612

4 = 0306

L

Style

D

Dielectric

C = X7R

D = X5R

Z = X7S

Zeros

6

Voltage

4 = 4V

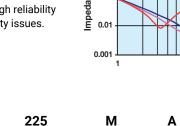
6 = 6.3V

Z = 10V

Y = 16V

3 = 25V

PERFORMANCE CHARACTERISTICS

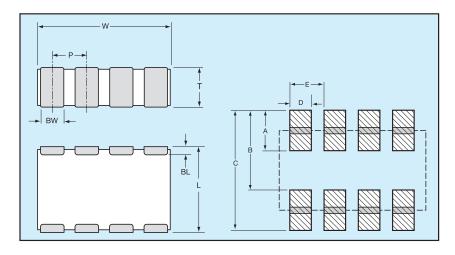

L

Low

Inductance

Capacitance Tolerance	±20% Preferred	
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C	C
Temperature Coefficient	±15% (0VDC), ±22% (X7S)	T T
Voltage Ratings	4, 6.3, 10, 16, 25 VDC	
Dissipation Factor	≤ 6.3V = 6.5% max; 10V = 5.0% max; ≥ 16V = 3.5% max	
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μF min.,whichever is less	

Dissipation Factor	No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current
CTE (ppm/C)	12.0
Thermal Conductivity	4-5W/M K
Terminations Available	Plated Nickel and Solder


😢 KUDEERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

IDC Low Inductance Capacitors (SnPb)

IDC (InterDigitated Capacitors) with Sn/Pb Termination 0306/0612/0508

SIZE	W4 =	0306		W2 =	Thin	0508	3		W2	2 = 05	508		W	3= Tł	nin O6	512		W3	3 = 06	512		W3	= TH	ICK 0	612
Max. mm	0.	55			0.55.					0.95				0	.55				0.95				1.:	22	
Thickness (in.) WVDC	(0.0 4	6.3	4	6.3	(0.022 10) 16	25	4	6.3	(0.037 10) 16	25	4	(0. 6.3	022) 10	16	4	6.3	(0.037 10) 16	25	4	(0.0 6.3	10 10	16
Cap (μF) 0.010		0.3	4	0.3	10	10	25	4	0.3	10	10	25	4	0.3	10	10	4	0.3	10	10	25	4	0.3	10	10
0.022																									
0.033																									
0.047																									
0.068																									
0.10																									
0.22																									
0.33																									
0.47																									
0.68																									
1.0																									
1.5																									
2.2																									
3.3																									

PHYSICAL DIMENSIONS AND PAD LAYOUT

Consult factory for additional requirements

KY<u>OCERa</u>

PHYSICAL CHIP DIMENSIONS

MILLIMETERS (INCHES)

	SIZE	W	L	BW	BL	Р
	0206	1.60 ± 0.20	0.82 ± 0.10	0.25 ± 0.10	0.20 ± 0.10	0.40 ± 0.05
	0306	(0.063 ± 0.008)	(0.032 ± 0.006	(0.010 ± 0.004)	(0.008± 0.004)	(0.015 ± 0.002)
	0508	2.03 ± 0.20	1.27 ± 0.20	0.30 ± 0.10	0.25 ± 0.15	0.50 ± 0.05
	0008	(0.080 ± 0.008)	(0.050 ± 0.008)	(0.012 ± 0.004)	(0.010± 0.006)	(0.020 ± 0.002)
ſ	0612	3.20 ± 0.20	1.60 ± 0.20	0.50 ± 0.10	0.25 ± 0.15	0.80 ± 0.10
	0012	(0.126 ± 0.008)	(0.063 ± 0.008)	(0.020 ± 0.004)	(0.010 ± 0.006)	(0.031 ± 0.004)

PAD LAYOUT DI-MENSIONS

SIZE	Α	В	С	D	Е
0306	0.38	0.89	1.27	0.20	0.40
	(0.015)	(0.035)	(0.050)	(0.008)	(0.015)
0508	0.64	1.27	1.91	0.28	0.50
	(0.025)	(0.050)	(0.075)	(0.011)	(0.020)
0612	0.89	1.65	2.54	0.45	0.80
	(0.035)	(0.065)	(0.010)	(0.018)	(0.031)

KUCERE The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

LGA Low Inductance Capacitors

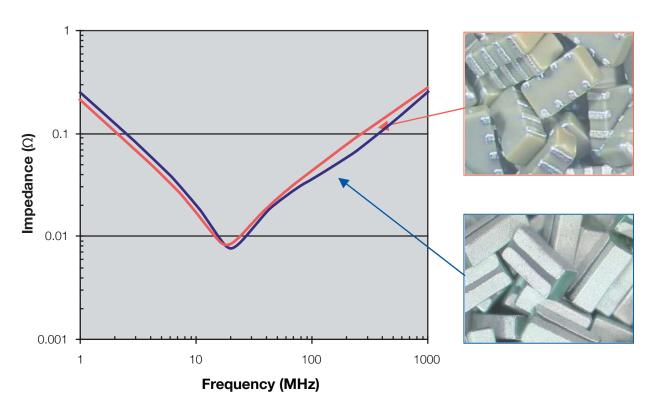
0204/0306 Land Grid Array

Land Grid Array (LGA) capacitors are the latest family of low inductance MLCCs from KYOCERA AVX. These new LGA products are the third low inductance family developed by KYOCERA AVX. The innovative LGA technology sets a new standard for low inductance MLCC performance.

Our initial 2 terminal versions of LGA technology deliver the performance of an 8 terminal IDC low inductance MLCC with a number of advantages including:

- · Simplified layout of 2 large solder pads compared to 8 small pads for IDCs
- Opportunity to reduce PCB or substrate contribution to system ESL by using multiple parallel vias in solder pads
- Advanced FCT manufacturing process used to create uniformly flat terminations on the capacitor that resist "tombstoning"
- Better solder joint reliability

APPLICATIONS


Semiconductor Packages

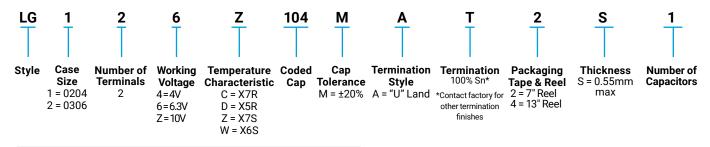
- Microprocessors/CPUs
- Graphics Processors/GPUs
- Chipsets
- FPGAs
- ASICs

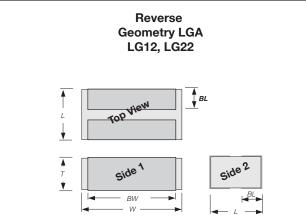
Board Level Device Decoupling

- · Frequencies of 300 MHz or more
- ICs drawing 15W or more
- · Low voltages
- · High speed buses

0306 2 TERMINAL LGA COMPARISON WITH 0306 8 TERMINAL IDC

KUCERA The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.


LGA Low Inductance Capacitors



0204/0306 Land Grid Array

SIZE		L	G12 ((0204	I)					LG2	2 (03	306)			
Length mm (in.)		0.50 (0.020)					0.76 (0.030)								
Width mm (in.)		1.00 (0.039)					1.60 (0.063)								
Temp. Char.	. Char. X5R (D) X7S (Z) X6S (W)					(W)	Х	7R (C	;)	X5R	(D)	X75	5 (Z)	X6S	(W)
Working Voltage	6.3	4	6.3	4	6.3	4	10	6.3	4	6.3	4	6.3	4	6.3	4
	(6)	(4)	(6)	(4)	(6)	(4)	(Z)	(6)	(4)	(6)	(4)	(6)	(4)	(6)	(4)
Cap (µF) 0.010 (103)															
0.022 (223)															
0.047 (473)															
0.100 (104)															
0.220 (224)															
0.330 (334)															
0.470 (474)															
1.000 (105)															
2.200 (225)															
= X7R = X5R					R	= X7S = X6S									

HOW TO ORDER

PART DIMENSIONS

Series	L	w	т	BW	BL
LG12 (0204)	0.5 ± 0.05 (0.020±0.002)	1.00 ± 0.10 (0.039 ± 0.004)	0.50 ± 0.05 (0.020 ± 0.002)	0.8 ± 0.10 (0.031 ± 0.004)	0.13 ± 0.08 (0.005 ± 0.003)
LG22 (0306)	0.76 ± 0.10 (0.030 ± 0.004)	1.60 ± 0.10 (0.063 ± 0.004)	0.50 ± 0.05 (0.020 ± 0.002)	1.50 ±0.10 (0.059 ± 0.004)	0.28 ± 0.08 (0.011 ± 0.003)

RECOMMENDED SOLDER PAD DIMENSIONS

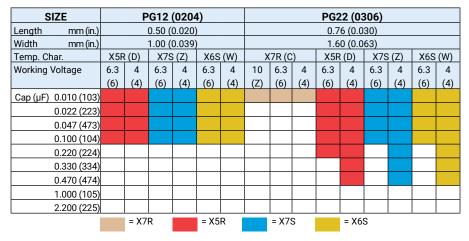
MM (INCHES)

MM (INCHES)

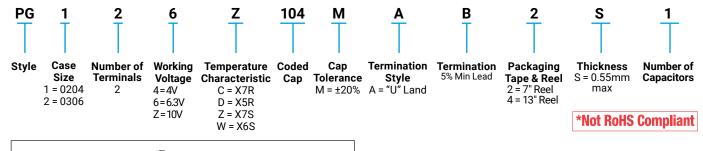
RoHS COMPLIANT

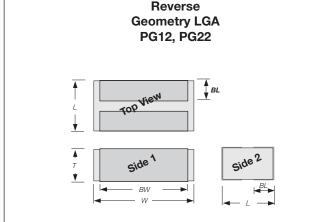
 Series	PL	PW1	G
 LG12 (0204)	0.50 (0.020)	1.00 (0.039)	0.20 (0.008)
 LG22 (0306)	0.65 (0.026)	1.50 (0.059)	0.20 (0.008)

-	LG12 (0204)	0.50 (0.020)	1.00 (0.0
	LG22 (0306)	0.65 (0.026)	1.50 (0.0
•			


KUDEERa The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available AWXX online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

051316


LGA Low Inductance Capacitors



0204/0306 Land Grid Array - Tin/Lead Termination "B"

HOW TO ORDER

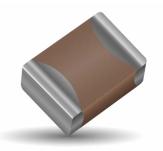
PART DIMENSIONS

MM (INCHES)

[Series	L	W	Т	BW	BL
	PG12 (0204)	0.5 ± 0.05 (0.020±0.002)	1.00 ± 0.10 (0.039 ± 0.004)	0.50 ± 0.05 (0.020 ± 0.002)	0.8 ± 0.10 (0.031 ± 0.004)	0.13 ± 0.08 (0.005 ± 0.003)
	PG22 (0306)	0.76 ± 0.10 (0.030 ± 0.004)	1.60 ± 0.10 (0.063 ± 0.004)	0.50 ± 0.05 (0.020 ± 0.002)	1.50 ±0.10 (0.059 ± 0.004)	0.28 ± 0.08 (0.011 ± 0.003)

RECOMMENDED SOLDER PAD DIMENSIONS

MM (INCHES)


2_	1	Series	PL	PW1	G
G		PG12 (0204)	0.50 (0.020)	1.00 (0.039)	0.20 (0.008)
		PG22 (0306)	0.65 (0.026)	1.50 (0.059)	0.20 (0.008)
PW1►					

KUDEERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

051316

High Temperature MLCCs AT Series – 200°C & 250°C Rated

Present military specifications, as well as a majority of commercial applications, require a maximum operating temperature of 125°C. However, the emerging market for high temperature electronics demands capacitors operating reliably at temperatures beyond 125°C. KYOCERA AVX's high temperature chip capacitor product line, has been extended with the BME COG chip. All AT chips have verified capabilities of long term operation up to 250°C for applications in both military and commercial businesses. These capacitors demonstrate high volumetric efficiency, high insulation resistance and low ESR/ESL for the most demanding applications, such as "down-hole" oil exploration and aerospace programs.

HOW TO ORDER

<u>AT10</u>	<u>3</u>	Ţ	104	ĸ	A T	Ţ	2	A T
Style	Voltage	Temperature	Capacitance Code	Capacitance	Test Level	Termination	Packaging	Special
AT03 = 0603	Code	Coefficient	(2 significant digits	Tolerance	A = Standard	1 = Pd/Ag	2 = 7" Reel	Code
AT05 = 0805	16V = Y	PME	+ no. of zeros)	J = ±5%		T = 100% Sn Plated	4 = 13" Reel	A = Standard
AT06 = 1206	25V = 3	C0G 250°C = A	101 = 100pF	K = ±10%		(RoHS Compliant)	9 = Bulk	
AT10 = 1210	50V = 5	COG 200°C = 2	102 = 1nF	M = ±20%		7 = Ni/Au Plated		
AT12 = 1812		VHT 250°C = T	103 = 10nF			(For 250°C BME		
AT14 = 2225		VHT 200°C = 4	104 = 100nF			COG Only)		
		BME COG 250°C = 5	105 = 1µF					

ELECTRICAL SPECIFICATIONS

Temperature Coefficient

PME C0G 0±30ppm/°C, -55C to 250°C BME C0G 0±30ppm/°C, -55C to 200°C

See TCC Plot for +250°C VHT: T ±15%, -55°C to +150°C

See TCC Plot for +250°C

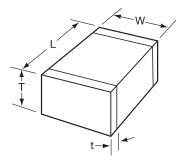
Capacitance Test (MIL-STD-202, Method 305) 25°C, 1.0 ± 0.2 Vrms (open circuit voltage) @ 1kHz

Dissipation factor 25°C

C0G: 0.15% Max at 1.0 \pm 0.2 Vrms (open circuit voltage) @ 1kHz VHT: 2.5% Max at 1.0 \pm 0.2 Vrms (open circuit voltage) @ 1kHz

COG 200°C = 3

Insulation Resistance 25°C (MIL-STD-202, Method 302) $100G\Omega$ or $1000M\Omega$ -µF (whichever is less)

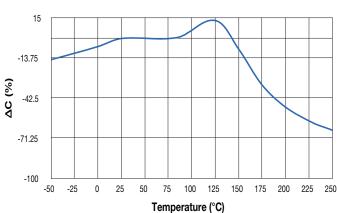

Insulation Resistance 125°C (MIL-STD-202, Method 302) $10G\Omega$ or $100M\Omega$ -µF (whichever is less)

Insulation Resistance 200°C (MIL-STD-202, Method 302) $1G\Omega$ or $10M\Omega$ -µF (whichever is less)

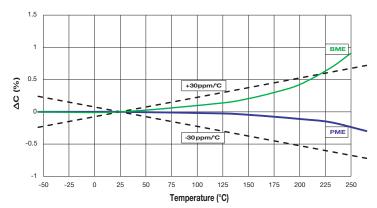
Insulation Resistance 250°C (MIL-STD-202, Method 302) 100M Ω or 1M Ω -µF (whichever is less)

Direct Withstanding Voltage 25°C (Flash Test) 250% rated voltage for 5 seconds with 50mA max charging current

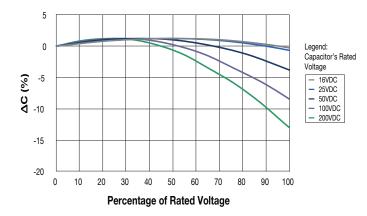
DIMENSIONS:


Size	AT03 = 0603	AT05= 0805	AT06=1206	AT10=1210	AT12=1812	AT14=2225
(I) Longth	1.60 ± 0.15	2.01 ± 0.20	3.20 ± 0.20	3.20 ± 0.20	4.50 ± 0.30	5.72 ± 0.25
(L) Length	(0.063 ± 0.006)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.126 ± 0.008)	(0.177 ± 0.012)	(0.225 ± 0.010)
(W) Width	0.81 ± 0.15	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20	3.20 ± 0.20	6.35 ± 0.25
	(0.032 ± 0.006)	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)	(0.126 ± 0.008)	(0.250 ± 0.010)
(T) Thickness Max.	1.02	1.30	1.52	1.70	2.54	2.54
(1) THICKNESS Max.	(0.040)	(0.051)	(0.060)	(0.067)	(0.100)	(0.100)
(t) min.	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)
terminal max.	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	1.02 (0.040)	1.02 (0.040)

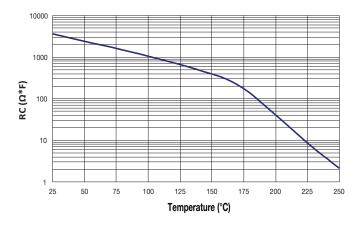
MILLIMETERS (INCHES)


KUCERE The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

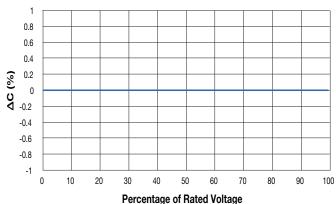
PERFORMANCE CHARACTERISTICS



Typical Temperature Coefficient of Capacitance (VHT Dielectric) Typical



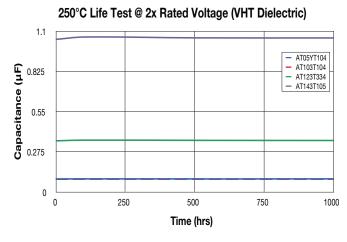
Typical Temperature Coefficient of Capacitance (COG Dielectric)


Typical Voltage Coefficient of Capacitance (VHT Dielectric)


Typical RC vs Temperature (VHT Dielectric)

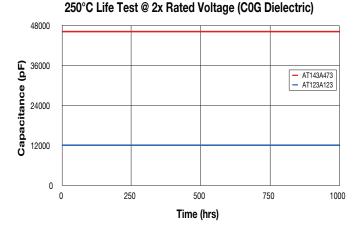
Typical Voltage Coefficient of Capacitance (COG Dielectric)

Typical RC vs Temperature (COG Dielectric)

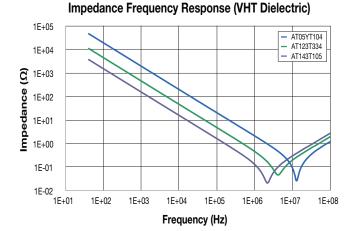


KYDEERA The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

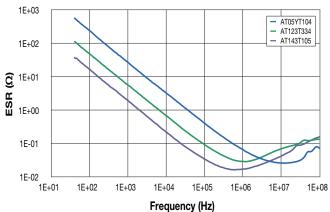
High Temperature MLCC AT Series – 200°C & 250°C Rated



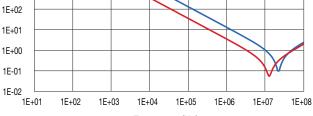
RELIABILITY

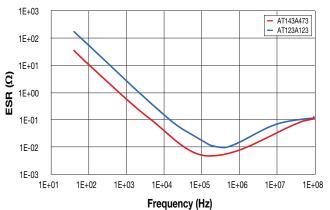

VHT - Failure Rate @ 90% Confidence Level (%/1000 hours) Temperature (°C) 50% Rated Voltage 100% Rated Voltage 200 0.002 0.017 250 0.026 0.210													
Temperature (°C) 50% Rated Voltage 100% Rated Voltage 200 0.002 0.017													
Temperature (°C) 50% Rated Voltage 100% Rated Voltage 200 0.002 0.017 250 0.026 0.210													
250	50% Rated Voltage 100% Rated Voltage 0.002 0.017												
*Typical 1210, 1812, 2225 I	ailure Rate Analysis based	on 250°C testing and											

voltage ratings specified on the following page.


COG - Failure Rate	@ 90% Confidence Lev	/el (%/1000 hours)
Temperature (°C)	50% Rated Voltage	100% Rated Voltage
200	0.006	0.047
250	0.074	0.590

*Typical 1812 and 2225 Failure Rate Analysis based on 250°C testing and voltage ratings specified on the following page.


FREQUENCY RESPONSE


1E+06 1E+04 1E+03 1E+02

Impedance Frequency Response (COG Dielectric)

Frequency (Hz)

ESR Frequency Response (COG Dielectric)

080416

Impedance (Ω)

CAPACITANCE RANGE

PREFERRED SIZES ARE SHADED

V	/НТ	T	emp. Coeff	icient	: 4	200°C	C Rate	d				١	/Н	Т	Temp	. Coefficie	nt: T	250	°C Ra	ted				
	Case S	Size	AT03 =		05 =		06 =	AT1		AT12 =	AT14 =		С	ase S	Size	AT03 =)5 =)6 =		0 =	AT12 =	AT14 =
	Solder		0603 Reflow/Wave		805 v/Wave		206 v/Wave		<u>10</u>	1812 Reflow Only	2225 Reflow Only	-				0603 Reflow/Wave		05		06 //Wave	12	10 v Only	1812 Reflow Only	2225 Reflow Only
		mm	1.60±0.15		±0.20		±0.20		±0.20	4.50±0.30	5.72±0.25	-		<u>iolde</u>	mm	1.60±0.15		±0.20		±0.20		±0.20	4.50±0.30	5.72±0.25
(L)	Length	(in.)	(0.063±0.006)		±0.008)		±0.008)	(0.126:		(0.177±0.012)	(0.225±0.010)	(!	L) Len		(in.)	(0.063±0.006)				±0.008)			(0.177±0.012)	(0.225±0.010)
(W) Width	mm (;)	0.81 ± 0.15				±0.20			3.20±0.20	6.35±0.25	C	W) Wid		mm (;)	0.81±0.15				±0.20		±0.20	3.20±0.20	6.35±0.25
È	,	<u> </u>		`				<u> </u>				È	,		· /		`				<u>`</u>		· /	(0.250±0.010) 2.54
(T) ⁻	Thickness											C	T) Thick	kness										(0.100)
(A) ·	Terminal	min	0.25(0.010)							0.25(0.010)	0.25(0.010)	(4) Tarm	ninal		0.25(0.010)							0.25(0.010)	0.25(0.010)
		max	0.75 (0.030)		<u> </u>		<u>`</u>	<u> </u>		1.02 (0.040)	1.02 (0.040)	(<i>.</i>			0.75 (0.030)							1.02 (0.040)	1.02 (0.040)
			200														2	50	2	50	2	50	250	250
							<u> </u>					-					16	25	16	7	16	25	· · · · · · · · · · · · · · · · · · ·	Т 25
	<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>	25	25	50	25	50	25	50	50	50	-				10	10	25	10	25	10	25	25	20
0																								
(oF)		332		(
(**)	Wilds [m] 0.0022 +0.009 0.0084 +0.009 0.0084 +0.009 0.0284 +0.009 0.0025 +0.009 0.0026 +0.009 0.0026 +0.009 0.0026 +0.009 0.0025 +0.009 0.0025 +0.009 0.0025 +0.009 0.0025 +0.009 0.0026 +0.009 0.0025 +0.009 0.0026 +0.009 0.0025 +0.009 0.0026 +0.009 0.0026 +0.009 0.0026 +0.009 0.0026 +0.009 0.0026 +0.009 0.0026 +0.009 0.0026 +0.009 0.0026 +0.009 0.0026 +0.009 0.0026 +0.009 0.0026 +0.009 0.0026 +0.009 0.0010 0.0010 0.0010 <td></td> <td></td> <td>ĺ</td> <td>ĺ</td> <td></td> <td></td>			ĺ	ĺ																			
			392			4	700	472																
		0 272																						
				130 132 <td></td>																				
				4 4 4 4 4 4 25 50 25 50 </td <td></td>																				
\vdash													0.	.010	103									
													0.	.012	123									
													0.	.015	153									
													0.	.018	183									
							Image: section of the section of t			0.	.022	223												
													0.	.027	273									
													0.	.033	333									
													0.	.039	393									
													0.	.047	473									
													0.	.056	563									
													0.	.068	683									
													0.	.082	823									
Cap					<u> </u>							C	uF) 0.	.100	104									
(µ⊦)												u u	0.	.120	124									
				1	İ –								0.	.150	154									
				1									0.	.180	184									
				1									0.	.220	224									
													0.	.270										
													0.	.330	334									
	0.470	474		1	1	1								.470	474									
	0.560	564		İ		İ	İ							.560	564									
		684		1	Ì	1		1						.680	684									
		824		İ	İ	İ								.820	824									
		105		1	Ì	1		1				L		.000	105									
	Voltage		25	25	50	25	50	25	50	50	50			oltage		16	16	25	16	25	16	25	25	25
	ated Tem		200		00		00	20	00	200	200		Rate	ed Ten	ıр. (°С)	250		50		50		50	250	250
	-	dTemp.(°C) 200 200 200 200 200 200 200 200 and 200 200 200 200 200 200 and 20			C	ase S	Size	AT03 =)5 =)6 =		0 =	AT12 =	AT14 =								
	udse s	bize	0603	08	805	12	206	12	10	1812	2225					0603	08	05	12	06	12	<u>10</u>	1812	2225

Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

KUDEERA AVV/C The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available inline at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

080416

CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

B	ME	CO	G Tem	p. Coefficie	nt: 4 200)°C Rated			B	ME	E C 0	G (Ni/Au)	emp. Coefficient: 5	250°C Rated
C	Case S	Size	AT03=	:0603	AT05	=0805	AT06:	=1206	C	Case	Size	AT03=0603	AT05=0805	AT06 = 1206
S	Solder	ing	Reflow/	/Wave	Reflow	/Wave	Reflow	/Wave		Solde	ring	Reflow/Wave	Reflow/Wave	Reflow/Wave
_	Length	mm	1.60±	0.15	2.01:	±0.20	3.20	±0.20		Length		1.60±0.15	2.01 ±0.20	3.20±0.20
		(in.)	(0.063±	0.006)	(0.079:		(0.126:	±0.008)			(in.)	(0.063±0.006)	(0.079±0.008)	(0.126±0.008)
(W)	Width	mm	0.81 ±		1.25:				(W)	Width		0.81±0.15	1.25±0.20	1.60±0.20
		(in.)	(0.032±			±0.008)								
(T)T	Thickness		1.0		1.					knoce				
(+) T	Ferminal	(in.)	(0.04		(0.0									
(1) 1	CIIIIIa	max	0.25(0		0.25(minal				
Rat	ted Tem		20							-				
	Temp													
	Coeffice		3			3 3 50 25 50 50 25 50 6 6 25 25 6 6 60 1 6 6 60 1 1 6 6 60 1 1 7 70 1 1 1 6 6 60 1 1 1 7 100 101 1	5							
٧	/oltage	(V)	25	50	25	50	($0.063 + 0.008$) ($0.063 + 0.008$) ($0.069 + 0.008$) ($0.008 + 0.008$) ($0.008 + 0.008$) ($0.008 + 0.008$) ($0.008 + 0.008$) ($0.008 + 0.008$) ($0.008 + 0.008$) ($0.008 + 0.008$) ($0.0008 + 0.008$) ($0.008 + 0.008$) ($0.008 + 0.008$) ($0.008 + 0.008$) ($0.008 + 0.008$) ($0.008 + 0.008$) ($0.008 + 0.008$) ($0.008 + 0.008$) ($0.008 + 0.008$) ($0.008 + 0.008$) ($0.008 + 0.008$) ($0.008 + 0.008$) ($0.008 + 0.008$) ($0.008 + 0.008$) ($0.008 + 0.008$)	25						
Сар	39	390						169±0.20 (W) With mn 0.01±0.15 1.25 ± 0.20 1.60±0.20 1.52 (0.060) (0.002±0.008) (0.063±0.008) (0.063±0.008) 0.050 (m) 1.02 1.30 1.52 (0.060) (m) (0.040) (0.051) 0.0600) 0.25(0.010) 0.25(0.010) 0.25(0.010) 0.25(0.010) 0.25(0.010) 200 3 0.75(0.030) 0.75(0.030						
(pF)	47	470					(0.060) (0.040) (0.051) (0.060) $0.25(0.010)$ $0.25(0.01$							
	56	560				3 3 50 25 50 50 25 50 50 25 50 50 25 50 50 25 50 50 25 50 50 25 25 50 25 25 50 25 25 50 5 56 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 51 50 50 51 50 50 51 50 50 51 50 50 </td <td></td>								
	68	680						0.25(0.010) $0.75(0.030)$ $0.75(0.030)$ $0.75(0.030)$ 200 $Rated Temp. (°C)$ 250 250 3 $Coefficient$ 5 5 5 50 $Coefficient$ 5 5 60 100 100 100 2 250 250 250 2 25 25 25 60 68 680 100 100 101 100 101 120 121 100 101 120 121 100 101 120 121 100 101 120 121 100 101 120 121 100 101 120 121 100 101 120 121 100 101 120 121 100 100 120 121 100 101 120 122 100 101 <t< td=""><td></td></t<>						
	82	820							DEB (in.) (0.032 ± 0.006) (0.049 ± 0.008) (0.063 ± 0.0 Imitadress (in.) (0.040) (0.051) (0.060) (0) min 0.25(0.010) 0.25(0.010) 0.25(0.010) 0.25(0.010) (0) min 0.25(0.010) 0.25(0.0					
	100	101								100	101			
	120	121							(W) Width nm 0.81 ± 0.15 1.25 ± 0.20 1.60 ± 0.02 (n) (0.022 \pm 0.006) (0.049 \pm 0.008) (0.063 \pm 1.02) (Thickness (n) (0.040) (0.051) (0.063) (N) (m) (0.040) (0.051) (0.060) (N) (m) (0.250) 0.25(0.010) 0.25(0.010) (Thim in max 0.75(0.030) 0.75(0.030) 0.75(0.030) Rated Temp. (*C) 2.50 2.50 2.50 Temp. 5 5 5 Coefficient 5 5 5 Voltage (V) 2.5 2.5 2.5 (p) 47 470 - 5 5.5 5 5 100 101 - - 120 121 - - 120 121 - - 120 121 - - 120 121 - - 120 121 <t< td=""></t<>					
	150	151							$\left \begin{array}{c c c c c c c c c c c c c c c c c c c$					
	180	181			Image: select									
	220	221					120 121 121 121 121 120 121 151 151 151 151 120 121 151 151 151 151 151 120 121 151 1							
	270	271						150 151 150 151 180 181 180 180 200 221 200 201 201 270 271 100 300 331 100 100 390 391 100 100 470 471 100 100						
	330	331						150 151 150 151 180 181 180 181 220 221 180 181 270 271 180 181 330 331 181 181 390 391 181 181 470 471 180 181 560 561 181 181						
ĺ	390	391							120 121 121 150 151 151 180 181 181 220 221 190 270 271 190 330 331 191 470 471 191 560 561 191 680 681 191 820 821 191					
ĺ	470	471						120 121 121 150 151 151 180 181 181 200 221 190 201 271 190 330 331 190 390 391 191 470 471 190 560 561 191 680 681 191 820 821 191						
	560	561						100 101 100 101 120 121 100 101 120 121 100 101 150 151 100 101 180 181 100 101 200 221 100 100 300 331 100 100 300 331 100 100 300 331 100 100 470 471 100 100 680 661 100 100 820 821 100 100 1000 102 100 102 1200 122 100 120 1200 152 100 152						
ĺ	680	681							D Rated Term, (*C) 250 250 250 50 Temp, 5 5 50 39 390 25 25 60 39 390					
	820	821						Terminal max $0.75(0.030)$ $0.75(0.030)$ $0.75(0.030)$ 3 Rated Temp. (*C) 250 250 250 3 Temp. 5 5 5 50 Coefficeint 5 5 5 (p) 47 47 7 $ (p)$ 47 47 7 $ (100)$ 100 100 $ (100)$ 100 100 $ (100)$ 100 100 $ (100)$ 100 100 100 $ (100)$ 102 221 $ -$ <						
ĺ	1000	102						Image: Problem in the second secon						
ĺ	1200	122					100 101 100 101 120 121 100 101 120 121 100 101 150 151 100 101 180 181 100 101 200 221 100 101 270 271 100 100 330 331 100 100 390 391 100 100 470 471 100 100 560 561 1000 100 680 681 100 100 1000 102 100 100 1200 122 100 120 1800 182 100 182							
ĺ	1500	152								<u> </u>	i i			
ĺ	1800	182								1800	182			
	2200									<u> </u>	î î			Ì
ĺ	2700	1 1												
ĺ	3300	332								3300	332			
	3900	392								<u> </u>	1 1			
ĺ	4700	472									<u> </u>			
	5600	562								5600	562			
ĺ	6800	1 1												
	8200									<u> </u>	i i			
ap	0.010	103							Сар	0.010	1 1			
μF)	0.012								(-)					
	0.015	153								0.015	153			
ĺ		183					Cap 0.010 103 (µF) 0.012 123 0.015 153							
	0.022	223								0.022	223			
	0.027	273			0.027 273									
	0.033	333												
	0.039	393									;			
	0.047	473								0.047				
		563								0.056	i i			
		683								0.068				
		823								0.082				
		104									104			
V	/oltage		25	50	25	50	25	50		/oltag		25	25	25
	ted Tem		200	200	200	200	200	200			np. (°C)	250	250	250
-	Case S	iza	AT03=	0603	AT05	=0805	AT06:	=1206	6	Case	Size	AT03=0603	AT05=0805	AT06=1206

Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

KUDEERA KW/// The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

CAPACITANCE RANGE

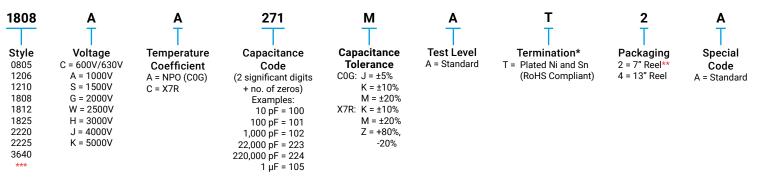
PREFERRED SIZES ARE SHADED

			ATOF 000-	ATO(1001	AT40 4040	AT40 4040	AT44 0005		<u>.</u>		ATOF 0005	ATO(1001	AT40 4044	AT40 4040	AT44 0007
_	Case S		AT05 = 0805	AT06 = 1206	AT10 = 1210	AT12 = 1812	AT14 = 2225		Case S		AT05 = 0805		AT10 = 1210	AT12 = 1812	AT14 = 2225
	Solder		Reflow/Wave	Reflow/Wave	Reflow Only	Reflow Only	Reflow Only		Solder		Reflow/Wave	Reflow/Wave	Reflow Only	Reflow Only	Reflow Only
L) Le	ength	mm (i)	2.01 ± 0.20	3.20 ± 0.20	3.20 ± 0.20	4.50 ± 0.30	2.75 ± 0.25	(L) L	.ength	mm	2.01 ± 0.20	3.20 ± 0.20	3.20 ± 0.20	4.50 ± 0.30	2.75 ± 0.25
		(in.)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.126 ± 0.008)	(0.177 ± 0.012)	(0.225 ± 0.010)			(in.)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.126 ± 0.008)	(0.177 ± 0.012)	(0.225 ± 0.010)
(W) V	Vidth	mm (in)	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20	3.20 ± 0.20	6.35 ± 0.25	(W)	Width	mm (in)	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20	3.20 ± 0.20	6.35 ± 0.25
		(in.)	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008) 1.70	(0.126 ± 0.008) 2.54	(0.250 ± 0.010) 2.54			(in.)	(0.049 ± 0.008)	(0.063 ± 0.008) 1.52	(0.098 ± 0.008)	(0.126 ± 0.008) 2.54	(0.250 ± 0.010) 2.54
T) TI	nickness	mm (in.)	1.30 (0.051)	1.52 (0.060)	(0.067)	(0.100)	(0.100)	(T) T	hickness	mm (in.)	1.30 (0.051)	(0.060)	1.70 (0.067)	(0.100)	(0.100)
		min	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)			min	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)
t) Te	rminal	max	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	1.02 (0.040)	1.02 (0.040)	(t) T	erminal	max	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	1.02 (0.040)	1.02 (0.040)
Rat	ed Tem		200	200	200	200	200	Ra	ted Tem		250	250	250	250	250
	np. Coef	• • /	2	2	2	2	2		mp. Coe		A	A	A	A	A
_	Voltage		50	50	50	50	50	16	Voltage		25	25	25	25	25
	100	101	00	50	00	50			100	101	20	20	20	20	20
	120	121							120	121					i
	150	151							150	151					i
	180	181							180	181					i
	220	221				220	221					i i			
	270	271				270	271								
	330	331					330	331							
	390	391				390	391								
	470	471						İ	470	471					
	560	561							560	561					
	680	681							680	681					
ар	820	821						Cap	820	821					
ıF)	1000	102						(pF)	1000	102					
	1200	122							1200	122					l .
	1500	152							1500	152					
	1800	182							1800	182					
	2200	222							2200	222					L
	2700	272							2700	272					
	3300	332							3300	332					
	3900 4700	392							3900 4700	392					
		472								472					
	5600 6800	562 682							5600 6800	562 682					
	8200	822							8200	822					
	0.010	103						-	0.010	103					
	0.010								0.012						
	0.012	153							0.015						
	0.018	183							0.018						
	0.022	223							0.022	223					
	0.027	273							0.027	273					
ар	0.033	333						Cap (µF)	0.033	333					
Ir')	0.039	393						(µr)	0.039	393					
	0.047	473							0.047	473					
	0.056	563							0.056						
	0.068	683							0.068						
	0.082			-					0.082						
	0.100								0.100						
	/oltage		50	50	50	50	50		Voltage	<u>``</u>	25	25	25	25	25
Rate	ed Tem	р. (°С)	200	200	200	200	200	Rat	ed Tem	ıp. (°C)	250	250	250	250	250
_	Case S		ATOF - 000F	ATOC - 100C	AT10 - 1010	AT12 = 1812	AT14 - 000F		Case S			1706 4006	1710 1010	1710 1010	AT14 = 2225

Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

KUCERE The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

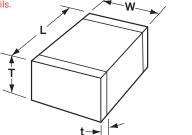
High Voltage MLC Chips For 600V to 5000V Applications


NEW 630V RANGE

High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. KYOCERA AVX special high voltage MLC chip capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/dc blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

Larger physical sizes than normally encountered chips are used to make high voltage MLC chip products. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed 4°C per second. The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

For 1825, 2225 and 3640 sizes, KYOCERA AVX offers leaded version in either thru-hole or SMT configurations (for details see section on high voltage leaded MLC chips)


HOW TO ORDER

Notes:

- 1. Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.
- 2. *Terminations with 5% minimum lead (Pb) is available, see pages 100 and 101 for LD style. Leaded terminations are available, see pages 102-106.
- **The 3640 Style is not available on 7" Reels.

*** KYOCERA AVX offers nonstandard chip sizes. Contact factory for details.

KOHS COMPLIANT

DIMENSIONS: millimeters (inches)

SIZE	0805	1206	1210*	1808*	1812*	1825*	2220*	2225*	3640*
(L) Length	2.10 ± 0.20	3.30 ± 0.30	3.30 ± 0.40	4.60 ± 0.50	4.60 ± 0.50	4.60 ± 0.50	5.70 ± 0.50	5.72 ± 0.25	9.14 ± 0.25
	(0.083 ± 0.008)	(0.130 ± 0.012)	(0.130 ± 0.016)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.224 ± 0.020)	(0.225 ± 0.010)	(0.360 ± 0.010)
(W) Width	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.30	2.00 ± 0.20	3.20 ± 0.30	6.30 ± 0.40	5.00 ± 0.40	6.35 ± 0.25	10.2 ± 0.25
	(0.049 ±0.008)	(0.063 ± 0.008)	(0.098 ± 0.012)	(0.079 ± 0.008)	(0.126 ± 0.012)	(0.248 ± 0.016)	(0.197 ± 0.016)	(0.250 ± 0.010)	(0.400 ± 0.010)
(T) Thickness	1.35	1.80	2.80	2.20	2.80	3.40	3.40	2.54	2.54
Max.	(0.053)	(0.071)	(0.110)	(0.087)	(0.110)	(0.134)	(0.134)	(0.100)	(0.100)
(t) terminal min.	0.50 ± 0.20	0.60 ± 0.20	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.85 ± 0.35	0.85 ± 0.35	0.76 (0.030)
max.	(0.020 ± 0.008)	(0.024 ± 0.008)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.033 ± 0.014)	(0.033 ± 0.014)	1.52 (0.060)

*Reflow Soldering Only

KINCERENTIAL The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

NP0 (C0G) DIELECTRIC - PERFORMANCE CHARACTERISTICS

Capacitance Range	10 pF to 0.100 µF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

NPO (COG) CAPACITANCE RANGE - PREFERRED SIZES ARE SHADED

Case Si	ize		0805	;			1206					12	10						18	808							18	12			
Solderi	ng		low/V	Vave			ow/W	lave				Reflo	w Onl						Reflo	w Onl							Reflo	v Only	1		
(L) Length	mm (in.)		10 ± 0 85 ± 0				30 + 0. 30 + 0.				(3.30 · 0.130 ·	+ 0.40 + 0.01					(1		+ 0.50 + 0.02						((+ 0.50 + 0.01	2)		
W) Width	mm		25 ± 0.				+0.30/						+ 0.30					(+ 0.20							3.20				
	(in.)	(0.0	49 ± 0		(0	.063 +		/-0.00	4)		((0.098		2)				((+ 0.00	8)					((+ 0.00	8)		
(T) Thickness	mm (in.)		1.35 (0.053	8)			1.80 0.071)					80 I 1 0)							20 087)							2. (0.1	80			
(t) Terminal	mm	0.	50 + 0	.20		0.6	50 + 0.	20				0.75	+ 0.35						0.75	+ 0.35							0.75	+ 0.35			
Voltage	(in.)		<u>20 + 0</u> 630		600		4 + 0.		2000	600	620		0.014		12000	600	620	11000		0.014		2000	14000	600	620	11000		0.014)		2000	4000
Cap (pF)	.5 OR5	000	A	C	000	030	1000	1300	2000	000	030	1000	1300	2000	3000	000	030	1000	1300	2000	2300	3000	4000	000	030	1000	1300	2000	2300	3000	4000
	1.0 1R0		Α	С																											
	1.2 1R2 1.5 1R5	Α	A	C C	X	Y	Y	Y	Y																						
	1.8 1R8	Ā	Â	C	X	X	X	X	X																						
	2.2 2R2	Α	A	С	X	Х	X	Х	Х								С	С		С		С	С								
	2.7 2R7 3.3 3R3	A	A	C C	X X	X X	X X	X	X								C C	C C	C C	C C	C C	C C	C C								
	3.9 3R9	A	Â	C	X	X	X	X	X								C	Č	C	Ċ	C	C	Č								<u> </u>
	4.7 4R7	Α	A	С	X	Х	Х	X	Х								С	С	С	С	С	С	С								
	5.6 5R6 6.8 6R8	A	A	C C	X X	X X	X X	X X	X X								C C	C C	C C	C C	C C	C C	C C								
	8.2 8R2	A	A	C	x	X	X	X	x								C	C	C	C	C	C	C								
	10 100	A	A	C	C	C	C	C	C	С	М	M	D	М	F	C	C	C	C	C	C	C	С	C	C	C	C	C	C	C	E
	<u>12 120</u> 15 150	A	A	C C	C C	C C	C C	C C	C C	C C	M	M	D	M	F	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	E
	18 180	Α	Α	С	С	C	C	C	С	С	Μ	М	D	М	F	С	C	C	С	C	С	С	С	С	C	С	C	C	C	C	E
	22 220	A	A	C	C	C	C	C	C	C	М	M	D	M	F	C	C	C	C	C	C	C	E	C	C	C	C	C	C	С	E
	27 270 33 330	A	A	C C	C C	C C	C C	C C	C C	C C	M	M	D	M	F	C C	C C	C C	C C	C C	C C	C C	E F	C C	C C	C C	C C	F F	C C	C C	E
	39 390	A	Α	С	Č	C	Č	С	C	С	М	Μ	D	М	F	С	С	C	C	C	С	С	F	C	C	С	С	F	C	C	E
	47 470	A	A	C	C	C	C	C	C	C	M	M	D	M	F	C	C	C	C	C	C	C	С	C	C	C	C	F	C	C	E F
	56 560 68 680	A	A	C C	C C	C C	C C	C C	C C	C C	M	M	C C	C C	F	C C	C C	C C	C C	C C	C C	C C		C C	C C	C C	C C	F	C C	C C	F
	82 820	Х	Х	Х	С	С	С	С	С	С	Μ	Μ	С	С	F	С	С	С	С	С	С	С		С	С	С	С	F	С	С	F
	100 101 120 121	X C	X C	X C	C C	C C	C C	C E	C E	C C	M	C C	C C	C C	F	C C	C C	C C	C C	C C	F	F		C C	C C	C C	C C	F	C C	C C	F G
	150 151	C	č	Č	C	Č	C	Ē	E	C	M	C	Ē	Ē	F	C	Č	Č	F	F	F	F		Č	Č	Č	Č	F	Ċ	č	G
	180 181	C	C	C	C	C	E	E	E	C	M	E	E	E	F	C	C	C	F	F	F	F		C	C	C	C	F	F	F	
	220 221 270 271	C C	C C	C C	C C	C C	E	E	E	C C	M	E	E	E	F	C C	C F	C C	F F	F F	F	F		C C	C C	C C	C C	F F	F F	F	<u> </u>
	330 331	С	С	С	С	С	E	E	E	С	М	E	Ē	E		С	F	F	F	F	F	F		C	Č	С	F	F	F	F	
	390 <u>391</u> 470 471	C	C	С	C	C	E	E	E	C	M	E	E	E		C	F	F	F	F	F	F		C	C		F	F	F	F	
	560 561	C C	C C		C C	C C	E	E	E	C C	M	E	E E	E		C C	F F	F	F	F F		F		C C	C C				F F	F	
	680 681	С	С		С	С	E			С	М	E	F	Ε		С	F	F	F	F				С	С	F	F	F	G	G	
	750 751 820 821	C C	C C		E	E	E			C C	M	E	G G	E		C C	F	F	F	F				C C	C C	F	F	F	G G	G G	
	1000 102	U	C		E	E	E			C	C	E	F	F		C	F	F	E	F				C	C	F	F	F	G	G	<u> </u>
	1200 122		С		E	E	E			С	С	E		F		С	F	F	E	F				С	С	F	E	E			
	1500 152 1800 182		C C		E	E				C C	C C	F G		G G		E	F	F		F				C C	C C	F	F G	F			
	2200 222		C		E	E				Ē	C	G				E	F	F						C	C	E	G	G			
	2700 272				E	E				E	C	G				E	F	F						C	C	E	G	G			<u> </u>
	3300 332 3900 392			-	E	E				E	C C	G				E	F	F						C C	C C	F F	-	G			
	4700 472		1	1	E	E				Е	С				1	Е	F						1	С	С	G		1			
	5600 562 6800 682									E	E					E	F							C C	C C	G					
	8200 822										F					F	F							E	C						
Cap (µF) (0.010 103										F						F							F	F						
	0.012 123 0.015 153				-	-					G								-	<u> </u>	<u> </u>		-	F	F		-		<u> </u>		<u> </u>
(0.018 183																							G	G						
	0.022 223 0.027 273																								F						<u> </u>
	0.027 273																								G		<u> </u>				
	0.047 473																						1				1				
	0.056 563 0.068 683					-													-	-	-			-		-	-		-		
(0.100 104																														
Voltage Case Si	(V)	600	630 0805		600	630	1000 1206		2000	600	630		1500 10	2000	3000	600	630	1000		2000	2500	3000	4000	600	630	1000		2000	2500	3000	4000
Case SI	125		0000				1200	_			_	12	.10															12			
Letter	А		С		E		F		G		X		7]	NOT	E: Co	ontac	ct fac	tory	for n	on-sp	becif	ied ca	apac	itanc	e val	ues				
Max.	0.813		448		034		098		794		940		30																		
Thickness	(0.032)	(0.0)57)	(0.0	071)	(0.0	387)	(0.1	110)	(0.0)37)	(0.1	130)	J																	

KUCERE KWXX The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

NP0 (C0G) CAPACITANCE RANGE - PREFERRED SIZES ARE SHADED

Case	Size	Т					325								2220									2225	i								3640				
Sold		t					w Onl	у						Re	flow (_		Re	flow (_				_	Re	flow (
(L) Length	mm						± 0.50								5.70 0.5									70 ± 0									14 ± 0				
(_)g	(in.) mm				(± 0.020								224 0.0 5.00 0.4			_						25 ± 0						-			60 ± 0				
W) Width	(in.)				(± 0.40								197 0.0									50 ± 0									00 ± 0.				
(T) Thickne	mm						.40								3.40									3.40									2.54				
(1) 1110/01	(in.)	+					134)				-				(0.134					<u> </u>				(0.100	·	_		_					(0.100				
(t) Termina	il max				(± 0.35 ± 0.014	4)).85 0.3 33 ± 0.									85 ± 0 33 ± 0									76 (0.0 52 (0.0				
Volta		6	00	630					3000	4000	600	630	1000				3000	4000	5000	600	630	1000				3000	4000	5000	600	630	1000				3000	4000	5000
Cap (pF)	1.5 1R	_																ļ		<u> </u>			ļ											ļ			\vdash
	1.8 1R 2.2 2R	_	_																																		
	2.7 2R	_																																			
	3.3 3R	_																																			
	3.9 3R 4.7 4R	_					-																														
	5.6 5R	_																																			
	6.8 6R	_																																			
	8.2 8R 10 10		E	Е	G	Е	F	E	F	F	Е	Е	Е	Е	Е	Е	Е	Е	Е	E	Е	Е	E	Е	E	Е	F	F									
	12 12		E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F									
	15 15		E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F									
	18 18 22 22		E E	E	G G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F									
	27 27	_	E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F									
	33 33		E	Е	G	Е	F	E	F	F	Е	E	E	Е	Е	E	E	E	Е	E	E	Е	E	E	E	E	F	F									
	39 39 47 47		E E	E	G G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F G									G
	56 56		E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	G									G
	68 68		E	Е	G	Е	F	E	F	F	Е	E	E	Е	E	E	E	E	Е	E	E	Е	E	E	E	E	F	G									G
	82 82		E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	G								-	G
	100 10 120 12		E	E	G G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	G G	G G				G G	G	G	G G	G G	G G
	150 15		E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	G	G				G	G	G	G	G	G
	180 18		E	Е	G	E	F	E	F	F	E	E	E	E	E	E	E	F	F	E	E	E	E	E	E	E	G	G				G	G	G	G	G	G
	220 22 270 27		E E	E	G G	E	F	E	F	F	E	E	E	E	E	E	E	F	F	E	E	E	E	E	E	E	G G	G G				G	G G	G	G G	G G	G G
	330 33		E	E	G	E	F	E	F	F	E	E	E	E	E	E	E			E	E	E	E	E	E	E	G					G	G	G	G	G	G
	390 39		E	Е	G	E	F	E	F		E	E	E	E	E	E	E			E	E	E	E	E	E	E	G					G	G	G	G	G	G
	470 47 560 56		E	E	G G	E	F	E	F		E	E	E	E	E	E	E			E	E	E	E	E	E	E	G G	<u> </u>				G	G G	G G	G G	G G	G G
	680 68		E	E	G	E	F	F	G		E	E	E	E	E	F	F			E	E	E	E	E	E	E	6					G	G	G	G	G	G
	750 75	_	E	Е	G	Е	F	F	G		Е	E	E	Е	E	F	F			Е	E	Е	Е	E	Е	E						G	G	G	G	G	G
	820 82	_	E E	E	G	E	F	F	G		E	E	E	E	E	F	F			E	E	E	E	E	F	E				0		G	G G	G	G	G G	G
	200 10		E	E	G G	E	F	G	G		E	E	E	E	E	F G	G			E	E	E	E	E	F	F			G G	G G	G	G	G	G	G G	G	\vdash
	500 15		E	Е	G	F	G	G	G		Е	Е	Е	F	F	G	G			E	Е	Е	Е	Е	F	F			G	G	G	G	G	G	G		
	800 18		E	E	G	F	G	G	G		E	E	E	F	F	G	G			E	E	E	E	E	G	G			G	G	G	G	G	G	G		\vdash
	2200 22 2700 27		E E	E	G G	G G	G		G G		E	E	E	G G	G G					E	E	E	F	E					G G	G G	G	G	G G	G G	G G		
	3300 33		E	E	G	G	G				E	E	E	G	G					E	E	E	F	F					G	G	G	G	G	G			
	3900 39		E	E	G	G	G				E	E	E	G	G					E	E	E	G	G					G	G	G	G	G	G			
	4700 47 5600 56		E F	E F	G G	G G	G	-		-	E	E F	E	G G	G G					F	F	F	G G	G					G G	G G	G	G	G G				\vdash
	5800 68		F	F	G		G		-		F	F	F		0					F	F	F	G	G					G	G	G	G	G				
	3200 82		F	F	G		G				G	G	G							G	G	G							G	G	G	G					
Cap (µF) 0	.010 10 .012 12			F	G G						7	7	7							G G		G							G G		G	G					
	.012 12		F	F	6															G	G								G	G							
0	.018 18	13	F	F																G	G								G	G	G						
	.022 22		_	F			-								<u> </u>					G	G	<u> </u>		-					G	G	G			<u> </u>			\vdash
	.027 27		_	F			+		-	+	-			-	-	-	-			G	G	-		-		-	-		G	G		-		-			\vdash
0	.039 39	3 (G	G																																	
	.047 47			G																G									G	G							
	.056 56 .068 68		G G	G G		-	-	-	-	+	-			-	-		-	-		G G	G G	-	-	-	-	-		-			-	-		-			
	.100 10	4																																L			
Volta	ge (V)		00	630	1000			2500	3000	4000	600	630	1000	1500			3000	4000	5000	600	630	1000	1500			3000	4000	5000	600	630	1000	1500			3000	4000	5000
Case	Size					18	B25								2220									2225	,								3640				

Letter	A	С	E	F	G	Х	7
Max.	0.813	1.448	1.8034	2.2098	2.794	0.940	3.30
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)	(0.130)

NOTE: Contact factory for non-specified capacitance values

KUDEERA KW/// The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

030821

X7R Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.82 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±10%; ±20%; +80%, -20%
Dissipation Factor	2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μ F min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μ F min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

X7R CAPACITANCE RANGE – PREFERRED SIZES ARE SHADED

Case Size			0805	01/0		Def	1206	010			De	1210	nlu						808 w Oply								12 v Oply			
Soldering	nm		ow/W				low/W 30 ± 0.					flow 0 .30 0.4							w Only ± 0.50						_	Reflov 4.60 :				
	n.)		35 ± 0.0				30 ± 0. 30 ± 0.					.30 0.4 130 0.0					(0.181	± 0.30 ± 0.020))							± 0.012)		
W Width m	nm	1.1	25 ± 0.2	20		1.60	+0.30/	-0.10	,		2	.50 0.3	0					2.00	0.20							3.20 :	± 0.30			
. (1	n.) nm	(0.0)	49 ± 0.0 1.35	J08)	((0.063 -	+0.012 1.80	/-0.004)		(0.0	2.80	12)	_			(± 0.008 20	9				_			<u>± 0.008</u> 80)	_	_
	n.)		(0.053)				(0.071))				(0.110)							20 087)							(0.1				
	nm		50 ± 0.2				60 ± 0.					.75 0.3							± 0.35							0.75:				
Voltage (V)	nax		20 ± 0.0 630		600	(0.0	<u>24 ± 0.</u> 1000	008)	2000	600	(0.0)	30 ± 0. 1000	014)	2000	600	630			± 0.014		3000	4000	600	620	1000	0.030:	± 0.014)	2000	1400
	101	X	030 X	C	000 C	C	1000	1300 E	2000 E	E	630 E	1000 E	1300 E	2000 E	000	030	1000	1300	2000	2300	3000	4000	000	030	1000	1300	2000	2300	3000	400
120	121	X	X	C	C	C	E	E	E	E	E	E	E	E																-
	151	x	X	C	C	C	E	E	E	E	E	E	E	E																-
	181	x	x	C	C	C	E	E	E	E	E	E	E	E																+
	221	X	X	C	C	C	E	E	E	E	E	E	E	E																+
	271	X	x	C	C	C	E	E	E	E	E	E	E	E									-	E	Е	E	E			-
	331	X	X	C	C	C	E	E	E	E	E	E	E	E	-	-	E	-	-	Е	F		E	E	E	E	E			-
				C		C	E	E	E	E	E		E	E	E	E		E	E		F		E	_	_	E	E			-
	391 471	X X	X X	C	C C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F		E	E	E	E	E	-	Е	-
																								_				E		-
	561	X	X	C	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	E	E	-
680	681	X	X	C	C	C	E	E		E			E	E	E			E		F				E	_	E				_
750	751	X	X	С	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E		F		E	E	E	E	E	F	F	_
	821	X	X	C	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	_
	102	X	Х	X	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E		<u> </u>		E	E	E	E	E		F	
1200	122	X	X	Х	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		F	F	F	F	F	F	F	
	152	Х	Х	Х	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		F	F	F	F	F	G	G	
	182	Х	Х	С	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		F	F	F	F	F	G	G	
	222	Х	Х	Х	С	С	E	E	Е	E	E	E	F	E	E	E	E	F	F	F			F	F	F	F	F	G	G	
	272	С	С		С	С	E	E		E	E	E	F	E	E	E	E	F	F				F	F	F	F	F	G	G	
	332	С	С		С	С	E			E	E	E	F	E	E	E	E	F	F				F	F	F	F	F	G	G	
	392	С	С		С	С	E			E	E	E	F		E	E	E	F					F	F	F	F	F	G	G	
	472	С	С		С	С	E			E	E	E	F		E	E	E	F					F	F	F	F	F	G	G	
	562	С	С		С	С	E			E	E	E	F		E	E	E	F					F	F	F	G	G	G		
	682	С	С		С	С	E			E	E	E			E	E	E	F					F	F	F	G	G			
	822	С	С		С	С	E			E	E	E			E	E	E						F	F	F	G	G			
14.7	103	С	С		С	С	E			E	E	E			E	E	E						F	F	F	G	G			
	153	С	С		E	E	E			E	E	E			F	F	F						F	F	F	G				
	183	С	С		E	E				E	E	E			F	F	F						F	F	G					
	223	С	С		E	E				E	E	F			F	F	F						F	F	G					
	273				E	E				E	E				F	F							F	F	G					
	333				E	E				E	E				F	F							F	F	G					
	393									E	E				F	F							F	F	G					
	473									E	E				F	F					<u> </u>		F	F	G					_
	563									F	F				F	F					<u> </u>		F	F						
	683									F	F				F	F	<u> </u>				L		F	F						
	823									F	F												F	F						
	104									F	F										<u> </u>		F	F						
	154																						G	G						
	224																				L		G	G						
	274																													
	334																				ļ		L		<u> </u>					
	394																													
	474																													
	564																													
	684																													
0.820	824																													
	105																													
Voltage (V)		600		1000	600	630		1500	2000	600	630		1500	2000	600	630	1000			2500	3000	4000	600	630	1000		2000	2500	3000	400
Case Size			0805				1206					1210						18	808							18	12			

.ette Max. 0.813 1.448 1.8034 2.2098 2.794 0.940 3.30 Thickness (0.032) (0.057) (0.071) (0.087) (0.110) (0.037) (0.130)

KUCERA KW/C The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X7R CAPACITANCE RANGE

PREFERRED SIZES ARE SHADED

Case Size					18	25								2220	1								2225	5								3640	5			
Soldering					Reflow	v Only								flow 0									flow (eflow (Only			
(L) Length (in.)					4.60 : 0.181 :									70 ± 0. 24 + 0.									70 ± 0 25 ± 0									14 ± 0 60 ± 0				
W) Width mn	'n				6.30 :	± 0.40							5.0)0 ± 0.	40							6.	30 ± 0	.40							1	0.2 ± 0).25			
(T) mm			_	(().248 :	± 0.01 40	6)						(0.19	97 ± 0. 3.40	016)					_		(0.2	50 ± 0 3.40	.010)							(0.4	00 ± 0			_	
Thickness (in.)					(0.1	34)								0.134									(0.100))						-	-	(0.100))			
(t) Terminal ma					0.75 : 0.030 :									35 ± 0. 33 ± 0.									85 ± 0 33 ± 0									76 (0.0 52 (0.0				
Voltage (V)		600	630					3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000
Cap (pF) 100 1	01																																			
	21																																\vdash			
	51																																\vdash	\square		
	81				ļ	ļ		ļ																									_	\vdash		
	21						-																										<u> </u>	\vdash		
	71																																┝──	\vdash		
	81																																<u> </u>	\vdash		
	191 171																																├──	\vdash		
	i61																																├──	╞──┤		
	81					-		-							-	-					-	<u> </u>	-			-				-			<u> </u>	\vdash	-+	
	/51		_			-	1	-				-	-	-	-								-		<u> </u>	-				-			<u> </u>			
	21																																<u> </u>		-+	
	02	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
1200 1	22	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
1500 1	52	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
1800 1	82	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
2200 2	22	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
2700 2	72	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
3300 3	132	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
	192	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
	72	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
	62	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	
	82	F	F	F	G	G	G	G		F	F	F	F	F	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G	G	
	22 03	F	F	F	G G	G G	G G	G G		F	F	F	G G	G G	G G	G G			F	F	F	F	F	G G	G G			G G	G G	G G	G G	G G	G G	G G	$ \rightarrow $	
	53	F	F	F	G	G	G	G		F	F	F	G	G	G	6			F	F	F	G	G	G	G			G	G	G	G	G	G	G		
	83	F	F	F	G	G				F	F	F	G	G	G				F	F	F	G	G	G	0			G	G	G	G	G	G	G		
	23	F	F	F	G	G				F	F	F	G	G	Ŭ				F	F	F	G	G	G				G	G	G	G	G	G			
	273	F	F	F	G					F	F	F	G	G	-				F	F	F	G	G					G	G	G	G	G	<u> </u>			
	63	F	F	F	G					F	F	F	G	-					F	F	F	G	G					G	G	G	G	-				
	93	F	F	F	G					F	F	F	G						F	F	F	G						G	G	G	G					
0.047 4	73	F	F	F	Р		1	1		F	F	F	G						F	F	F	G						G	G	G	G		1			
0.056 5	63	F	F	F	G					F	F	F	G		L				F	F	F	G						G	G	G	G					
	83	F	F	G						F	F	G							F	F	F	G						G	G	G	G					
	23	F	F	G						F	F	G					\square		F	F	G							G	G				\square	\square		
	04	F	F	G	<u> </u>		<u> </u>			F	F	G			L				F	F	G		L		L			G	G	<u> </u>			_	\square		
	54	F	F							F	F	G	<u> </u>		<u> </u>				F	F	G		<u> </u>		<u> </u>			G	G	_			—	$\mid - \mid$		
	24	F	F				<u> </u>			F	F	G	<u> </u>	-	<u> </u>				F	F			<u> </u>		<u> </u>			G	G		-		—	\vdash	-+	
	274 134	F	F							F	F								F	F	<u> </u>							G G	G G	-	-		—	\vdash	-+	
	134 194	F	F							F	F								F	F								G	G				<u> </u>	\vdash		
	194 174	F	F							F	F			-	-		$\left \right $		F	F	-		-					G	G	-	-		├──	┝──┦	-+	
	i/4 i64	G	G			-		-		G	G			-	-	-			F	F	-	<u> </u>	-		-	-		G	G	-	-		├──	\vdash	-+	
	84	-				-	1	-		G	G								G	G	-				-	-				-					-+	
	24						1												G	G													-		-+	
	05						1																										1		-+	
Voltage (V)		600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000
Case Size	Τ				18	25								2220									2225	;								3640)			
	_																																			
Letter	_	A			<u>C</u>		E	-	F		1	G	-	<u>X</u>		1	/	N	UIE	. Cor	itaci	ract	ory	or n	un-s	peci	fied c	apa	cital	ice \	aiue	es				
Max.		0.813		1.4			.8034		2.20			794		0.940		3.3																				

KYDEERA AWXXX The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Thickness

(0.032)

(0.057)

(0.071)

(0.087)

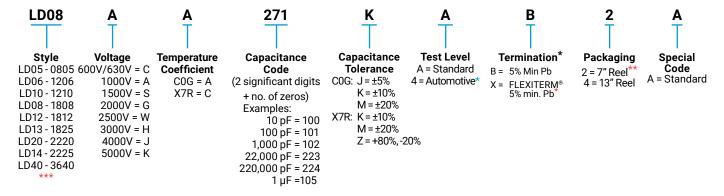
(0.110)

(0.037)

(0.130)

High Voltage MLC Chips Tin/Lead Termination "B" - 600V to 5000V Applications

NEW 630V RANGE

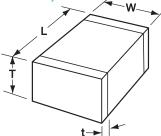

KYOCERA AVX will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the KYOCERA AVX Catalog Part Number. This fulfills KYOCERA AVX's commitment to providing a full range of products to our customers. KYOCERA AVX has provided in the following pages, a full range of values that we are offering in this "B" termination.

Larger physical sizes than normally encountered chips are used to make high voltage MLC chip product. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed 4°C per second.

The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

For 1825, 2225 and 3640 sizes, KYOCERA AVX offers leaded version in either thru-hole or SMT configurations (for details see section on high voltage leaded MLC chips).

HOW TO ORDER


Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.

* FLEXITERM is not available in the LD40 Style

** The LD40 Style is not available on 7" Reels.

*** KYOCERA AVX offers nonstandard chip sizes. Contact factory for details.

* Not all values are supported in Automotive grade. Please contact factory for availability

DIMENSIONS

MILLIMETERS (INCHES)

NOT RoHS Compliant

SIZE	LD05 (0805)	LD06 (1206)	LD10* (1210)	LD08* (1808)	LD12* (1812)	LD13* (1825)	LD20* (2220)	LD14* (2225)	LD40* (3640)
(L) Length	2.10 ± 0.20	3.30 ± 0.30	3.30 ± 0.40	4.60 ± 0.50	4.60 ± 0.50	4.60 ± 0.50	5.70 ± 0.50	5.70 ± 0.50	9.14 ± 0.25
(L) Lengui	(0.083 ± 0.008)	(0.130 ± 0.012)	(0.130 ± 0.016)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.224 ± 0.020)	(0.224 ± 0.020)	(0.360 ± 0.010)
(W) Width	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.30	2.00 ± 0.20	3.20 ± 0.30	6.30 ± 0.40	5.00 ± 0.40	6.30 ± 0.40	10.2 ± 0.25
	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.012)	(0.079 ± 0.008)	(0.126 ± 0.012)	(0.248 ± 0.016)	(0.197 ± 0.016)	(0.248 ± 0.016)	(0.400 ± 0.010)
(T) Thickness	1.35	1.80	2.80	2.20	2.80	3.40	3.40	3.40	2.54
Max.	(0.053)	(0.071)	(0.110)	(0.087)	(0.110)	(0.134)	(0.134)	(0.134)	(0.100)
(t) min.	0.50 ± 0.20	0.60 ± 0.20	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.85 ± 0.35	0.85 ± 0.35	0.76 (0.030)
terminal max.	(0.020 ± 0.008)	(0.024 ± 0.008)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.033 ± 0.014)	(0.033 ± 0.014)	1.52 (0.060)

*Reflow Soldering Only

Performance of ceramic capacitors can be simulated by using the online SpiMLCC software program - http://spicat.avx.com/mlcc Custom values, ratings and configurations are also available.

KINCERED The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

High Voltage MLC Chips

Tin/Lead Termination "B" - 600V to 5000V Applications

NP0 (C0G) Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.047 μF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K M Ω min. or 1000 M Ω - μ F min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K M Ω min. or 100 M Ω - μ F min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

HIGH VOLTAGE COG CAPACITANCE VALUES

VOLTA	GE	LD05 (0805)	LD06 (1206)	LD10 (1210)	LD08 (1808)	LD12 (1812)	LD13 (1825)	LD20 (2220)	LD14 (2225)	LD40 (3640)
600/630	min.	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF
000/030	max.	330 pF	1200 pF	2700 pF	3300 pF	5600 pF	0.012 µF	0.012 pF	0.018 µF	0.047 µF
1000	min.	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF
1000	max.	180 pF	560 pF	1500 pF	2200 pF	3300 pF	8200 pF	0.010 pF	0.010 µF	0.022 µF
1500	min.	-	10 pF	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	100 pF
1500	max.	-	270 pF	680 pF	820 pF	1800 pF	4700 pF	4700 pF	5600 pF	0.010 µF
2000	min.	-	10 pF	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	100 pF
2000	max.	-	120 pF	270 pF	330 pF	1000 pF	1800 pF	2200 pF	2700 pF	6800 pF
2500	min.	-	-	-	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF
2300	max.	-	-	-	180 pF	470 pF	1200 pF	1500 pF	1800 pF	3900 pF
3000	min.	-	-	-	10 pF	10 pF	10 pF	10 pF	10 pF	100 pF
3000	max.	-	-	-	120 pF	330 pF	820 pF	1000 pF	1200 pF	2700 pF
4000	min.	-	-	-	10 pF	10 pF	10 pF	10 pF	10 pF	100 pF
4000	max.	-	-	-	47 pF	150 pF	330 pF	470 pF	560 pF	1200 pF
5000	min.	-	-	-	-	-	_	10 pF	10 pF	10 pF
5000	max.	-	_	-	_	-	-	220 pF	270 pF	820 pF

X7R Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.56 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±10%; ±20%; +80%, -20%
Dissipation Factor	2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K M Ω min. or 1000 M Ω - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K M Ω min. or 100 M Ω - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES

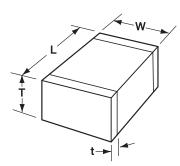
VOLTA	GE	0805	1206	1210	1808	1812	1825	2220	2225	3640
600/630	min.	100 pF	1000 pF	1000 pF	1000 pF	1000 pF	0.010 µF	0.010 µF	0.010 µF	0.010 µF
000/030	max.	6800 pF	0.022 µF	0.056 µF	0.068 µF	0.120 µF	0.390 µF	0.270 µF	0.330 µF	0.560 µF
1000	min.	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF	1000 pF	1000 pF	0.010 µF
1000	max.	1500 pF	6800 pF	0.015 µF	0.018 µF	0.039 µF	0.100 µF	0.120 µF	0.150 µF	0.220 µF
1500	min.	-	100 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF
1500	max.	-	2700 pF	5600 pF	6800 pF	0.015 µF	0.056 µF	0.056 µF	0.068 µF	0.100 µF
2000	min.	-	10 pF	100 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF
2000	max.	-	1500 pF	3300 pF	3300 pF	8200 pF	0.022 µF	0.027 µF	0.033 µF	0.027 µF
2500	min.	-	-	-	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF
2300	max.	-	-	_	2200 pF	5600 pF	0.015 µF	0.018 µF	0.022 µF	0.022 µF
3000	min.	-	-	-	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF
3000	max.	-	-	-	1800 pF	3900 pF	0.010 µF	0.012 µF	0.015 µF	0.018 µF
4000	min.	-	-	-	-	-	-	-	-	100 pF
4000	max.	-	-	-	-	-	-	-	-	6800 pF
5000	min.	-	-	-	-	-	-	-	-	100 pF
5000	max.	-	-	-	-	-	-	-	-	3300 pF

KYDEERA KW/K The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

High Voltage MLC Chips FLEXITERM[®] - 600V to 5000V Applications

High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. KYOCERA AVX special high voltage MLC chips capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/DC blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

To make high voltage chips, larger physical sizes than are normally encountered are necessary. These larger sizes require that special precautions be taken in applying these chips in surface mount assemblies. In response to this, and to follow from the success of the FLEXITERM® range of low voltage parts, KYOCERA AVX is delighted to offer a FLEXITERM® high voltage range of capacitors, FLEXITERM®.


The FLEXITERM® layer is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor, giving customers a solution where board flexure or temperature cycle damage are concerns.

HOW TO ORDER

1808	A ⊤	C ⊤	272	ĸ	A	Z ⊤	2	<u>A</u>
Style 0805 1206 1210 1808 1812 1825 2220 2225 ***	Voltage 600V/630V = C 1000V = A 1500V = S 2000V = G 2500V = W 3000V = H 4000V = J 5000V = K	Temperature Coefficient COG = A X7R = C	Capacitance Code (2 significant digits + no. of zeros) Examples: 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 µF =105	Capacitance Tolerance COG: J = ±5% K = ±10% M = ±20% X7R: K = ±10% M = ±20% Z = +80%, -20%	Test Level	Termination* Z = FLEXITERM® 100% Tin (RoHS Compliant)	Packaging 2 = 7" Reel 4 = 13" Reel	Special Code A = Standard

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.

*** KYOCERA AVX offers nonstandard chip sizes. Contact factory for details.

DIMENSIONS millimeters (inches)

SIZE	0805	1206	1210*	1808*	1812*	1825*	2220*	2225*
(L) Length	2.10 ± 0.20	3.30 ± 0.30	3.30 ± 0.40	4.60 ± 0.50	4.60 ± 0.50	4.60 ± 0.50	5.70 ± 0.50	5.70 ± 0.50
	(0.083 ± 0.008)	(0.130 ± 0.012)	(0.130 ± 0.016)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.224 ± 0.020)	(0.224 ± 0.020)
(W) Width	1.25 ± 0.20 (0.049 ±0.008)	$\frac{1.60^{+0.30}_{-0.10}}{(0.063^{+0.012}_{-0.004})}$	2.50 ± 0.30 (0.098 ± 0.012)	2.00 ± 0.20 (0.079 ± 0.008)	3.20 ± 0.30 (0.126 ± 0.012)	6.30 ± 0.40 (0.248 ± 0.016)	5.00 ± 0.40 (0.197 ± 0.016)	6.30 ± 0.40 (0.248 ± 0.016)
(T) Thickness Max.	1.35	1.80	2.80	2.20	2.80	3.40	3.40	3.40
	(0.053)	(0.071)	(0.110)	(0.087)	(0.110)	(0.134)	(0.134)	(0.134)
(t) terminal min.		0.60 ± 0.20	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.85 ± 0.35	0.85 ± 0.35
max.		(0.024 ± 0.008)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.033 ± 0.014)	(0.033 ± 0.014)

*Reflow Soldering Only

Performance of SMPS capacitors can be simulated by downloading SpiCalci software program - http://www.avx.com/SpiApps/default.asp#spicalci Custom values, ratings and configurations are also available.

KUDEERA The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

NP0 (COG) Dielectric Performance Characteristics

Capacitance Range	10 pF to 0.100 μF (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μ F min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

NP0 (C0G) CAPACITANCE RANGE

PREFERRED SIZES ARE SHADED

Case Size Soldering (L) Length mm (in.) W) Width mm (in.) (T) Thicknesse mm	1	Refle 2.1	0805 ow/W 0 ± 0.2			Ref	1206 low/W					1210							808		_					18			_	
(L) Length (in.) W) Width (in.)	1		0 + 0.2									flow O						Reflov								Reflov				
W) Width mm (in.)	1		0 ± 0.2 3 ± 0.0				30 ± 0. 30 ± 0.					30 ± 0.4 30 ± 0.0						4.60	± 0.50 ± 0.020	n)						4.60 ± 0.181 ±				
<u>(IN.)</u>		1.2	25 ± 0.2	20		1.60	± 0.30,	/-0.10			2.	50 ± 0.3	30					2.00 :	± 0.20							3.20 ±	0.30			
			1 2 5 0.0	008)	((0.063 :		2/-0.004	l)		(0.0	98 ± 0.0)12)				(± 0.008	5)					(0.126 ±)		
(T) Thickness (in.)		(1.35 0.053)				1.80 (0.071)				2.80 (0.110)							20 087)							2.8 (0.1				
(t) Terminal mm	1	0.5	0 ± 0.2	20		0.	60 ± 0.	20				75 ± 0.3						0.75:								0.75 ±				
Voltage (V)			0 ± 0.0		600	(0.0	$\frac{24 \pm 0}{1000}$	1500	2000	600		30 ± 0.0 1000		2000	600	630	(1000		± 0.014		3000	4000	600	630		0.030 ±			3000	4000
Cap (pF) 1.5 1		A	A	1000	X	X	X	X	X	000	000	1000	1000	2000	000	000	1000	1000	2000	2000	0000	1000	000	000			2000	2000	0000	
1.8 1		А	Α		Х	Х	Х	Х	Х																					
2.2 2		A A	A A		X	X	X	X	X								0	0	0	С	0									
3.3 3		A	A		X	X	X	X	X								C			C	C									
3.9 31		A	A		X	X	X	X	X								C	C	C	C	C									
4.7 4		А	А		Х	Х	Х	Х	Х								С	С	С	С	С									
5.6 5		A A	A A		X	X	X	X	X								C	C C	C C	C C	C C									
8.2 8		A	A		x	X	X	x	X								C	C	C	C	C									
		A	A	Α	X	X	X	X	X	С	С	D	D	D	С	С	C	C	C	C	C	С	С	С	С	С	С	С	С	E
12 1		A	A	A	X	X	X	X	X	С	C	D	D	D	С	С	C	C	C	C	C	C	С	C	C	C	C	С	C	E
		A A	A A	A A	X X	X X	X X	X X	X X	C C	C C	D D	D D	D D	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	E
22 2		A	A	A	X	X	X	X	X	C	C	D	D	D	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	E
27 2	70	А	Α	Α	Х	Х	Х	Х	Х	С	С	D	D	D	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	E
33 3		A	A	A	X	X	X	D	D	0	C	D	D	D	С	С	C	C	C	C	C	C	C	C	C	C	C	C	C	E
39 39		A A	A A	A A	X X	X X	X M	D D	D D	C C	C C	D D	D D	D D	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	E
56 50		A	A	A	X	X	M	C	C	C	C	D	C	C	C	C	C	C	C	C	C		C	C	C	C	C	C	C	F
68 68	80	А	Α	Α	Х	Х	М	С	С	С	С	D	С	С	С	С	С	С	С	С	С		С	С	С	С	С	С	С	F
82 83		X	X	X	X	X	C	C	C	C	C	D	C	C	C	<u>C</u>	C	C	C	C F	C F		C	C	C	C	C	C	C	F
100 10		X C	X C	X C	X	X	C C	C E	C E	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	F	F		C C	C C	C C	C C	C C	C C	C C	G
150 1		c	C	C	X	X	c	E	E	C	C	C	E	E	C	C	c	F	F	F	F		C	c	C	C	C	C	C	G
180 1		С	С	С	Х	Х	E	E	Е	С	С	E	Е	Е	С	С	С	F	F	F	F		С	С	С	С	С	F	F	
220 2		C C	C C		X C	X C	E	E	E	C C	C C	E	E	E	C C	C C	C C	F	F	F	F		C C	C C	C C	C C	C C	F	F	
330 3		c	c		C	C	E	E	E	C	C	E	E	E	C	<u> </u>	F	F	F	F	F		C	C	C	F	F	F	F	
390 3	91	С	С		С	С	Е	E	E	С	С	E	E	Е	С	С	F	F	F	F	F		С	С	С	F	F	F	F	
470 4		С	С		С	С	E	E	Е	С	С	E	Е	E	С	С	F	F	F	F	F		С	С	F	F	F	F	F	
560 50		C C	C C		C C	C C	E			C C	C C	E	E	E	C C	C C	F	F	F				C C	C C	F	F	F	F G	F G	
750 7		c	c		E	E	E			C	C	E	G	G	C	c	F	F	F				C	c	F	F	F	G	G	
820 83		С	С		E	E	E			С	С	Е	G	G	С	С	F	E	E				С	С	F	F	F	G	G	
	02				E	E	E			C	C	E			C	C F	F	E	E				C C	C	F	F	F	G	G	
1200 11	22 52	_			E	F				C C	C C	G			E	E	F	E	E				C	C C	F	F	F			
1800 1	82				E	E				С	С	G			Е	E	F						С	C	F	F	F			
	22				E	E				E	E				E	E							С	С	E	G	G			
2700 2					E	E				E	E				E	E							C C	C C	E	G	G			
3900 3					-					E	E				E	E							C	C	F					
4700 4	72									Е	Е				Е	Е							С	С	G					
5600 5										E	E				E	E							C	C						
6800 68 8200 83															F								C F	C E						
Cap (µF) 0.010 10						1																	E	E						1
0.012 12	_																		1				F	F						1
0.015 1	-																		1				G	G						1
0.018 1																			1				G	G						1
0.022 22						1		1																						
0.033 33	_					1		1																	1					1
0.047 4	_					1		1																	1					1
0.056 5	_					1		1																	1					1
0.068 68						1		1																	1					1
0.100 10	_					1		1																	1					1
Voltage (V)		500		1000	600	630			2000	600			1500	2000	600	630	1000		2000	2500	3000	4000	600	630	1000	1500		2500	3000	4000
Case Size			0805				1206					1210						18	808							18	12			

KUCERE The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

NP0 (C0G) CAPACITANCE RANGE

PREFERRED SIZES ARE SHADED

Case Siz	ze				1	825								2220)								2225	5			
Solderin	ıg					ow Onl								eflow (eflow				
(L) Length	mm (m)					0 ± 0.50								.70 ± 0									.72 ± 0				
() 0	(in.) mm					1 ± 0.02 2 ± 0.40							<u>``</u>	224 ± 0									25 ± 0				
W) Width	(in.)					3 ± 0.40								197 ± 0									.35 ± 0 250 ± 0				
	mm					3.40	0)						(0.	3.40								(0.2	3.40				
(T) Thickness	(in.)					0.134)								(0.134									(0.13				
(t) Terminal	mm					5 ± 0.35								.85 ± 0								0	.85 ± 0	1 35			
Voltage (max	600	620	1000) ± 0.01 2000		2000	4000	600	620	1000		$)33 \pm 0$	2500	2000	4000	5000	600	630	1000			2500	3000	4000	5000
Cap (pF)	1.5 1R5	000	030	1000	1500	2000	2300	3000	4000	000	030	1000	1500	2000	2300	3000	4000	5000	000	030	1000	1500	2000	2300	3000	4000	5000
	1.8 1R8																										
	2.2 2R2																										
	2.7 2R7																										
	3.3 3R3 3.9 3R9																										
	4.7 4R7																										
	5.6 5R6																										
	6.8 6R8																										
	8.2 8R2 10 100	Е	Е	Е	Е	E	Е	Е	E	Е	E	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	E	Е	Е	F	F
	12 120		E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F
	15 150	Е	Е	Е	E	E	E	Е	E	Е	E	E	E	E	E	Е	Е	E	Е	E	Е	E	E	E	Е	F	F
	18 180		E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F
	22 220 27 270	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F
	33 330	E	E	E	E	E	E	E	E	E	E	Ē	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F
	39 390	Е	Е	Е	Е	Е	Е	Е	E	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	E	Е	Е	F	F
	47 470	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	G
	56 560 68 680	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	G G
	82 820	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	G
	100 101	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	G	G
	120 121	Е	E	E	E	E	E	E	F	Е	E	E	E	E	E	E	E	E	Е	E	E	E	E	E	E	G	G
	150 151 180 181	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E F	E F	E	E	E	E	E	E	E	G G	G
	180 181 220 221	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	F	F	E	E	E	E	E	E	E	G	G
	270 271	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E			E	E	E	E	E	E	E	G	G
	330 331	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E			E	E	E	E	E	E	E	G	
	390 391 470 471	E	E	E	E	E	E	E		E	E	E	E	E	E	E			E	E	E	E	E	E	E	G	
	470 471 560 561	E	E	E	E	E	E	E		E	E	E	E	E	E	E			E	E	E	E	E	E	E	G G	
	680 681	E	E	E	E	E	F	F		E	E	E	E	E	F	F			E	E	E	E	E	E	E	-	
	750 751	Е	E	E	E	E	F	F		Е	E	E	E	E	F	F			E	E	E	E	E	E	E		
	820 821 000 102	E	E	E	E	E	F	F		E	E	E	E	E	F	F			E	E	E	E	E	F	E		
	200 102	E	E	E	E	E	G	G		E	E	E	E	E	G	G			E	E	E	E	E	F	F		
	500 152	E	E	E	F	F	G	G		E	E	E	F	F	G	G			E	E	E	E	E	F	F		
	800 182	E	E	E	F	F	G	G		Е	E	E	F	F	G	G			E	E	E	E	E	G	G		
	200 222 700 272	E	E	E	G G	G G				E	E	E	G G	G G					E	E	E	E F	E F				
	300 332	E	E	E	G	G				E	E	E	G	G					E	E	E	F	F		1		
	900 392	E	E	E	G	G				E	E	E	G	G					E	E	E	G	G				
	700 472	E	E	E	G	G				E	E	E	G	G					F	F	F	G	G				
	600 562 800 682	F	F	F	G	G				F	F	F							F	F	F	G G	G G				
	800 682 200 822	-	-	-							F G	-							F G	G	G	6	6				
	010 103																		G	G	G						
	012 123																		G	G	G						
	015 153		<u> </u>							<u> </u>									G	G	G						
	018 183 022 223									-									G G	G G	G G						
	033 333					1													G	G	G						
	047 473																		G	G	G						
	056 563																		G	G	G						
	068 683 100 104		-							-									G	G	G						<u> </u>
		600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	G 600	G 630	1000	1500	2000	2500	3000	4000	5000
Voltage (V)																										

Letter	A	C	E	F	G	Х
Max.	0.813	1.448	1.803	2.210	2.794	0.940
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)

NOTE: Contact factory for non-specified capacitance

KYDEERA AWXXX The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X7R Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.82 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±10%; ±20%; +80%, -20%
Dissipation Factor	2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μ F min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μ F min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

X7R CAPACITANCE RANGE

PREFERRED SIZES ARE SHADED

Case Size	Т		0805		l l		1206					1210						18	808				ľ			18	12						
Soldering		Refl	ow/W	ave			low/W	/ave			Re	flow O	nly		Reflow Only									1812 Reflow Only									
(L) Length (in.))	(0.08	.10 0.2 33 ± 0.0	008)		(0.1	.30 ± 0. 30 ± 0.	012)			(0.1	.30 0.4	16)				(0.181 :	± 0.50 ± 0.020)			4.60 ± 0.50 (0.181 ± 0.020) 3.20 ± 0.30										
W) Width (in.)		(0.04	.25 0.2 19 ± 0.0	.U 008)		1.60 (0.063)	+0.30/ +0.012		l)			.50 0.3)98 0.0			2.00 0.20 (0.079 ± 0.008)									(0.126 ± 0.012)									
(T) Thickness (in.))	(1.35 (0.053))			1.80 (0.071)				2.80 (0.110)			2.20 (0.087)								2.80 (0.110) 0.75 + 0.25										
(t) Terminal mn			50 ± 0.1 20 ± 0.0				.60 ± 0. 24 ± 0.					.75 0.3 30 ± 0.0						0.75	± 0.35 ± 0.014	`			0.75 ± 0.35 (0.030 ± 0.014)										
Voltage (V)				1000	600				2000	600				2000	600	630					3000	4000	600	630		1500			3000	4000			
	101	X	Х	C	C	C	E	E	E	E	E	E	E	E																			
	121	Х	Х	С	С	С	E	E	E	Е	Е	Е	Е	E																			
150 1	151	Х	Х	С	С	С	E	Е	E	Е	Е	Е	Е	E																			
180 1	181	Х	Х	С	С	С	Е	Е	Е	E	Е	Е	Е	Е																			
220 2	221	Х	Х	С	С	С	Е	Е	Е	E	Е	Е	Е	Е																			
270 2	271	Х	Х	С	С	С	Е	Е	E	E	Е	Е	Е	E									Е	Е	E	Е	Е						
330 3	331	Х	Х	С	С	С	E	E	Е	E	E	Е	Е	Е	Е	Е	E	E	E	E	F		E	E	Е	E	E						
	391	Х	Х	С	С	С	E	E	E	E	Е	Е	Е	E	Е	E	E	E	E	E	F		E	E	E	E	E						
	471	Х	Х	С	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F		E	E	E	E	E	E	E				
	561	Х	X	С	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	E	E	<u> </u>			
	581	X	X	C	C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	<u> </u>			
	751 321	X	X X	C C	C C	C C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F				
	102	X X	X	C	c	C C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		E	E	E	E	E	F	F	<u> </u>			
	122	x	X	C	c	c	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		F	F	F	F	F	F	F				
	152	X	X	C	c	c	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		F	F	F	F	F	G	G	-			
	182	X	X		C	C	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F		F	F	F	F	F	G	G				
	222	X	X		C	C	E	E	E	E	E	E	F	E	E	E	E	F	F	F			F	F	F	F	F	G	G				
	272	Х	Х		С	С	E	E		Е	Е	Е	F	E	Е	Е	E	F	F				F	F	F	F	F	G	G				
3300 3	332	Х	Х		С	С	E			Е	Е	Е	F	E	Е	Е	Е	F	F				F	F	F	F	F	G	G				
3900 3	392	Х	Х		С	С	E			Е	Е	Е	G		Е	Е	E	F					F	F	F	F	F	G	G				
4700 4	472	Х	Х		С	С	Е			E	Е	Е	G		Е	Е	Е	F					F	F	F	F	F	G	G				
5600 5	562	Х	Х		С	С	E			E	E	Е	G		Е	E	E	F					F	F	F	G	G						
	582	Х	Х		С	С	E			E	E	Е			Е	E	E	F					F	F	F	G	G						
	322	Х	X		С	С	E			E	E	E			E	E	E						F	F	E	G	G						
147	103	С	С		С	C	E			E	E	E			E	E	E						F	F	F	G	G						
	153 183	C C	C C		E	E	E			E	E	E			F	F	F						F	F	G	G							
	223	C C	с С		E	E				E	E	E			F	F	F						F	F	G								
	273	U	U		E	E				E	E	E			F	F	F						F	F	G								
	333				E	E				E	E				F	F							F	F	G								
	393				-	-				E	E				F	F							F	F	G								
	473					1				E	E				F	F			1		1		F	F	G					1			
0.056 5	563					İ	1	1		F	F				F	F	İ	İ	İ	1	İ		F	F				İ		İ			
0.068 6	583									F	F				F	F							F	F									
0.082 8	323									F	F												F	F									
	104									F	F												F	F									
	154]																					G	G									
	224				L												L						G	G	<u> </u>								
	274						<u> </u>										L	<u> </u>								<u> </u>							
	334																-	-						-	-			-		-			
	394																																
	474 564																																
	584 584																																
	324																		<u> </u>														
	105																																
Voltage (V)					600				2000	600				2000	600	630	1000			2500	3000	4000	600	630	1000	1500		2500	3000	4000			
Case Size			0805				1206					1210						18	808							18	12						

KUDCER8 | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

091620

X7R CAPACITANCE RANGE

PREFERRED SIZES ARE SHADED

Case Size					25				2220						2225									3640													
Soldering					w Only 0.50					Reflow Only 5.70 0.50								Reflow Only Reflow Only 5.72 ± 0.25 9.14 ± 0.25																			
(L) Length (in.)				0.181	0.020)						(0.2	24 0.0)20)				(0.225 ± 0.010)									(0.360 ± 0.010)										
W) Width mm (in.)			((0.40 ± 0.01	6)				5.00 0.40 (0.197 0.016)								6.35 ± 0.25 5.72 ± 0.25 (0.250 ± 0.010) (0.225 ± 0.010)																			
(T) mm				3.	40	•)				3.40								2.54									2.54										
Thickness (in.)					134) 0.35					(0.134) 0.85 0.35												(0.100 35 ± 0					(0.100) 0.76 (0.030)										
(t) Terminal mm max			(0		± 0.01	4)							83 ± 0.										.014)								.76 (0.0						
Voltage (V)	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000			2500	3000	4000	5000		
Cap (pF) 100 101																																			\vdash		
120 121 150 151		-																																			
180 181	-																																		\vdash		
220 221																																					
270 271																																					
330 331																																					
390 391 470 471															<u> </u>															<u> </u>							
560 561	-	-																																	\vdash		
680 681																																			\square		
750 751		1																												İ							
820 821																																					
1000 102	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G		
1200 122 1500 152	F	F	F	F	F	F	F		F	F	F	F	F	F	G G			F	F	F	F	F	F	F			G G	G G	G G	G	G G	G G	G G	G G	G G		
1800 182	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G		
2200 222	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G		
2700 272	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G		
3300 332	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G		
3900 392	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G			
4700 472	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G			
5600 562 6800 682	F	F	F	F G	F	F	F G		F	F	F	F	F	F G	G G			F	F	F	F	F	F G	F G			G G	G G	G G	G G	G G	G G	G G	G G			
8200 822	F	F	F	G	G	G	G		F	F	F	G	G	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G	0			
Cap (µF) 0.010 103	F	F	F	G	G	G	G		F	F	F	G	G	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G				
0.015 153	F	F	F	G	G	G			F	F	F	G	G	G				F	F	F	G	G	G	G			G	G	G	G	G	G	G				
0.018 183	F	F	F	G	G				F	F	F	G	G	G				F	F	F	G	G	G				G	G	G	G	G	G	G				
0.022 223	F	F	F	G	G				F	F	F	G	G					F	F	F	G	G	G				G	G	G	G	G	G					
0.027 273	F	F	F	G					F	F	F	G	G					F	F	F	G	G					G	G	G	G	G						
0.033 333	F	F	F	G					F	F	F	G						F	F	F	G	G					G	G	G	G							
0.039 393	F	F	F	G					F	F	F	G			<u> </u>			F	F	F	G	<u> </u>					G	G	G	G							
0.047 473	F	F	F	P G					F	F	F	G G		-				F	F	F	G G	<u> </u>					G G	G G	G G	G G					$\left - \right $		
0.056 563	F	F	⊢ G	6					F	F	F G	6	-	-	-			F	F	F	G	-					G	G	G	G					┝──┨		
0.082 823	F	F	G		-				F	F	G			-		-		F	F	G							G	G							\vdash		
0.100 104	F	F	G						F	F	G							F	F	G							G	G		1							
0.150 154	F	F							F	F	G							F	F	G							G	G									
0.220 224	F	F							F	F	G							F	F								G	G									
0.270 274	F	F							F	F								F	F								G	G	ļ	<u> </u>	ļ						
0.330 334	F	F	-			-			F	F			-	-	-	-		F	F	-	<u> </u>	-					G G	G G			-				\vdash		
0.470 474	F	F	-	-	-				F	F			-	-	-			F	F					\vdash			G	G	<u> </u>						$\left - \right $		
0.560 564	G	G			1				G	G								F	F				1				G	G		1	1						
0.680 684									G	G								G	G																		
0.820 824									G	G								G	G																		
1.000 105	600	620	1000	1500	2000	2500	2000	4000	G	G	1000	1500	2000	2500	2000	4000	5000	G	G	1000	1500	2000	2500	2000	4000	5000	600	620	1000	1500	2000	2500	2000	4000	5000		
Voltage (V) Case Size	000	1 030	11000		12000 325	12000	13000	14000	000	030	1000		22000 2220		13000	14000	3000	000	030	1000		2000 2225		3000	4000	3000	000	030	1000	1500	3640		3000	4000	1000		
	-								-																												

Letter	А	С	E	F	G	Р	Х
Max.	0.813	1.448	1.8034	2.2098	2.794	3.048	0.940
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.120)	(0.037)

NOTE: Contact factory for non-specified capacitance values

KUDEERA KW/// The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

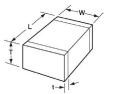
High Voltage MLC Chip Capacitors For 600V to 3000V Automotive Applications - AEC-Q200

Modern automotive electronics could require components capable to work with high voltage (e.g. xenon lamp circuits or power converters in hybrid cards). KYOCERA AVX offers high voltage ceramic capacitors qualified according to AEC-Q200 standard.

High value, low leakage and small size are diffocult parameters to obtain in cpacitors for high voltage systems. KYOCERA AVX special hgih voltage MLC chip capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/dc blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

Due to high voltage nature, larger physical dimensions are necessary. These larger sizes require special precautions to be taken in applying of MLC chips. The temperature gradient during heating or cooling cycles should not exceed 4°C per second. The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

To improve mechanical and thermal resistance, KYOCERA AVX recommend to use flexible terminations system - FLEXITERM®.


HOW TO ORDER

1210	С	С	223	К	4	т	2	Α
	Т	Т	\top	T	\top	Т	Т	T
Size	Voltage	Dielectric	Capacitance	Capacitance	Failure Rate	Terminations	Packaging	Special Code
1206	C = 630V	X7R = C	Code	Tolerance	4 = Automotive	T = Plated Ni and Sn	2 = 7" Reel	A = Std. Product
1210	A = 1000V		2 Sig. Digits +	K = ±10%		Z = FLEXITERM [®]	4 = 13" Reel	
1808	S = 1500V		Number of Zeros	$M = \pm 20\%$				
1812	G = 2000V		e.g. 103 = 10nF					
2220	W = 2500V		(223 = 22nF)					
	H = 3000V							

*KYOCERA AVX offers nonstandard case size. Contact factory for details.

Notes: Capacitors with X7R dielectrics are not indeded for applications across AC supply mains or AC line filtering with polarity reversal. Please contact KYOCERA AVX for recommendations

CHIP DIMENSIONS DESCRIPTION

L = Length W = Width T = Thickness t = Terminal

(SEE CAPACITANCE RANGE CHART ON PAGE 128)

X7R DIELECTRIC PERFORMANCE CHARACTERISTICS

Parameter/Test	Specification Limits	Measuring Conditions		
Operating Temperature Range	-55°C to +125°C	Temperature Cycle Chamber		
Capacitance Dissipation Factor	within specified tolerance 2.5% max.	Freq.: 1kHz ±10% Voltage: 1.0Vrm s ±0.2Vrms		
Capacitance Tolerance	±5% (J), ±10% (K), ±20% (M)	T = +25°C, V = 0Vdc		
Temperature Characteristics	X7R = ±15%	Vdc = 0V, T = (-55°C to +125°C)		
Insulation Resistance	100GΩ min. or 1000MΩ • μF min. (whichever is less) 10GΩ min. or 100MΩ • μF min. (whichever is less)	T = +25°C, V = 500Vdc T = +125°C, V = 500Vdc (t ≥ 120 sec, I ≤ 50mA)		
Dielectric Strength	No breakdown or visual defect	120% of rated voltage t ≤ 5 sec, l ≤ 50mA		

KIDCERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. 1 AVAX

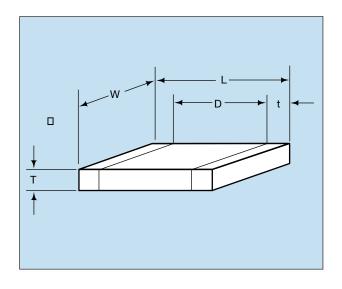
120318

X7R CAPACITANCE RANGE

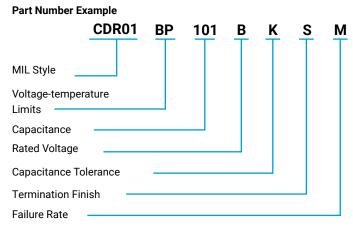
PREFERRED SIZES ARE SHADED

(L) Length mm (n.) 3.2 ± 0.2 (0.126 ± 0.008) (0. W) Width mm (n.) 1.6 ± 0.2 (0.063 ± 0.008) (0. (t) Terminal mm max 0.5 ± 0.25 (0.02 ± 0.01) (0. Voltage (V) 630 1000 1500 2000 2500 630 1 Cap (pF) 101 100 C E	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.25 0.01) 0.25 0.01) 0.36	30000 1 E E F F F F F 7 7 7 7 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1	E 11 E 11 E 11 E 11 E 11 E 11 E 11 F 11 F	4.5 (0.177 3.2 (0.126 0.01 (0.024 00 1500 1500 1500 1500 1500 1500 1500 1	± 0.2 ± 0.00 ± 0.36 ± 0.01	2) 4) 25000 	3000 	630	5 (0.2 (0.19 0.6 (0.02	flow Of $.7 \pm 0.3$ 24 ± 0.5 5 ± 0.4 $.7 \pm 0.6$ $.5 \pm 0.4$ $.25 \pm 0.6$ $.25 \pm 0.6$.1500	5 02) 016) 39 015)	300(
(L) Length (n.) (0.126 ± 0.008) (0. W) Width mm (n.) 1.6 ± 0.2 (0.05 ± 0.008) (0. (t) Terminal mm max 0.5 ± 0.25 (0.02 ± 0.01) (0. Voltage (V) 630 1000 1500 2000 2500 630 1001 Cap (pF) 101 100 C E	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(0.18 ± 0 2.03 ± 0 (0.08 ± 0 0.61 ± 0 (0.024 ± 0 00 1500 2 E E E E E E E E E E E E E F E F	0.01) 0.25 0.01) 0.36 0.014) 0000 2500 2 0.014 0000 2500 2 0.014	E F F F F F F F F	E 11 E 11 E 11 E 11 E 11 E 11 E 11 F 11 F	(0.177 3.2 (0.126 0.61 (0.024 00 1500 	± 0.01 ± 0.2 ± 0.00 ± 0.366 ± 0.01 2000 	8) 4) 2500 	E F		(0.2 (0.19 0.6 (0.02	24 ± 0. 5 ± 0.4 97 ± 0.0 54 ± 0.0 25 ± 0.0	02) 016) 39 015)	
N Control (n.) Control (0.128 \pm 0.008) Control (0.000) W) Width mm (max 1.6 \pm 0.2 (0.063 \pm 0.008) (0. (t) Terminal mm max 0.5 \pm 0.25 (0.02 \pm 0.01) (0. Voltage (V) 630 1000 1500 2000 2500 630 1 Cap (pF) 101 100 C E E E E I 11 150 C E E E E I I 181 180 C E E E E E I <thi< th=""> I <thi< th=""> I <</thi<></thi<>	$\begin{array}{c} 2.5 \pm 0.2 \\ \hline 0.08 \pm 0.008 \\ \hline 0.08 \pm 0.008 \\ \hline 0.5 \pm 0.25 \\ \hline 0.02 \pm 0.01 \\ \hline 0.00 & 1500 & 200 \\ \hline 0.00 & 100 & 200 \\ \hline 0.0$		2.03 ± ((0.08 ± C (0.024 ± C (0.024 ± C 00 1500 2 E E E E E E E E E E E E E E F F F	0.25 0.01) 0.36 0.014) 000 2500 3 000	E F F F F F F F F	E 11 E 11 E 11 E 11 E 11 E 11 E 11 F 11 F	3.2 (0.126 0.61 (0.024 00 1500 500 500 500 500 500 500 500 500 500	± 0.2 ± 0.00 ± 0.36 ± 0.01 2000 E E E E E E F F	8) 4) 2500 	E F		(0.19 0.6 (0.02	5 ± 0.4 97 ± 0.0 64 ± 0.3 25 ± 0.0	016) 39 015)	300(
wildth (n.) (0.063 ± 0.008) (0. (t) Terminal mm 0.5 ± 0.25 (0.02 \pm 0.01) (0. Voltage (V) 630 1000 1500 2000 2500 630 1 Cap (pF) 101 100 C E <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td></td> <td>(0.08 ± 0 0.61 ± 0 (0.024 ± 0 00 1500 2 E E E E E E E E E E E F E F F F</td> <td>D.01) D.36 D.014) D.000 2500 E E E E E E E E E E E F E F F F F</td> <td>E F F F F F F F F</td> <td>E 11 E 11 E 11 E 11 E 11 E 11 E 11 F 11 F</td> <td>(0.126 0.61 (0.024 00 1500 </td> <td>± 0.00 ± 0.36 ± 0.01 2000 E E E E E F F</td> <td>4) 2500 E E F F G G</td> <td>E F</td> <td></td> <td>(0.19 0.6 (0.02</td> <td>97 ± 0.0 54 ± 0.3 25 ± 0.0</td> <td>016) 39 015)</td> <td>300(</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(0.08 ± 0 0.61 ± 0 (0.024 ± 0 00 1500 2 E E E E E E E E E E E F E F F F	D.01) D.36 D.014) D.000 2500 E E E E E E E E E E E F E F F F F	E F F F F F F F F	E 11 E 11 E 11 E 11 E 11 E 11 E 11 F 11 F	(0.126 0.61 (0.024 00 1500 	± 0.00 ± 0.36 ± 0.01 2000 E E E E E F F	4) 2500 E E F F G G	E F		(0.19 0.6 (0.02	97 ± 0.0 54 ± 0.3 25 ± 0.0	016) 39 015)	300(
Imm (0.023 ± 0.008) (0.02 (t) Terminal mm 0.5 ± 0.25 (0.02 (totage (V) 630 1000 1500 2000 2500 630 121 120 C E E E E E 121 120 C E E E E E 121 120 C E E E E E 131 180 C E E E E E 221 220 C E E E E E 313 330 C E E E E E 391 390 C E	$\begin{array}{c ccccc} 0.5 \pm 0.25 \\ 0.02 \pm 0.01) \\ \hline 000 & 1500 & 200 \\ \hline 000 & 100 & 200 \\$		0.61 ± ((0.024 ± (00 1500 2) E E E E E E E E E E E E E F E F F	D.36 D.014) 000 2500 E E E E E E E E E F E F F F F F	E F F F F F F F F	E 11 E 11 E 11 E 11 E 11 E 11 E 11 F 11 F	0.61 (0.024 00 1500 	± 0.36 ± 0.01 2000	4) 2500 E E F F G G	E F		0.6	64 ± 0.3 25 ± 0.0	39 015)	
mm 0.5 ± 0.25 (0.02 \pm 0.01) Voltage (V) 630 1000 1500 2000 2500 630 1 Cap (pF) 101 100 C E <td>.02 ± 0.01) 000 1500 200 1500 200 1500 200 1500 200 1500 200 1500 200 1500 200 1500 200 1500 200 1500 1500 1</td> <td></td> <td>0.61 ± ((0.024 ± (00 1500 2) E E E E E E E E E E E E E F E F F</td> <td>D.36 D.014) 000 2500 E E E E E E E E E F E F F F F F</td> <td>E F F F F F F F F</td> <td>E 11 E 11 E 11 E 11 E 11 E 11 E 11 F 11 F</td> <td>0.61 (0.024 00 1500 </td> <td>± 0.36 ± 0.01 2000</td> <td>4) 2500 E E F F G G</td> <td>E F</td> <td></td> <td>(0.02</td> <td>25 ± 0.0</td> <td>015)</td> <td></td>	.02 ± 0.01) 000 1500 200 1500 200 1500 200 1500 200 1500 200 1500 200 1500 200 1500 200 1500 200 1500 1500 1		0.61 ± ((0.024 ± (00 1500 2) E E E E E E E E E E E E E F E F F	D.36 D.014) 000 2500 E E E E E E E E E F E F F F F F	E F F F F F F F F	E 11 E 11 E 11 E 11 E 11 E 11 E 11 F 11 F	0.61 (0.024 00 1500 	± 0.36 ± 0.01 2000	4) 2500 E E F F G G	E F		(0.02	25 ± 0.0	015)	
max (0.02 ± 0.01) (0.02 ± 0.01) Voltage (V) 630 1000 1500 2000 2500 630 1 Cap (pF) 101 100 C E <t< td=""><td>0000 1500 200 0 1500 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td></td><td>00 1500 2 E E E E E E E E E E E E E E E</td><td>2500 E E E E E E E E F F F F F F F F F F F F F</td><td>E F F F F F F F F</td><td>E 11 E 11 E 11 E 11 E 11 E 11 E 11 F 11 F</td><td>00 1500</td><td>2000</td><td>2500 E F F F G G</td><td>E F</td><td></td><td><u>`</u></td><td></td><td></td><td></td></t<>	0000 1500 200 0 1500 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00 1500 2 E E E E E E E E E E E E E E E	2500 E E E E E E E E F F F F F F F F F F F F F	E F F F F F F F F	E 11 E 11 E 11 E 11 E 11 E 11 E 11 F 11 F	00 1500	2000	2500 E F F F G G	E F		<u>`</u>			
Voltage (V)63010001500200025006301Cap (pF)101100CEEEEEE121120CEEEEEEE151150CEEEEEEE221220CEEEEEEE271270CEEEEEEE331330CEEEEEEE391390CEEEEEEE391390CEEE<	0000 1500 200 0 1500 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00 1500 2 E E E E E E E E E E E E E E E	2500 E E E E E E E E F F F F F F F F F F F F F	E F F F F F F F F	E 11 E 11 E 11 E 11 E 11 E 11 E 11 F 11 F	00 1500	2000	2500 E F F F G G	E F			1500 	2000 :	
Cap (pF) 101 100 C E E E E E 121 120 C E E E E E E 151 150 C E E E E E E 211 120 C E E E E E E 221 220 C E E E E E E 211 270 C E E E E E E 211 270 C E	Image: Constraint of the sector of			E E E E E E E E E E E E F E F F F	E F F F F F F F F	E 11 E 11 E 11 E 11 E 11 E 11 E 11 F 11 F		E E E E E E F F	E E F F F G G	E F					
121 120 C E E E E 151 150 C E E E E E 181 180 C E E E E E 221 220 C E E E E E 211 270 C E E E E E 211 270 C E E E E E 211 270 C E E E E E E 211 270 C E	E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E	E E E E E E E E E E E E E E E E E E E E E E E E E E E E	E E E E E E E E E E E E E E E E E E E	E E E E E F E F F F F F	E F F F F F F	E E E E E E F F F F	E E E E E E E F F F	E E E F F	E F F G G	E F F					
151 150 C E E E E 181 180 C E E E E 221 220 C E E E E 221 220 C E E E E 211 220 C E E E E 211 220 C E E E E 211 220 C E E E E 331 330 C E E E E E 391 390 C E E E E E 681 680 C E E E E E 102 1000 C E E E E E E 122 1220 C E E E E E E 132 1800 C E E E E E E E E <	E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E	E E E E E E E E E E E E E E E E E E E E E E E E E E E E	E E E E E E E E E E E E E E E E E E E	E E E E E F E F F F F F	E F F F F F F	E E E E E E F F F F	E E E E E E E F F F	E E E F F	E F F G G	E F F					
181 180 C E E E E 221 220 C E E E E 271 270 C E E E E 331 330 C E E E E E 391 390 C E E E E E E 391 390 C E E E E E E 391 390 C E E E E E E 391 390 C E E E E E E 471 470 C E E E E E E 681 680 C E	E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E	E E E E E E E E E E E E E E E E E E E E E E E E E E E E	E E E E E E E E E E E E E E E E E E E	E E E E E F E F F F F F	E F F F F F F	E E E E E E F F F F	E E E E E E E F F F	E E E F F	E F F G G	E F F					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E	E E E E E E E E E E E E E E E E E E E E E E E E E E E E	E E E E E E E E E E E E E E E E E E E	E E E E E F E F F F F F	E F F F F F F	E E E E E E F F F F	E E E E E E E F F F	E E E F F	E F F G G	E F F					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E	E E E E E E E E E E E E E E E E E E E E E E E E E E E E	E E E E E E E E E E E E E E E E E E E	E E E E E F E F F F F F	E F F F F F F	E E E E E E F F F F	E E E E E E E F F F	E E E F F	E F F G G	E F F					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E	E E E E E E E E E E E E E E E E E E E	E E E E E E E F F F	E E E F E F F F F F	F F F F F F	E E E E E E F F F F	E E E E E E E F F F	E E E F F	E F F G G	E F F					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E		E E E E E E E E E E E E E E E E E E E	E E E F F F F F	F F F F F	E E E E E E F F F F	E E E E E E E F F F	E E E F F	E F F G G	E F F					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E		E E E F F	E F E F F F F F	F F F F	E E E E F F	E E E E E E E F F F	E E E F F	E F F G G	E F F					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E		E E F	E F F F F F	F F F	E E E F F F F	E E E E E E E F F F	E E E F F	E F F G G	E F F	F				
681 680 C E 222 2200 C E	E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E		F F	F F F F	F	E E F F F F	E E E E E F F F F	E E F F	F F G G	F					
821 820 C E	E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E		E F	F F	F	E E F F F	E E E F F F F F	E E F F	F F G G	F	F				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E E E E E E E E E E E E E E E E E E E E E E E E E E E					E F F F F	E E F F F	E F F	F G G		F			+	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E E E E E E E E E E E E E E E E E E E E E E E E E E E			FF	F	F I F I F I F I F I	F F F	F	G G	F	F .	-	-	_	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E E E E E E E E E E E E E E E E E E E E					F F F	F F	F	G			F	F	F	G
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E E E E E E E E E E E E E E E E E					F I	- F				F	F	F	F	G
222 2200 C E E E 272 2700 C E E E 332 3300 C E E E 392 3900 C E E E 392 3900 C E E E 472 4700 C E E E 562 5600 C E E E 682 6800 E E E E 103 0.01 E E E E 123 0.012 E E E 133 0.015 E E E 123 0.012 E E E 133 0.018 E E E 273 0.027 Q Q 333 0.033 393 0.039 I I I I 473 0.047 I I I I 683 0.068 I <	E E E E E E E E E E E E E E					FI		F			F	F	F	F	G
272 2700 C E E E 332 3300 C E E E 392 3900 C E E E 392 3900 C E E E 472 4700 C E E E 562 5600 C E E E 682 6800 E E E E 822 8200 E E E E 103 0.01 E E E E 123 0.012 E E E E 153 0.015 E E E E 183 0.018 E E E E 273 0.027 Q Q 333 0.033 E 393 0.039 I I I E E 683 0.068 I I I I I I 104 0.1 I	E E E E E E E E						: F		G		F	F	F	F	G
332 3300 C E E 392 3900 C E E 472 4700 C E E 562 5600 C E E 682 6800 E E E 822 8200 E E E 103 0.01 E E E 123 0.012 E E E 153 0.015 E E E 183 0.018 E E E 223 0.022 E E E 333 0.033 G G G 393 0.033 G G G 473 0.047 G G G 563 0.056 G G G 683 0.068 G G G 823 0.082 G G G 104 0.1 G G G 124 0.12 G <td>E E E E E E E</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>F</td> <td>G</td> <td></td> <td>F</td> <td>F</td> <td>F</td> <td>F</td> <td>G</td>	E E E E E E E							F	G		F	F	F	F	G
392 3900 C E E 472 4700 C E E 562 5600 C E E 682 6800 E E E 822 8200 E E E 103 0.01 E E E 123 0.012 E E E 133 0.015 E E E 183 0.018 E E E 223 0.022 E E E 273 0.027 Q Q 333 0.033 393 0.039 Image: Colored and and and and and and and and and an	E E E E						: F	F			F	F	F	F	
472 4700 C E E 562 5600 C E E 682 6800 E E E 822 8200 E E E 103 0.01 E E E 123 0.012 E E 133 0.015 E E 183 0.018 E E 223 0.022 E E 273 0.027 Q Q 333 0.033 Image: Colored and the colored and th	E E					FI	- F	F			F	F	F	F	
562 5600 C E E 682 6800 E E E 822 8200 E E E 103 0.01 E E E 103 0.01 E E E 113 0.012 E E E 1133 0.015 E E E 1133 0.015 E E E 1133 0.015 E E E 1233 0.022 E E 273 Q 333 0.033 Image: Colored and the set of th						F I	F	F			F	F	F	F	
682 6800 E E E 822 8200 E E E 103 0.01 E E E 123 0.012 E E E 153 0.015 E E E 183 0.018 E E E 223 0.022 E E E 273 0.027 Q Q 333 0.033 393 0.039 Image: Colored and the second and the se						F I	G	G			F	F	F	F	
822 8200 E E 103 0.01 E E 123 0.012 E E 153 0.015 E E 183 0.018 E E 223 0.022 E E 273 0.027 Q Q 333 0.033 Image: Constraint of the state of the s	EE					F I	- G	G			F	F	F	F	
103 0.01 E E 123 0.012 E 153 0.015 E 183 0.018 E 223 0.022 E 273 0.027 Q 333 0.033 Image: Constraint of the state of	E					F I	- G	G			F	F	F	F	
123 0.012 E 153 0.015 E 183 0.018 E 223 0.022 E 273 0.027 Q 333 0.033 Image: Constraint of the state of t	E					F I	- G	G			F	F	G	G	
153 0.015 E 183 0.018 E 223 0.022 E 273 0.027 Q 333 0.033 Image: Constraint of the state of	E					F I	G				G	G	G	G	
183 0.018 E 223 0.022 E 273 0.027 Q 333 0.033 Image: Constraint of the state	E					F I	- G				G	G	G	G	
223 0.022 E 273 0.027 Q 333 0.033 393 0.039 473 0.047 563 0.056 683 0.068 823 0.082 104 0.1 124 0.12 154 0.15 224 0.22	E					F I	- G				G	G	G	G	
273 0.027 Q 333 0.033 393 0.039 473 0.047 563 0.056 683 0.068 823 0.082 104 0.1 124 0.12 154 0.15 224 0.22 334 0.33	E					F I	-				G	G	G	G	
333 0.033						F I	-		Ì		G	G	G	G	
393 0.039						F					G	G			
473 0.047						F					G	G			
473 0.047						F					G	G			
563 0.056 683 0.068 823 0.082 104 0.1 124 0.12 154 0.15 224 0.22 334 0.33						Х		1			G	G			
683 0.068 823 0.082 104 0.1 124 0.12 154 0.15 224 0.22 334 0.33								1	1		G	Ŷ			
823 0.082		1 +			-+			1			G	Y			
104 0.1 124 0.12 154 0.15 224 0.22 334 0.33					-+			1			G	Ŷ			
124 0.12 154 0.15 224 0.22 334 0.33					-+			1			G	Y			
154 0.15 224 0.22 334 0.33					-+			1			G				
224 0.22 334 0.33					-+			1			G				
334 0.33					-+						5				
							-	-	-						
474 0.47								-	-				\vdash		
684 0.68		+			-+								\vdash		
		+ $+$			-+								\vdash		
105 1 155 1.5		+ $+$					_						$ \vdash$		
							_						├		
225 2.2							_						├		
335 3.3															
475 4.7				1 1											
									1						
WVDC 630 1000 1500 2000 2500 630 1			00 1500 5	000 0700		(00.1-	00 1 5 6 5	0000	0505	0000	1000	1000	1 500	0000	0000
Size 1206	000 1500 200	0 630 100	00 1500 2	· · ·	3000	630 10		2000 2000	2500	3000	630		1500 2220	2000	3000

NOTE: Contact factory for non-specified capacitance values


Letter	A	С	E	F	G	Q	Х	Y
Max	0.813	1.448	1.8034	2.2098	2.794	1.78	2.29	2.54
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.07)	(0.09)	(0.1)

KUCERE The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.


073021

Part Number Example CDR01 thru CDR06

MILITARY DESIGNATION PER MIL-PRF-55681

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

MIL Style: CDR01, CDR02, CDR03, CDR04, CDR05, CDR06

Voltage Temperature Limits:

- BP = $0 \pm 30 \text{ ppm/°C}$ without voltage; $0 \pm 30 \text{ ppm/°C}$ with rated voltage from -55°C to +125°C
- BX = $\pm 15\%$ without voltage; $\pm 15 25\%$ with rated voltage from -55°C to ± 125 °C

Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF

Rated Voltage: A = 50V, B = 100V

Capacitance Tolerance: J \pm 5%, K \pm 10%, M \pm 20%

Termination Finish:

- M = Palladium silver
- N = Silver-nickel-gold
- S = Solder coated final with a minimum of 4 percent lead
- T = Silver
- U = Base metallization-barrier metal-solder coated
- (tin/lead alloy, with a minimum of 4 percent lead) W = Base metallization-barrier metal-tinned
- (tin or tin/lead alloy) Y = Base metallization-barrier metal-tin (100 percent)
- 7 Dase metallization barrier metal tinned
- Z = Base metallization-barrier metal-tinned (tin/lead alloy, with a minimum of 4 percent lead)

*See MIL-PRF-55681 Specification for more details

Packaging: Bulk is standard packaging. Tape and reel per RS481 is available upon request.

*Not RoHS Compliant

Per	Otala	L	14/: Jak (14/)	Thickr	ness (T)		D	Terminatio	n Band (t)
MIL-PRF-55681	Style	Length (L)	Width (W)	Min.	Max.	Min.	Max.	Min.	Max.
CDR01	0805	.080 ± .015	.050 ± .015	.022	.055	.030	-	.010	-
CDR02	1805	.180 ± .015	.050 ± .015	.022	.055	-	_	.010	.030
CDR03	1808	.180 ± .015	.080 ± .018	.022	.080	-	_	.010	.030
CDR04	1812	.180 ± .015	.125 ± .015	.022	.080	-	_	.010	.030
CDR05	1825	.180 ^{+.020} 015	+.020 .250 ₋ .015	.020	.080	-	-	.010	.030
CDR06	2225	.225 ± .020	.250 ± .020	.020	.080	-	—	.010	.030

CROSS REFERENCE: MIL-PRF-55681/CDR01 THRU CDR06*

*For CDR11, 12, 13, and 14 see KYOCERA AVX Microwave Chip Capacitor Catalog

KINCERENTIAL The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Military Part Number Identification CDR01 thru CDR06

		C	DR01 thru C	DR06	to MIL-PRF-	55681			
Military Type Designation	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC	Military Type Designation/	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC
Style 0805/CI	DR01	1			Style 1808/CDF	203			
CDR01BP100B-		J,K	BP	100	CDR03BP331B	330	J,K	BP	100
CDR01BP120B		J	BP	100	CDR03BP391B	390	Ĵ	BP	100
CDR01BP150B		J,K	BP	100	CDR03BP471B	470	J,K	BP	100
CDR01BP180B	-	J	BP	100	CDR03BP561B	560	Ĵ	BP	100
CDR01BP220B		J,K	BP	100	CDR03BP681B	680	J,K	BP	100
CDR01BP270B		J	BP	100	CDR03BP821B	820	Ĵ	BP	100
CDR01BP330B		J,K	BP	100	CDR03BP102B	1000	J,K	BP	100
CDR01BP390B		J	BP	100	CDR03BX123B	12,000	K	BX	100
CDR01BP470B		J,K	BP	100	CDR03BX153B	15.000	K,M	BX	100
CDR01BP560B		J	BP	100	CDR03BX183B	18.000	ĸ	BX	100
CDR01BP680B		J,K	BP	100	CDR03BX223B	22,000	K,M	BX	100
CDR01BP820B		J	BP	100	CDR03BX273B	27.000	К	BX	100
CDR01BP101B		J,K	BP	100	CDR03BX333B	33.000	K,M	BX	100
CDR01B121B		J,K	BP,BX	100	CDR03BX393A	39.000	К	BX	50
CDR01B151B		J,K	BP,BX	100	CDR03BX473A	47.000	K,M	BX	50
CDR01B181B		J,K	BP,BX	100	CDR03BX563A	56.000	K	BX	50
CDR01BX221B		K,M	BX	100	CDR03BX683A	68.000	K,M	BX	50
CDR01BX271B		K	BX	100	Style 1812/CDF	R04			
CDR01BX331B	-	K,M	BX	100	CDR04BP122B	1200	J	BP	100
CDR01BX391B		K	BX	100	CDR04BP152B	1500	J,K	BP	100
CDR01BX471B		K,M	BX	100	CDR04BP182B	1800	J	BP	100
CDR01BX561B		ĸ	вх	100	CDR04BP222B	2200	J,K	BP	100
CDR01BX681B		K,M	BX	100	CDR04BP272B	2700	J	BP	100
CDR01BX821B		ĸ	вх	100	CDR04BP332B	3300	J,K	BP	100
CDR01BX102B		K,M	вх	100	CDR04BX393B	39.000	K	BX	100
CDR01BX122B		ĸ	BX	100	CDR04BX473B	47.000	K,M	BX	100
CDR01BX152B		K,M	BX	100	CDR04BX563B	56.000	ĸ	вх	100
CDR01BX182B	- 1800	ĸ	BX	100	CDR04BX823A	82.000	K	BX	50
CDR01BX222B	- 2200	K,M	BX	100	CDR04BX104A	100,000	K,M	BX	50
CDR01BX272B	- 2700	ĸ	BX	100	CDR04BX124A	120,000	ĸ	ВХ	50
CDR01BX332B	- 3300	K,M	BX	100	CDR04BX154A	150.000	K,M	ВХ	50
CDR01BX392A	- 3900	K	BX	50	CDR04BX184A	180.000	ĸ	вх	50
CDR01BX472A	- 4700	K,M	BX	50	Style 1825/CDF	205			
Style 1805/CI	DR02				CDR05BP392B	3900	J,K	BP	100
CDR02BP221B-	-	J,K	BP	100	CDR05BP472B	4700	J,K	BP	100
CDR02BP271B		J	BP	100	CDR05BP562B	5600	J,K	BP	100
CDR02BX392B		ĸ	BX	100	CDR05BX683B	68,000	K,M	BX	100
CDR02BX472B		K,M	BX	100	CDR05BX823B	82,000	K	BX	100
CDR02BX562B		ĸ	BX	100	CDR05BX104B	100,000	K,M	BX	100
CDR02BX682B		K,M	BX	100	CDR05BX124B	120,000	K	BX	100
CDR02BX822B		ĸ	вх	100	CDR05BX154B	150.000	K,M	BX	100
CDR02BX103B		K,M	BX	100	CDR05BX224A	220.000	K,M	BX	50
CDR02BX123A		ĸ	BX	50	CDR05BX274A	270,000	K	BX	50
CDR02BX153A		K,M	BX	50	CDR05BX334A	330,000	K,M	BX	50
CDR02BX183A		ĸ	BX	50	Style 2225/CDF	· ·			
CDR02BX223A		K,M	BX	50	CDR06BP682B	6800	J,K	BP	100
	 				CDR06BP882B	8200	J,K J,K	BP BP	100
	Add appropria	te failure rate			CDR06BP822B CDR06BP103B	10,000	J,K J,K	BP BP	100
					CDR06BX394A	390.000	J,K K	BX	50
	— Add appropria	te termination f	inish			390.000	K K K		50

Add appropriate termination finish

Capacitance Tolerance

Add appropriate failure rate

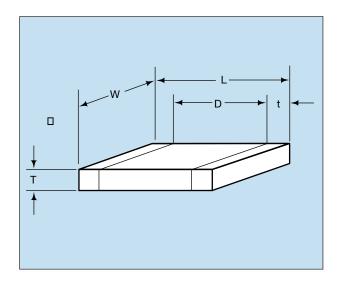
Add appropriate termination finish

K,M

BX

50

Capacitance Tolerance


470.000

KUCERE The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

CDR06BX474A-

Part Number Example CDR31 thru CDR35

MILITARY DESIGNATION PER MIL-PRF-55681

Part Number E	Example						
(example)	CDR31	BP	101	В	Κ	S	Μ
		T		Т	Т	Т	Т
MIL Style							
Voltage-Temp	erature Limits						
Capacitance -							
Rated Voltage							
Capacitance T	olerance						
Termination Fi	nish ———						
Failure Rate —							

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

MIL Style: CDR31, CDR32, CDR33, CDR34, CDR35

Voltage-Temperature Limits:

- BP = 0 ± 30 ppm/°C without voltage; 0 ± 30 ppm/°C with rated voltage from -55°C to +125°C
- BX = $\pm 15\%$ without voltage; $\pm 15 25\%$ with rated voltage from -55° C to $\pm 125^{\circ}$ C

Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF

Rated Voltage: A = 50V, B = 100V

Termination Finish:

- M = Palladium silver
- N = Silver-nickel-gold
- S = Solder coated final with a minimum of 4 percent lead
- T = Silver
- U = Base metallization-barrier metal-solder coated (tin/lead alloy, with a minimum of 4 percent lead)
- W = Base metallization-barrier metal-tinned (tin or tin/lead alloy)
- Y = Base metallization-barrier metal-tin (100 percent)
- Z = Base metallization-barrier metal-tinned (tin/lead alloy, with a minimum of 4 percent lead)

*See MIL-PRF-55681 Specification for more details

Failure Rate Level: M = 1.0%, P = .1%, R = .01%, S = .001%

Packaging: Bulk is standard packaging. Tape and reel per RS481 is available upon request.

*Not RoHS Compliant

Per MIL-PRF-55681	Style	Length (L)	Width (W)	Thickness (T)	D	Terminatio	n Band (t)
Per MIL-PRF-55001	Style	(mm)	(mm)	Max. (mm)	Max. (mm)	Min. (mm)	Max. (mm)
CDR31	0805	2.00	1.25	1.3	.50	.70	.30
CDR32	1206	3.20	1.60	1.3	_	.70	.30
CDR33	1210	3.20	2.50	1.5	—	.70	.30
CDR34	1812	4.50	3.20	1.5	-	.70	.30
CDR35	1825	4.50	6.40	1.5	_	.70	.30

CROSS REFERENCE: MIL-PRF-55681/CDR31 THRU CDR35

Military Part Number Identification CDR31

WVDC

Military Type Designation $\underline{1}$ /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC	Military Type Designation $\underline{1}$ /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits
Style 0805/0	DR31 (BP))			Style 0805/0	DR31 (BP)) cont'd	
CDR31BP1R0B	1.0	B,C	BP	100	CDR31BP101B	100	F,J,K	BP
CDR31BP1R1B	1.1	B,C	BP	100	CDR31BP111B	110	F,J,K	BP
CDR31BP1R2B	1.2	B,C	BP	100	CDR31BP121B	120	F,J,K	BP
CDR31BP1R3B	1.3	B,C	BP	100	CDR31BP131B	130	F,J,K	BP
CDR31BP1R5B	1.5	B,C	BP	100	CDR31BP151B	150	F,J,K	BP
CDR31BP1R6B	1.6	B,C	BP	100	CDR31BP161B	160	F,J,K	BP
CDR31BP1R8B	1.8	B,C	BP	100	CDR31BP181B	180	F,J,K	BP
CDR31BP2R0B	2.0	B,C	BP	100	CDR31BP201B	200	F,J,K	BP
CDR31BP2R2B	2.2	B,C	BP	100	CDR31BP221B	220	F,J,K	BP
CDR31BP2R4B	2.4	B,C	BP	100	CDR31BP241B	240	F,J,K	BP
CDR31BP2R7B	2.7	B,C,D	BP	100	CDR31BP271B	270	F,J,K	BP
CDR31BP3R0B	3.0	B,C,D	BP	100	CDR31BP301B	300	F,J,K	BP
CDR31BP3R3B	3.3	B,C,D	BP	100	CDR31BP331B	330	F,J,K	BP
CDR31BP3R6B	3.6	B,C,D	BP	100	CDR31BP361B	360	F,J,K	BP
CDR31BP3R9B	3.9	B,C,D	BP	100	CDR31BP391B	390	F,J,K	BP
CDR31BP4R3B	4.3	B,C,D	BP	100	CDR31BP431B	430	F,J,K	BP
CDR31BP4R7B	4.7	B,C,D	BP	100	CDR31BP471B	470	F,J,K	BP
CDR31BP5R1B	5.1	B,C,D	BP	100	CDR31BP511A	510	F,J,K	BP
CDR31BP5R6B	5.6	B,C,D	BP	100	CDR31BP561A	560	F,J,K	BP
CDR31BP6R2B	6.2	B,C,D	BP	100	CDR31BP621A	620	F,J,K	BP
CDR31BP6R8B	6.8	B,C,D	BP	100	CDR31BP681A	680	F,J,K	BP
CDR31BP7R5B	7.5	B,C,D	BP	100				
CDR31BP8R2B	8.2	B,C,D	BP	100	Style 0805/0	CDR31 (BX))	
CDR31BP9R1B	9.1	B,C,D	BP	100	CDR31BX471B	470	K,M	BX
CDR31BP100B	10	FJ,K	BP	100	CDR31BX561B	560	K,M	BX
CDR31BP110B	11	FJ,K	BP	100	CDR31BX681B	680	K,M	BX
CDR31BP120B	12	FJ,K	BP	100	CDR31BX821B	820	K,M	BX
CDR31BP130B	13	FJ,K	BP	100	CDR31BX102B	1,000	K,M	BX
CDR31BP150B	15	FJ,K	BP	100	CDR31BX102B	1,200	K,M	BX
CDR31BP160B	16	FJ,K	BP	100				BX
	18		BP	100	CDR31BX152B	1,500	K,M	BX
CDR31BP180B	20	FJ,K		100	CDR31BX182B	1,800	K,M	BX
CDR31BP200B		F,J,K	BP		CDR31BX222B	2,200	K,M	
CDR31BP220B	22	FJ,K	BP BP	100 100	CDR31BX272B	2,700	K,M	BX
CDR31BP240B	24	F,J,K	BP		CDR31BX332B	3,300	K,M	BX
CDR31BP270B	27	FJ,K		100	CDR31BX392B	3,900	K,M	BX
CDR31BP300B	30	FJ,K	BP	100	CDR31BX472B	4,700	K,M	BX
CDR31BP330B	33	F,J,K	BP	100	CDR31BX562A	5,600	K,M	BX
CDR31BP360B	36	FJ,K	BP	100	CDR31BX682A	6,800	K,M	BX
CDR31BP390B	39	F,J,K	BP	100	CDR31BX822A	8,200	K,M	BX
CDR31BP430B	43	FJ,K	BP	100	CDR31BX103A	10,000	K,M	BX
CDR31BP470B	47	FJ,K	BP	100	CDR31BX123A	12,000	K,M	BX
CDR31BP510B	51	F,J,K	BP	100	CDR31BX153A	15.000	K,M	BX
CDR31BP560B	56	FJ,K	BP	100	CDR31BX183A	18.000	K,M	BX
CDR31BP620B	62	F,J,K	BP	100				
CDR31BP680B	68	FJ,K	BP	100		 Add appropriat 	te failure rate	
CDR31BP750B	75	FJ,K	BP	100				
CDR31BP820B	82	F,J,K	BP	100		 Add appropriat 	te termination f	inish
CDR31BP910B	91	FJ,K	BP	100				

CDR31 to MIL-PRF-55681/7

- Add appropriate failure rate

Add appropriate termination finish

— Capacitance Tolerance

1/ The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

Capacitance Tolerance

KYDEERA The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Military Part Number Identification CDR32

Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance Tolerance	Rated temperature and Voltage- Temperature Limits	WVDC	Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance Tolerance	Rated Temperature and Voltage- Temperature Limits	WVDC
Style 1206/C	DR32 (BP))			Style 1206/C	DR32 (BP)	cont'd		
CDR32BP1R0B	1.0	B,C	BP	100	CDR32BP101B	100	FJ,K	BP	100
CDR32BP1R1B	1.1	B,C	BP	100	CDR32BP111B	110	FJ,K	BP	100
CDR32BP1R2B	1.2	B,C	BP	100	CDR32BP121B	120	FJ,K	BP	100
CDR32BP1R3B	1.3	B,C	BP	100	CDR32BP131B	130	FJ,K	BP	100
CDR32BP1R5B	1.5	B,C	BP	100	CDR32BP151B	150	FJ,K	BP	100
CDR32BP1R6B	1.6	B,C	BP	100	CDR32BP161B	160	FJ,K	BP	100
CDR32BP1R8B	1.8	B,C	BP	100	CDR32BP181B	180	F,J,K	BP	100
CDR32BP2R0B	2.0	B,C	BP	100	CDR32BP201B	200	FJ,K	BP	100
CDR32BP2R2B	2.2	B,C	BP	100	CDR32BP221B	220	F,J,K	BP	100
CDR32BP2R4B	2.4	B,C	BP	100	CDR32BP241B	240	FJ,K	BP	100
CDR32BP2R7B	2.7	B,C,D	BP	100	CDR32BP271B	270	FJ,K	BP	100
CDR32BP3R0B	3.0	B,C,D	BP	100	CDR32BP301B	300	F,J,K	BP	100
CDR32BP3R3B	3.3	B,C,D	BP	100	CDR32BP331B	330	FJ,K	BP	100
CDR32BP3R6B	3.6	B,C,D	BP	100	CDR32BP361B	360	F,J,K	BP	100
CDR32BP3R9B	3.9	B,C,D	BP	100	CDR32BP391B	390	FJ,K	BP	100
CDR32BP4R3B	4.3	B,C,D	BP	100	CDR32BP431B	430	FJ,K	BP	100
CDR32BP4R7B	4.7	B,C,D	BP	100	CDR32BP471B	470	F,J,K	BP	100
CDR32BP5R1B	5.1	B,C,D	BP	100	CDR32BP511B	510	FJ,K	BP	100
CDR32BP5R6B	5.6	B,C,D	BP	100	CDR32BP561B	560	F,J,K	BP	100
CDR32BP6R2B	6.2	B,C,D	BP	100	CDR32BP621B	620	FJ,K	BP	100
CDR32BP6R8B	6.8	B,C,D	BP	100	CDR32BP681B	680	FJ,K	BP	100
CDR32BP7R5B	7.5	B,C,D	BP	100	CDR32BP751B	750	F,J,K	BP	100
CDR32BP8R2B	8.2	B,C,D	BP	100	CDR32BP821B	820	FJ,K	BP	100
CDR32BP9R1B	9.1	B,C,D	BP	100	CDR32BP911B	910	F,J,K	BP	100
CDR32BP100B	10	FJ,K	BP	100	CDR32BP102B	1,000	FJ,K	BP	100
CDR32BP110B	11	F,J,K	BP	100	CDR32BP112A	1,100	FJ,K	BP	50
CDR32BP120B	12	FJ,K	BP	100	CDR32BP122A	1,200	F,J,K	BP	50
CDR32BP130B	13	FJ,K	BP	100	CDR32BP132A	1,300	FJ,K	BP	50
CDR32BP150B	15	FJ,K	BP	100	CDR32BP152A	1,500	F,J,K	BP	50
CDR32BP160B	16	FJ,K	BP	100	CDR32BP162A	1,600	FJ,K	BP	50
CDR32BP180B	18	FJ,K	BP	100	CDR32BP182A	1,800		BP	50
CDR32BP180B	20	F,J,K	BP	100	CDR32BP102A	2,000	FJ,K F,J,K	BP	50
CDR32BP220B	20	FJ,K	BP	100	CDR32BP202A	2,000	FJ,K	BP	50
CDR32BP240B	22	F,J,K	BP	100	CDR3ZDFZZZA	2,200	FJ,K	DF	50
CDR32BP270B	27	FJ,K	BP	100	Style 1206/C	DR32 (RX)			
CDR32BP300B	30	FJ.K	BP	100	Style 1200/0			1	
CDR32BP300B	33	FJ,K F,J,K	BP	100	CDR32BX472B	4,700	K,M	BX	100
CDR32BP360B	36	FJ,K	BP	100	CDR32BX562B	5,600	K,M	BX	100
CDR32BP300B	39	FJ,K F,J,K	BP	100	CDR32BX682B	6,800	K,M	BX	100
CDR32BP430B	43	FJ,K	BP	100	CDR32BX822B	8,200	K,M	BX	100
	-				CDR32BX103B	10,000	K,M	BX	100
CDR32BP470B	47	FJ,K	BP	100	CDR32BX123B	12,000	к,м	BX	100
CDR32BP510B	51	F,J,K	BP	100	CDR32BX153B	15.000	K,M	BX	100
CDR32BP560B	56	FJ,K	BP	100	CDR32BX183A	18.000	K,M	BX	50
CDR32BP620B	62	F,J,K	BP	100	CDR32BX223A	22,000	K,M	BX	50
CDR32BP680B	68	FJ,K	BP	100	CDR32BX273A	27,000	K,M	BX	50
CDR32BP750B	75	FJ,K	BP	100	CDR32BX333A	33.000	K,M	BX	50
CDR32BP820B	82	F,J,K	BP	100	CDR32BX333A	39.000	K,M	BX	50
CDR32BP910B	91	FJ,K	BP	100		09.000	الالبدن		

CDD22 +0 MII _DDE_55601/0

Add appropriate termination finish

Capacitance Tolerance

1/ The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

Capacitance Tolerance

Add appropriate termination finish

Military Part Number Identification CDR33/34/35

		CD	R33/34/35 1	o MIL	-PRF-55681	/9/10/11	
Military Type Designation $\underline{1}$ /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC	Military Type Designation $\underline{1}$ /	Capacitance in pF	Capaci tolera
Style 1210/0	DR33 (BP))	1		Style 1812/	CDR34 (BX))
CDR33BP102B	1,000	FJ,K	BP	100	CDR34BX273B	27.000	K,N
CDR33BP112B	1,100	FJ,K	BP	100	CDR34BX333B	33.000	K,N
CDR33BP122B	1,200	FJ,K	BP	100	CDR34BX393B	39.000	K,N
DR33BP132B	1,300	FJ,K	BP	100	CDR34BX473B	47.000	K,N
CDR33BP152B	1,500	FJ,K	BP	100	CDR34BX563B	56.000	K,N
CDR33BP162B	1,600	FJ,K	BP	100	CDR34BX104A	100,000	K,N
DR33BP182B	1,800	F,J,K	BP	100	CDR34BX124A	120,000	K,N
DR33BP202B	2,000	FJ,K	BP	100	CDR34BX154A	150.000	K,N
CDR33BP222B	2,000	FJ,K	BP	100	CDR34BX184A	180.000	K,N
CDR33BP222B	2,200	F,J,K FJ,K	BP	50	CDR34DA104A	100.000	۲.,N
					Chula 1025/		`
DR33BP272A	2,700	FJ,K	BP	50	Style 1825/)
CDR33BP302A	3,000	F,J,K	BP	50		4 700	
CDR33BP332A	3,300	FJ,K	BP	50	CDR35BP472B	4,700	FJ,
tula 1010/0	עם/ ככחחי	<u>`</u>	•		CDR35BP512B	5,100	F,J,
tyle 1210/0)			CDR35BP562B	5,600	FJ,I
DR33BX153B	15.000	K,M	ВХ	100	CDR35BP622B	6,200	F,J,
CDR33BX183B	18.000	K,M	BX	100	CDR35BP682B	6,800	FJ,
CDR33BX223B	22,000	K,M	BX	100	CDR35BP752B	7,500	FJ,
CDR33BX273B	27.000	K,M	BX	100	CDR35BP822B	8,200	F,J,
DR33BX393A	39.000	K,M	BX	50	CDR35BP912B	9,100	FJ,
					CDR35BP103B	10,000	FJ,
CDR33BX473A	47.000	K,M	BX	50	CDR35BP113A	11,000	F,J,
CDR33BX563A	56.000	K,M	BX	50	CDR35BP123A	12,000	FJ,
CDR33BX683A	68.000	K,M	BX	50	CDR35BP133A	13.000	F,J,
CDR33BX823A	82,000	K,M	BX	50	CDR35BP153A	15.000	FJ,
CDR33BX104A	100,000	K,M	BX	50	CDR35BP163A	16.000	F,J,
tula 1010/0		, ,		,	CDR35BP183A	18,000	FJ,
tyle 1812/0	JUR34 (BP))			CDR35BP203A	20,000	FJ.
CDR34BP222B	2,200	FJ,K	BP	100	CDR35BP223A	22,000	F,J,
CDR34BP242B	2,200	F,J,K	BP	100	CDI(3301 223A	22,000	1,3,
CDR34BP272B	2,700	FJ,K	BP	100	Style 1825/		`
CDR34BP302B	3,000	F,J,K	BP	100	Style 1023/		
DR34BP332B	3,300	FJ,K	BP	100	CDR35BX563B	56.000	K.N
					CDR35BX683B	68.000	K,N
CDR34BP362B	3,600	FJ,K	BP	100	CDR35BX823B	82,000	K,N
CDR34BP392B	3,900	F,J,K	BP	100	CDR35BX823B		K,N
CDR34BP432B	4,300	FJ,K	BP	100		100,000	
CDR34BP472B	4,700	F,J,K	BP	100	CDR35BX124B	120,000	K,N
DR34BP512A	5,100	FJ,K	BP	50	CDR35BX154B	150.000	K,N
DR34BP562A	5,600	FJ,K	BP	50	CDR35BX184A	180.000	K,N
DR34BP622A	6,200	F,J,K	BP	50	CDR35BX224A	220,000	K,N
DR34BP682A	6,800	FJ,K	BP	50	CDR35BX274A	270.000	K,N
DR34BP752A	7,500	F,J,K	BP	50	CDR35BX334A	330.000	K,N
DR34BP822A	8,200	FJ,K	BP	50	CDR35BX394A	390.000	K,N
CDR34BP912A	9,100	FJ,K	BP	50	CDR35BX474A	470.000	K,N
DR34BP103A	10,000	FJ,K	BP	50			
, 5110-101 100A	10,000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		50			
					L	 Add appropriat 	te failure

Add appropriate failure rate

Add appropriate termination finish

Capacitance Tolerance

ВΧ 100 Λ ΒX 100 ΒX 100 Λ ВΧ 100 Λ ВΧ 100 ВΧ 50 Λ ВΧ 50 ВΧ 50 Λ ВΧ 50 Λ ΒP 100 Κ BP 100 K ΒP Κ 100 K ΒP 100 Κ ΒP 100 Κ ΒP 100 Κ ΒP 100 Κ ΒP 100 ΒP 100 Κ Κ BP 50 ΒP 50 Κ ΒP Κ 50 Κ BP 50 Κ ΒP 50 Κ ΒP 50 ΒP 50 Κ ΒP 50 Κ ΒX 100 Λ ВΧ 100 Λ ВΧ 100 ВΧ 100 Λ ΒX 100 Λ ВΧ 100 ВΧ 50 Λ ΒX 50 ΒX Λ 50 Λ ВΧ 50 RX 50 Λ Λ BX 50

KYOCERa

Rated temperature

and voltage-

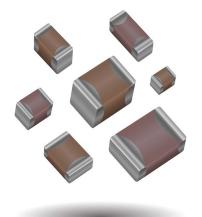
temperature limits

WVDC

Add appropriate termination finish

Capacitance Tolerance

1/ The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.



KIDCERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. 1 AVAX

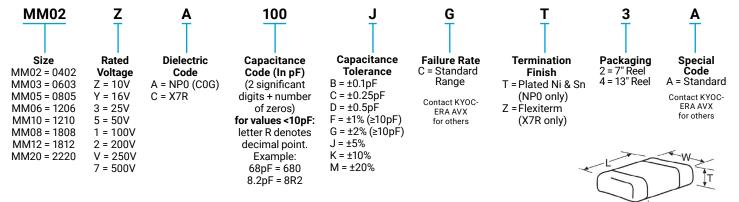
MLCC Medical Applications – MM Series

General Specifications

The MM series is a multi-layer ceramic capacitor designed for use in medical applications other than implantable/life support. These components have the design & change control expected for medical devices and also offer enhanced LAT including reliability testing and 100% inspection.

APPLICATIONS

- Implantable, Non-Life Supporting Medical Devices
- e.g. implanted temporary cardiac monitor, insulin pumps


External, Life Supporting Medical Devices

• e.g. heart pump external controller

External Devices

• e.g. patient monitoring, diagnostic equipment

HOW TO ORDER

COMMERCIAL VS MM SERIES PROCESS COMPARISON

	Commercial	MM Series
Administrative	Standard part numbers; no restriction on who purchases these parts	Specific series part number, used to control supply of product
Lot Qualification Destructive Physical Analysis (DPA)	As per EIA RS469	Increased sample plan – stricter criteria
Visual/Cosmetic Quality	Standard process and inspection	100% inspection
Application Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing
Design/Change Control	Required to inform customer of changes in: form fit function	KYOCERA AVX will qualify and notify customers before making any change to the following materials or processes: Dielectric formulation, type, or supplier Metal formulation, type, or supplier Termination material formulation, type, or supplier Manufacturing equipment type Quality testing regime including sample size and accept/ reject criteria

062121

NP0 (C0G) - Specifications & Test Methods

	ter/Test	NP0 Specification Limits	Measuring	
Operating Tem		-55°C to +125°C	Temperature C	
	itance	Within specified tolerance	Freq.: 1.0 MHz ± 109	% for cap ≤ 1000 pF
(2	<30 pF: Q≥ 400+20 x Cap Value ≥30 pF: Q≥ 1000	1.0 kHz ± 10% fo Voltage: 1.0	r cap > 1000 pF Vrms ± .2V
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with 60 ± 5 secs @ roor	
Dielectric	Strength	No breakdown or visual defects	Charge device with 300 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge curren) mA (max) n 150% of rated voltag
	Appearance	No defects	Deflectio	n [.] 2mm
Resistance to	Capacitance Variation	$\pm 5\%$ or $\pm .5$ pF, whichever is greater	Test Time: 3	
Flexure Stresses	Q	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 r	
Solder	-	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.5	
	Appearance	No defects, <25% leaching of either end terminal	4	
	Capacitance Variation	\leq ±2.5% or ±.25 pF, whichever is greater		
Resistance to Solder Heat	Q	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ±
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	$\leq \pm 2.5\%$ or $\pm .25$ pF, whichever is greater	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 hours at roor	and measure after m temperature
	Appearance	No visual defects	4	
	Capacitance Variation	$\leq \pm 3.0\%$ or $\pm .3$ pF, whichever is greater	Charge device with twic chamber set at	ce rated voltage in tes
Load Life	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	for 1000 hou	ırs (+48, -0).
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test cha room temperatu before me	re for 24 hours
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects		
	Capacitance Variation	\leq ±5.0% or ± .5 pF, whichever is greater	Store in a test chamber :	set at 8500 + 200/ 05
Load Humidity	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	± 5% relative humid (+48, -0) with rated	lity for 1000 hours d voltage applied.
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature for 24 ± 2 h	
	Dielectric Strength	Meets Initial Values (As Above)		

KUDEERA KW/// The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

NP0/C0G Capacitance Range

PREFERRED SIZES ARE SHADED

SIZE			06	603				0805				1206	
	WVDC	16	25	50	100	16	25	50	100	16	25	50	100
Cap 0.5	0R5												
(pF) 1.0	1R0				1						1	1	
1.2	1R2				1						1		
1.5	1R5												
1.8	1R8												
2.2	2R2												
2.7	2R7												
3.3	3R3												
3.9	3R9												
4.7	4R7												
5.6	5R6												
6.8	6R8												
8.2	8R2												
10	100												
12	120												
15	150												
18	180												
22	220												
27	270												
33	330												
39	390												
47	470												
56	560												
68	680												
82	820												
100	101												
120	121												
150	151												
180	181												
220	221												
270	271												
330	331												
390	391												
470	471												
560	561												
680	681												
820	821												
1000	102												
1200	122												
1500	152												
WVD0		16	25	50	100	16	25	50	100	16	25	50	100
SIZE			06	603				0805				1206	

KUDEERA KW/// The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

113016

X7R Specifications and Test Methods

Parame	ter/Test	X7R Specification Limits	Measuring					
Operating Tem	perature Range	-55°C to +125°C	Temperature C	ycle Chamber				
Capac	itance	Within specified tolerance		-				
Dissipati	on Factor	≤ 10% for ≥ 50V DC rating ≤ 12.5% for 25V DC rating ≤ 12.5% for 25V and 16V DC rating ≤ 12.5% for ≤ 10V DC rating	Freq.: 1.0 k Voltage: 1.0	Hz ± 10% Vrms ± .2V				
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with rate secs @ room to	emp/humidity				
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge current) mA (max) n 150% of rated voltage				
	Appearance	No defects	Deflectio					
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3					
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)						
	Insulation Resistance	≥ Initial Value x 0.3	90 r					
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.1					
	Appearance	No defects, <25% leaching of either end terminal						
	Capacitance Variation	≤ ±7.5%						
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2				
Soluei Heat	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.				
	Dielectric Strength	Meets Initial Values (As Above)						
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes				
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes				
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes				
Chiefen	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes				
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro					
	Appearance	No visual defects						
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 r test chamber set	at 125°C ± 2°C				
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou					
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test cha room temperature for	24 ± 2 hours before				
	Dielectric Strength	Meets Initial Values (As Above)	measu	Jring.				
	Appearance	No visual defects						
	Capacitance Variation	≤ ±12.5%	Store in a test chamber ± 5% relative humid	lity for 1000 hours				
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated					
,	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an	d humidity for				
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 hours bef	ore measuring.				

KUDEERA KW/// The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

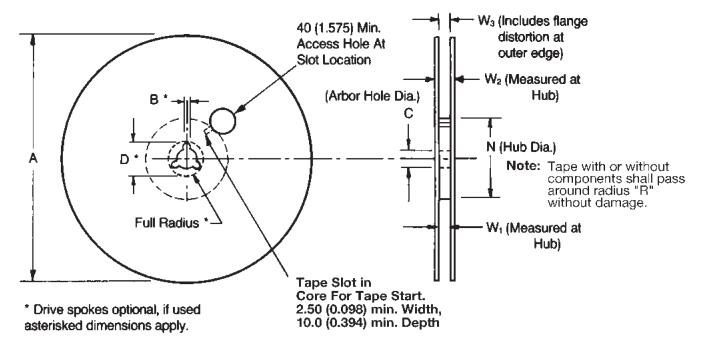
X7R Capacitance Range

PREFERRED SIZES ARE SHADED

	SIZE			040	2			(06	03						08	05							12	06							12	10)				180	8		18	12			222	.0
		WVDC	16	25	50	10	16	5 2	25	50	100	200	10	16	25	50	10	0 200	250	1 1	0 1	16	25	50	100	200	250	500	10	16	25	50	100	1 200	250	500	50	10	1200	50	100	200	250	25	50	100
Cap	220	221		20	1.00			1		00		200			20	1 00	1	0 200	1200					00	100	200	200	000			20	00		200	1200	000			200	00	100	200	200	20	00	100
(pF)	270	271				1	+	+	-		+	1	+	+	1	+	+	+-	+				+										1											-		
(pi /	330	331				1		+	-				+	+		+	+																			1								-		1
	390	391				1	+	+	-				+	1	1		+	1					-								1							1								
	470	471					+	+	+			<u> </u>	+			+		+	+				+								1							t						-		
	560	561				1		+	+		1		+	+		+	+						-													1								-		
	680	681						+																																						
	820	821							1					1					1																1	1										
	1000	102						+					\vdash	\vdash			+	-	1																											
	1200	122						+								1	1																													
	1500	152				1		+	1		1			1	1	+	+	+	1																											
	1800	182						+						\vdash			+	-	-	+			-								1		+													
	2200	222						1																										1				1	1			1			1	
	2700	272						+																										1				1	\uparrow			1		\top	1	
	3300	332						+									1																	1				1	1			1		\square	1	
	3900	392						+									1																	1				1	1			1			1	
	4700	472						T																														1	1		1	1	1		1	
	5600	562				1	1	+	1		1			1	1	+	+	+	1				-								1		t		1											
	6800	682						+						\vdash			+	-	-	+			-								1				1											
	8200	822						+								1	1			+																										
cap	0.010	103			1		1	+	1		\mathbf{T}			1			+		+	+			-								1		1		1	1					1	1			1	
	0.012	123						+																							1								1		1					
<u>u.</u>	0.015	153						+								1	+	-					1								1															
	0.018	183						+	-					1			+	-					-								1		1		1		1		+							
	0.022	223						+	1																						1		\mathbf{T}						1		1					
	0.027	273						+									+						-								1				1											
	0.033	333						+						1			+						-												1											
	0.039	393	-				1	+	1					1	1		+						-								1		t		1	1	1									
	0.047	473						+						\vdash			+						-								1				-											
	0.056	563						+								1	1														1															
	0.068	683			1			+	1			1		1			+		1				-								1		1		1				1		1				1	
	0.082	823						+						+			+						-								1		+													
	0.10	104						+									1		1															1					1						1	
	0.12	124			1			T			1								1																				1							
	0.15	154			1			+	1		1	1		1					Í												1		1		1	1			1							
	0.22	224			1				1		1								1																1	1			1							
	0.33	334			1			+			1								1															1	1	1			1							
	0.47	474			1	1			1		1	1						1	1												1			1	1	1		1	1				1			
	0.56	564			1	1	\top	+	+								+		1															1	1	1	1	1	1							
	0.68	684				1	1	+			1				1	1			1															1	1	1	1	1	1						1	
	0.82	824	-		1	1		+	1		1	1			1			1	1				-											1	1	1	1	1	1			1	1			
	1.0	105			1	1	+	+	-†		1	1			1	1	\top	1	1				+											1	1	1	1	1	1			İ	1			
	1.2	125			1	1			1		1				1				1													1	1	1	1	1	1	1	1		1	t	1		1	
	1.5	155			1	1		+	-		1		1	1	1	1			1	1			-						1	1	1	1	1	1	1	1	1	1	1		1	1	1			
	WVDC		16	25	50	10	16	5 2	25	50	100	200	10	16	25	5 50) 10	0 200	250) 10	0 1	16 :	25	50	100	200	250	500	10	16	25	50	100	200	250	500	50	10	200	50	100	200	250	25	50	100
	SIZE)40						03						08								12									10					180				12			222	

KUDEERA KW/// The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

110116



TAPE & REEL QUANTITIES

All tape and reel specifications are in compliance with RS481.

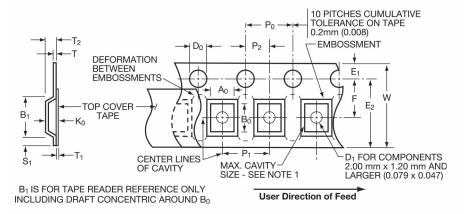
	4mm	8mm	12mm	
Paper or Embossed Carrier		0612, 0508, 0805, 1206, 1210		
Embossed Only	0101		1808	1812, 1825 2220, 2225
Paper Only		0101, 0201, 0306, 0402, 0603		
Qty. per Reel/7" Reel	4,000	1,000, 2,000, 3,000 or 4,000, 10,000, 15,000, 20,000 Contact factory for exact quantity	3,000	500, 1,000 Contact factory for exact quantity
Qty. per Reel/13" Reel		5,000, 10,000, 50,000 Contact factory for exact quantity	10,000	4,000

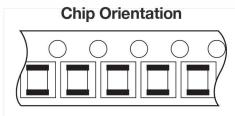
REEL DIMENSIONS

Tape Size ⁽¹⁾	A Max.	B* Min.	С	D* Min.	N Min.	W ₁	W₂ Max.	W ₃
4mm	1.80 (7.087)	1.5 (0.059)	13.0±0.5 (0.522±0.020)	20.2 (0.795)	60.0 (2.362)	4.35±0.3 (0.171±0.011)	7.95 (0.312)	
8mm	330	1.5	13.0 ^{+0.50}	20.2	50.0	$8.40_{-0.0}^{+1.5} \\ (0.331_{-0.0}^{+0.059})$	14.4 (0.567)	7.90 Min. (0.311) 10.9 Max. (0.429)
12mm	(12.992)	(0.059)	(0.512 ^{+0.020})	(0.795)	(1.969)	$12.4^{+2.0}_{-0.0} \\ (0.488^{+0.079}_{-0.0})$	18.4 (0.724)	11.9 Min. (0.469) 15.4 Max. (0.607)

Metric dimensions will govern.

English measurements rounded and for reference only.


(1) For tape sizes 16mm and 24mm (used with chip size 3640) consult EIA RS-481 latest revision.


KUDEERa The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Embossed Carrier Configuration

4, 8 & 12mm Tape Only

4, 8 & 12mm Embossed Tape Metric Dimensions Will Govern

CONSTANT DIMENSIONS

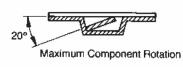
Tape Size	D ₀	E ₁	P ₀	P ₂	S ₁ Min.	T Max.	T ₁ Max.
4mm	0.80±0.04	0.90±0.05	2.0±0.04	1.00±0.02	1.075	0.26	0.06
	(0.031±0.001)	(0.035±0.001)	(0.078±0.001)	(0.039±0.0007)	(0.042)	(0.010)	(0.002)
8mm	$\frac{1.50}{(0.059^{+0.004}_{-0.0})}$	1.75 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	0.60	0.60	0.10
& 12mm		(0.069 ± 0.004)	(0.157 ± 0.004)	(0.079 ± 0.002)	(0.024)	(0.024)	(0.004)

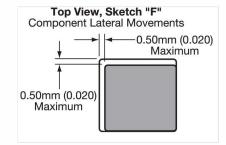
VARIABLE DIMENSIONS

Tape Size	B ₁ Max.	D ₁ Min.	E₂ Min.	F	P ₁ See Note 5	R Min. See Note 2	T ₂	W Max.	A ₀ B ₀ K ₀
8mm	4.35 (0.171)	1.00 (0.039)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	4.00 ± 0.10 (0.157 ± 0.004)	25.0 (0.984)	2.50 Max. (0.098)	8.30 (0.327)	See Note 1
12mm	8.20 (0.323)	1.50 (0.059)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	4.00 ± 0.10 (0.157 ± 0.004)	30.0 (1.181)	6.50 Max. (0.256)	12.3 (0.484)	See Note 1
8mm 1/2 Pitch	4.35 (0.171)	1.00 (0.039)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	2.00 ± 0.10 (0.079 ± 0.004)	25.0 (0.984)	2.50 Max. (0.098)	8.30 (0.327)	See Note 1
12mm Double Pitch	8.20 (0.323)	1.50 (0.059)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	8.00 ± 0.10 (0.315 ± 0.004)	30.0 (1.181)	6.50 Max. (0.256)	12.3 (0.484)	See Note 1

NOTES:

1. The cavity defined by A0, B0, and K0 shall be configured to provide the following: Surround the component with sufficient clearance such that:


b) the component does not protrude beyond the sealing plane of the cover tape. c) the component can be removed from the cavity in a vertical direction without


mechanical restriction, after the cover tape has been removed.

d) rotation of the component is limited to 20° maximum (see Sketches D & E).

e) lateral movement of the component is restricted to 0.5mm maximum (see Sketch F).

2. Tape with or without components shall pass around radius "R" without damage.

 Bar code labeling (if required) shall be on the side of the reel opposite the round sprocket holes. Refer to EIA-556.

20° maximum component rotation

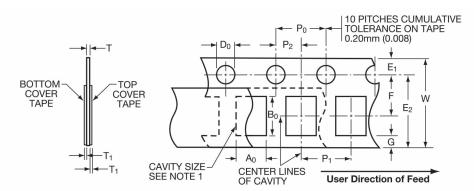
Typical component

Typical component

cavity center line

center line

4. $B_{\!_1}$ dimension is a reference dimension for tape feeder clearance only.


5. If $P_1 = 2.0$ mm, the tape may not properly index in all tape feeders.

B₀

Paper Carrier Configuration

8 & 12mm Tape Only

4, 8 & 12mm Embossed Tape **Metric Dimensions Will Govern**

CONSTANT DIMENSIONS

Tape Size	Do	E	Po	P ₂	T ₁	G. Min.	R Min.
8mm and 12mm	$1.50^{+0.10}_{-0.0} \\ (0.059^{+0.004}_{-0.0})$	1.75 ± 0.10 (0.069 ± 0.004)	4.00 ± 0.10 (0.157 ± 0.004)	2.00 ± 0.05 (0.079 ± 0.002)	0.10 (0.004) Max.	0.75 (0.030) Min.	25.0 (0.984) See Note 2 Min.

VARIABLE DIMENSIONS

Tape Size	P ₁ See Note 4	E ₂ Min.	F	W	A ₀ B ₀	т
8mm	4.00 ± 0.10 (0.157 ± 0.004)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	8.00 ^{+0.30} -0.10 (0.315 ^{+0.012})	See Note 1	1.10mm (0.043) Max.
12mm	4.00 ± 0.10 (0.157 ± 0.004)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	12.0 ± 0.30 (0.472 ± 0.012)		for Paper Base Tape and
8mm 1/2 Pitch	2.00 ± 0.05 (0.079 ± 0.002)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	8.00 ^{+0.30} -0.10 (0.315 ^{+0.012})		1.60mm
12mm Double Pitch	8.00 ± 0.10 (0.315 ± 0.004)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	12.0 ± 0.30 (0.472 ± 0.012)		(0.063) Max. for Non-Paper Base Compositions

holes. Refer to EIA-556.

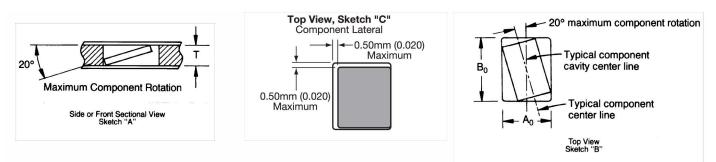
3. Bar code labeling (if required) shall be on the side of the reel opposite the sprocket

4. If P₁ = 2.0mm, the tape may not properly index in all tape feeders.

NOTES:

1. The cavity defined by A0, B0, and T shall be configured to provide sufficient clearance surrounding the component so that:

a) the component does not protrude beyond either surface of the carrier tape;


b)) the component can be removed from the cavity in a vertical direction without

mechanical restriction after the top cover tape has been removed;

c) rotation of the component is limited to 20° maximum (see Sketches A & B);

d) lateral movement of the component is restricted to 0.5mm maximum (see Sketch C).

2. Tape with or without components shall pass around radius "R" without damage.

Bar Code Labeling Standard

KYOCERA AVX bar code labeling is available and follows latest version of EIA-556

KUDEERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Basic Capacitor Formulas

I. Capacitance (farads)

English: C = $\frac{.224 \text{ K A}}{T_{D}}$ Metric: C = $\frac{.0884 \text{ K A}}{T}$

II. Energy stored in capacitors (Joules, watt - sec) E = $\frac{1}{2}$ CV^2

III. Linear charge of a capacitor (Amperes)

 $I = C \quad \frac{dV}{dt}$

IV. Total Impedance of a capacitor (ohms)

 $Z = \sqrt{R_s^2 + (X_C - X_L)^2}$

V. Capacitive Reactance (ohms)

$$x_{\rm C} = \frac{1}{2 \pi \, \rm fC}$$

VI. Inductive Reactance (ohms) $x_1 = 2 \pi fL$

VII. Phase Angles:

Ideal Capacitors: Current leads voltage 90° Ideal Inductors: Current lags voltage 90° Ideal Resistors: Current in phase with voltage

VIII. Dissipation Factor (%)

D.F.= tan
$$\delta$$
 (loss angle) = $\frac{\text{E.S.R.}}{X_{\text{C}}}$ = (2 π fC) (E.S.R.)

IX. Power Factor (%)

P.F. = Sine (loss angle) = Cos φ (phase angle) P.F. = (when less than 10%) = DF

X. Quality Factor (dimensionless)

 $Q = Cotan \delta$ (loss angle) $= \frac{1}{D.F.}$

XI. Equivalent Series Resistance (ohms) E.S.R. = (D.F.) (Xc) = (D.F.) / (2 π fC)

XII. Power Loss (watts) Power Loss = $(2 \pi fCV^2)$ (D.F.) XIII. KVA (Kilowatts)

KVA = $2 \pi fCV^2 \times 10^{-3}$

XIV. Temperature Characteristic (ppm/°C)

T.C. =
$$\frac{Ct - C_{25}}{C_{25} (T_t - 25)} \times 10^6$$

XV. Cap Drift (%)

C.D. =
$$\frac{C_1 - C_2}{C_1} \times 100$$

XVI. Reliability of Ceramic Capacitors

XVII. Capacitors in Series (current the same)

Any Number:
$$\frac{1}{C_{T}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} - \frac{1}{C_{N}}$$

Two: $C_{T} = \frac{C_{1}C_{2}}{C_{1} + C_{2}}$

XVIII. Capacitors in Parallel (voltage the same) $C_T = C_1 + C_2 - + C_N$

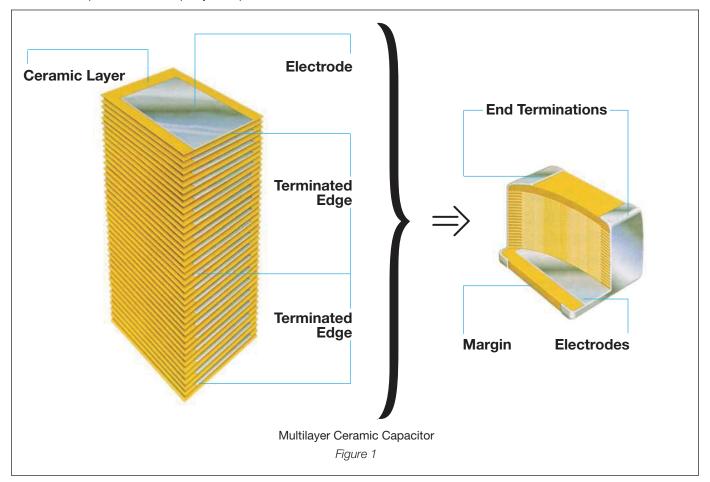
XIX. Aging Rate A.R. = $\%\Delta$ C/decade of time

XX. Decibels

$$db = 20 \log \frac{V_1}{V_2}$$

SYMBOLS

Pico	X 10 ⁻¹²
Nano	X 10-9
Micro	X 10⁻
Milli	X 10 ⁻³
Deci	X 10 ⁻¹
Deca	X 10 ⁺¹
Kilo	X 10 ⁺³
Mega	X 10+6
Giga	X 10+9
Tera	X 10 ⁺¹²


K = Dielectric Constant	f = frequency	L _t = Test life
A = Area	L = Inductance	V _t = Test voltage
T _D = Dielectric thickness	δ = Loss angle	V_{\circ} = Operating voltage
V = Voltage	φ = Phase angle	T _t = Test temperature
t = time	X & Y = exponent effect of voltage and temp.	T_{o} = Operating temperature
R _s = Series Resistance	L _o = Operating life	

Basic Construction - A multilayer ceramic (MLC) capacitor is a monolithic block of ceramic containing two sets of offset, interleaved planar electrodes that extend to two opposite surfaces of the ceramic dielectric. This simple structure requires a considerable amount of sophistication, both in material and manufacture, to produce it in the quality and quantities needed in

today's electronic equipment.

Formulations - Multilayer ceramic capacitors are available in both Class 1 and Class 2 formulations. Temperature compensating formulation are Class 1 and temperature stable and general application formulations are classified as Class 2.

Class 1 - Class 1 capacitors or temperature compensating capacitors are usually made from mixtures of titanates where barium titanate is normally not a major part of the mix. They have predictable temperature coefficients and in general, do not have an aging characteristic. Thus they are the most stable capacitor available. The most popular Class 1 multilayer ceramic capacitors are COG (NPO) temperature compensating capacitors (negativepositive 0 ppm/°C).

Class 2 - EIA Class 2 capacitors typically are based on the chemistry of barium titanate and provide a wide range of capacitance values and temperature stability. The most commonly used Class 2 dielectrics are X7R and Y5V. The X7R provides intermediate capacitance values which vary only ±15% over the temperature range of -55°C to 125°C. It finds applications where stability over a wide temperature range is required.

The Y5V provides the highest capacitance values and is used in applications where limited temperature changes are expected. The capacitance value for Y5V can vary from 22% to -82% over the -30°C to 85°C temperature range.

All Class 2 capacitors vary in capacitance value under the influence of temperature, operating voltage (both AC and DC), and frequency. For additional information on performance changes with operating conditions, consult KYOCERA AVX's software, SpiCap.

KIDCERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Table 1: EIA and MIL Temperature Stable and General Application Codes

EIA CODE Percent Capacity Change Over Temperature Range				
RS198	B Temperature Range			
X7	-55°C to +125°C			
X6	-55°C to +105°C			
X5	-55°C to +85°C			
Y5	-30°C to +85°C			
Z5	+10°C to +85°C			
Code	Percent Capacity Change			
D	±3.3%			
E	±4.7%			
F	±7.5%			
Р	±10%			
R	±15%			
S	±22%			
Т	+22%, -33%			
U	+22%, - 56%			
V	+22%, -82%			
	desired with the capacitance value at 25°C to $\%$ or desired with the capacitance value at 25°C to			

increase no more than 7.5% or decrease no more than 7.5% from -30°C to +85°C. EIA Code will be Y5F.

MIL CODE						
Symbol	Temperature Range					
A	-55°C to +85°C					
В	-55°C to +125°C -55°C to +150°C					
С						
Symbol	Cap. Change	Cap. Change				
Symbol	Zero Volts	Rated Volts				
R	+15%, -15%	+15%, -40%				
S	+22%, -22%	+22%, -56%				
W	+22%, -56%	+22%, -66%				
Х	+15%, -15%	+15%, -25%				
Y	+30%, -70%	+30%, -80%				
Z +20%, -20% +20%, -30%						
Temperature charac	Temperature characteristic is specified by combining range and change					
	symbols, for example BR or AW. Specification slash sheets indicate the					
characteristic applic	characteristic applicable to a given style of capacitor.					

In specifying capacitance change with temperature for Class 2 materials, EIA expresses the capacitance change over an operating temperature range by a 3 symbol code. The first symbol represents the cold temperature end of the temperature range, the second represents the upper limit of the operating temperature range and the third symbol represents the capacitance change allowed over the operating temperature range. Table 1 provides a detailed explanation of the EIA system.

Effects of Voltage – Variations in voltage have little effect on Class 1 dielectric but does affect the capacitance and dissipation factor of Class 2 dielectrics. The application of DC voltage reduces both the capacitance and dissipation factor while the application of an AC voltage within a reasonable range tends to increase both capacitance and dissipation factor readings. If a high enough AC voltage is applied, eventually it will reduce capacitance just as a DC voltage will. Figure 2 shows the effects of AC voltage.

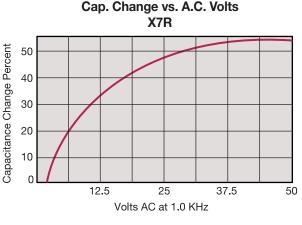
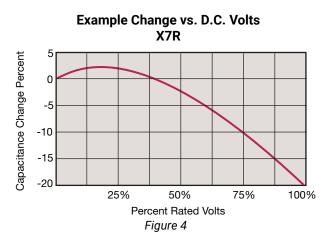
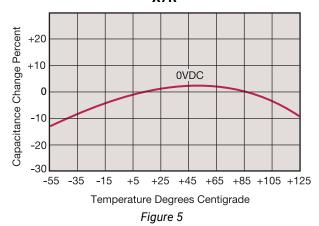


Figure 2

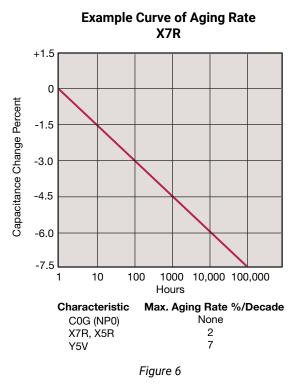
Capacitor specifications specify the AC voltage at which to measure (normally 0.5 or 1 VAC) and application of the wrong voltage can cause spurious readings. Figure 3 gives the voltage coefficient of dissipation factor for various AC voltages at 1 kilohertz. Applications of different frequencies will affect the percentage changes versus voltages.



D.F. vs. A.C. Measurement Volts X7R


Figure 3

Typical effect of the application of DC voltage is shown in Figure 4. The voltage coefficient is more pronounced for higher K dielectrics. These figures are shown for room temperature conditions. The combination characteristic known as voltage temperature limits which shows the effects of rated voltage over the operating temperature range is shown in Figure 5 for the military BX characteristic.



Effects of Time – Class 2 ceramic capacitors change capacitance and dissipation factor with time as well as temperature, voltage and frequency. This change with time is known as aging. Aging is caused by a gradual re-alignment of the crystalline structure of the ceramic and produces an exponential loss in capacitance and decrease in dissipation factor versus time. A typical curve of aging rate for semistable ceramics is shown in Figure 6.

If a Class 2 ceramic capacitor that has been sitting on the shelf for a period of time, is heated above its curie point, (125°C for 4 hours or 150°C for 1/2 hour will suffice) the part will de-age and return to its initial capacitance and dissi-pation factor readings. Because the capacitance changes rapidly, immediately after de-aging, the basic capacitance measurements are normally referred to a time period sometime after the de-aging process. Various manufacturers use different time bases but the most popular one is one day or twentyfour hours after "last heat." Change in the aging curve can be caused by the application of voltage and other stresses. The possible changes in capacitance due to de-aging by heating the unit explain why capacitance changes are allowed after test, such as temperature cycling, moisture resistance, etc., in MIL specs. The application of high voltages such as dielectric withstanding voltages also tends to de-age capacitors and is why re-reading of capacitance after 12 or 24 hours is allowed in military specifications after dielectric strength tests have been performed.

Effects of Frequency – Frequency affects capacitance and impedance characteristics of capacitors. This effect is much more pronounced in high dielectric constant ceramic formulation than in low K formulations. KYOCERA AVX's SpiCap software generates impedance, ESR, series inductance, series resonant frequency and capacitance all as functions of frequency, temperature and DC bias for standard chip sizes and styles. It is available free from KYOCERA AVX and can be downloaded for free from KYOCERA AVX website: www.kyocera-avx.com.

KUDEERA AVVXX The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Effects of Mechanical Stress – High "K" dielectric ceramic capacitors exhibit some low level piezoelectric reactions under mechanical stress. As a general statement, the piezoelectric output is higher, the higher the dielectric constant of the ceramic. It is desirable to investigate this effect before using high "K" dielectrics as coupling capacitors in extremely low level applications.

Reliability – Historically ceramic capacitors have been one of the most reliable types of capacitors in use today. The approximate formula for the reliability of a ceramic capacitor is:

$$\frac{L_o}{L_t} = \left(\frac{V_t}{V_o}\right) X \left(\frac{T_t}{T_o}\right) Y$$

where

- L_{o} = operating life
- L, = test life
- V_t = test voltage
- V_o = operating voltage

T_o = operating temperature in °C X.Y = see text

T_t = test temperature and

Historically for ceramic capacitors exponent X has been considered as 3. The exponent Y for temperature effects typically tends to run about 8.

A capacitor is a component which is capable of storing electrical energy. It consists of two conductive plates (electrodes) separated by insulating material which is called the dielectric. A typical formula for determining capacitance is:

$$C = \frac{.224 \text{ KA}}{1}$$

- **C** = capacitance (picofarads)
- K = dielectric constant (Vacuum = 1)
- A = area in square inches
- t = separation between the plates in inches (thickness of dielectric)

.224 = conversion constant (.0884 for metric system in cm)

Capacitance – The standard unit of capacitance is the farad. A capacitor has a capacitance of 1 farad when 1 coulomb charges it to 1 volt. One farad is a very large unit and most capacitors have values in the micro (10^{-6}) , nano (10^{-9}) or pico (10^{-12}) farad level.

Dielectric Constant – In the formula for capacitance given above the dielectric constant of a vacuum is arbitrarily chosen as the number 1. Dielectric constants of other materials are then compared to the dielectric constant of a vacuum.

Dielectric Thickness – Capacitance is indirectly proportional to the separation between electrodes. Lower voltage requirements mean thinner dielectrics and greater capacitance per volume.

Area – Capacitance is directly proportional to the area of the electrodes. Since the other variables in the equation are usually set by the performance desired, area is the easiest parameter to modify to obtain a specific capacitance within a material group.

Energy Stored – The energy which can be stored in a capacitor is given by the formula:

$$E = \frac{1}{2}CV^{2}$$

E = energy in joules (watts-sec)
V = applied voltage

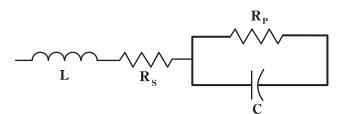
C = capacitance in farads

Potential Change – A capacitor is a reactive component which reacts against a change in potential across it. This is shown by the equation for the linear charge of a capacitor:

$$I_{ideal} = C \frac{dV}{dt}$$

where

I = Current

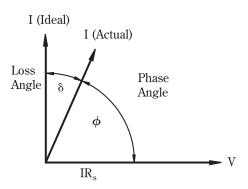

C = Capacitance

dV/dt = Slope of voltage transition across capacitor

Thus an infinite current would be required to instantly change the potential across a capacitor. The amount of current a capacitor can "sink" is determined by the above equation.

Equivalent Circuit – A capacitor, as a practical device, exhibits not only capacitance but also resistance and inductance. A simplified schematic for the equivalent circuit is:

- C = Capacitance
- \mathbf{R}_{s} = Series Resistance
- L = Inductance R_n = Parallel Resistance


Reactance – Since the insulation resistance (Rp) is normally very high, the total impedance of a capacitor is:

$$Z = \sqrt{R_{\rm S}^2 + (X_{\rm C} - X_{\rm L})^2}$$

where

The variation of a capacitor's impedance with frequency determines its effectiveness in many applications.

Phase Angle – Power Factor and Dissipation Factor are often confused since they are both measures of the loss in a capacitor under AC application and are often almost identical in value. In a "perfect" capacitor the current in the capacitor will lead the voltage by 90°.

In practice the current leads the voltage by some other phase angle due to the series resistance RS. The complement of this angle is called the loss angle and:

> Power Factor (P.F.) = $\cos \phi$ or Sine δ Dissipation Factor (D.F.) = tan δ

for small values of the tan and sine are essentially equal which has led to the common interchangeability of the two terms in the industry.

Equivalent Series Resistance - The term E.S.R. or Equivalent Series Resistance combines all losses both series and parallel in a capacitor at a given frequency so that the equivalent circuit is reduced to a simple R-C series connection.

Dissipation Factor - The DF/PF of a capacitor tells what percent of the apparent power input will turn to heat in the capacitor.

Dissipation Factor =
$$\frac{\text{E.S.R.}}{X_{\odot}}$$
 = (2 π fC) (E.S.R.)

The watts loss are:

Watts loss = $(2 \pi fCV^2)$ (D.F.)

Very low values of dissipation factor are expressed as their reciprocal for convenience. These are called the "Q" or Quality factor of capacitors.

Parasitic Inductance - The parasitic inductance of capacitors is becoming more and more important in the decoupling of today's high speed digital systems. The relationship between the inductance and the ripple voltage induced on the DC voltage line can be seen from the simple inductance equation:

$$V = L \frac{di}{dt}$$

The \overline{dt} seen in current microprocessors can be as high as 0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic inductance can cause a voltage spike of 30mV. While this does not sound very drastic, with the Vcc for microprocessors decreasing at the current rate, this

KYOCERa

can be a fairly large percentage. Another important, often overlooked, reason for knowing the parasitic inductance is the calculation of the resonant frequency. This can be important for high frequency, bypass capacitors, as the resonant point will give the most signal attenuation. The resonant frequency is calculated from the simple equation:

$$res = \frac{1}{2\pi\sqrt{LC}}$$

Insulation Resistance - Insulation Resistance is the resistance measured across the terminals of a capacitor and consists principally of the parallel resistance RP shown in the equivalent circuit. As capacitance values and hence the area of dielectric increases, the I.R. decreases and hence the product (C x IR or RC) is often specified in ohm farads or more commonly megohm-microfarads. Leakage current is determined by dividing the rated voltage by IR (Ohm's Law).

Dielectric Strength - Dielectric Strength is an expression of the ability of a material to withstand an electrical stress. Although dielectric strength is ordinarily expressed in volts, it is actually dependent on the thickness of the dielectric and thus is also more generically a function of volts/mil.

Dielectric Absorption - A capacitor does not discharge instantaneously upon application of a short circuit, but drains gradually after the capacitance proper has been discharged. It is common practice to measure the dielectric absorption by determining the "reappearing voltage" which appears across a capacitor at some point in time after it has been fully discharged under short circuit conditions.

Corona - Corona is the ionization of air or other vapors which causes them to conduct current. It is especially prevalent in high voltage units but can occur with low voltages as well where high voltage gradients occur. The energy discharged degrades the performance of the capacitor and can in time cause catastrophic failures.

Surface Mounting Guide

MLC Chip Capacitors

REFLOW SOLDERING

	Case Size	D1	D2	D3	D4	D5
	0201	0.85 (0.033)	0.30 (0.012)	0.25 (0.010)	0.30 (0.012)	0.35 (0.014)
	0402	1.70 (0.067)	0.60 (0.024)	0.50 (0.020)	0.60 (0.024)	0.50 (0.020)
	0603	2.30 (0.091)	0.80 (0.031)	0.70 (0.028)	0.80 (0.031)	0.75 (0.030)
D1 D3	0805	3.00 (0.118)	1.00 (0.039)	1.00 (0.039)	1.00 (0.039)	1.25 (0.049)
	1206	4.00 (0.157)	1.00 (0.039)	2.00 (0.079)	1.00 (0.039)	1.60 (0.063)
	1210	4.00 (0.157)	1.00 (0.039)	2.00 (0.079)	1.00 (0.039)	2.50 (0.098)
	1808	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	2.00 (0.079)
D4	1812	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	3.00 (0.118)
* *	1825	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	6.35 (0.250)
	2220	6.60 (0.260)	1.00 (0.039)	4.60 (0.181)	1.00 (0.039)	5.00 (0.197)
→ D5 🛶	2225	6.60 (0.260)	1.00 (0.039)	4.60 (0.181)	1.00 (0.039)	6.35 (0.250)

Dimensions in millimeters (inches)

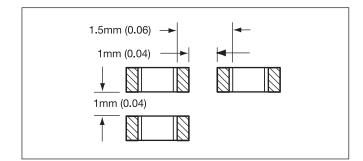
Component Pad Design

Component pads should be designed to achieve good solder filets and minimize component movement during reflow soldering. Pad designs are given below for the most common sizes of multilayer ceramic capacitors for both wave and reflow soldering. The basis of these designs is:

· Pad width equal to component width. It is permissible to

decrease this to as low as 85% of component width but it is not advisable to go below this.

- Pad overlap 0.5mm beneath component.
- Pad extension 0.5mm beyond components for reflow and 1.0mm for wave soldering.


$\begin{array}{c|c} & \bullet \\ & D2 \\ & D2 \\ & \bullet \\ & D2 \\ & D2 \\ & D2 \\ & D2 \\ & D2 \\ & D2 \\ & 02$

WAVE SOLDERING

Case Size	D1	D2	D3	D4	D5
0603	3.10 (0.12)	1.20 (0.05)	0.70 (0.03)	1.20 (0.05)	0.75 (0.03
0805	4.00 (0.15)	1.50 (0.06)	1.00 (0.04)	1.50 (0.06)	1.25 (0.05
1206	5.00 (0.19)	1.50 (0.06)	2.00 (0.09)	1.50 (0.06)	1.60 (0.06

Component Spacing

For wave soldering components, must be spaced sufficiently far apart to avoid bridging or shadowing (inability of solder to penetrate properly into small spaces). This is less important for reflow soldering but sufficient space must be allowed to enable rework should it be required.

Preheat & Soldering

The rate of preheat should not exceed 4°C/second to prevent thermal shock. A better maximum figure is about 2°C/second.

For capacitors size 1206 and below, with a maximum thickness of 1.25mm, it is generally permissible to allow a temperature differential from preheat to soldering of 150°C. In all other cases this differential should not exceed 100°C.

For further specific application or process advice, please consult KYOCERA AVX.

Cleaning

Care should be taken to ensure that the capacitors are thoroughly cleaned of flux residues especially the space beneath the capacitor. Such residues may otherwise become conductive and effectively offer a low resistance bypass to the capacitor.

Ultrasonic cleaning is permissible, the recommended conditions being 8 Watts/litre at 20-45 kHz, with a process cycle of 2 minutes vapor rinse, 2 minutes immersion in the ultrasonic solvent bath and finally 2 minutes vapor rinse.

KUDEERA AVVXX The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Surface Mounting Guide **Recommended Soldering Profiles**

KYOCERa

REFLOW SOLDER PROFILES

KYOCERA AVX RoHS compliant products utilize termination finishes (e.g.Sn or SnAg) that are compatible with all Pb-Free soldering systems and are fully reverse compatible with SnPb soldering systems. A recommended SnPb profile is shown for comparison; for Pb-Free soldering, IPC/ JEDECJ- STD-020C may be referenced. The upper line in the chart shows the maximum envelope to which products are qualified (typically 3x reflow cycles at 260°C max). The center line gives the recommended profile for optimum wettability and soldering in Pb-Free Systems.

Preheat:

The pre-heat stabilizes the part and reduces the temperature differential prior to reflow. The initial ramp to 125°C may be rapid, but from that point (2-3)°C/sec is recommended to allow ceramic parts to heat uniformly and plastic encapsulated parts to stabilize through the glass transition temperature of the body (~ 180°C).

Reflow:

In the reflow phase, the maximum recommended time > 230°C is 40secs. Time at peak reflow is 10secs max.; optimum reflow is achieved at 250°C, (see wetting balance chart opposite) but products are qualified to 260°C max. Please reference individual product datasheets for maximum limits

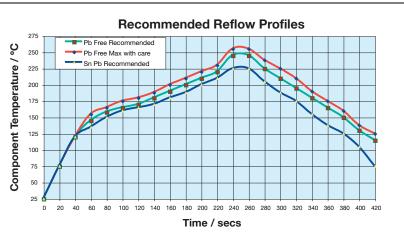
Cool Down:

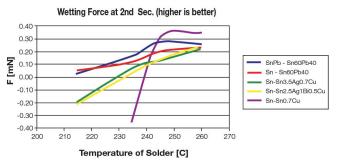
Cool down should not be forced and 6°C/sec is recommended. A slow cool down will result in a finer grain structure of the reflow solder in the solder fillet.

WAVE SOLDER PROFILES

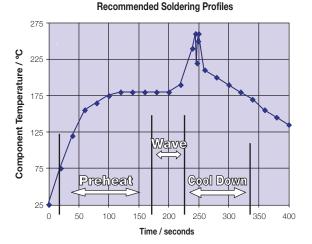
For wave solder, there is no change in the recommended wave profile; all standard Pb-Free (SnCu/SnCuAg) systems operate at the same 260°C max recommended for SnPb systems.

Preheat:


This is more important for wave solder; a higher temperature preheat will reduce the thermal shock to SMD parts that are immersed (please consult individual product data sheets for SMD parts that are suited to wave solder). SMD parts should ideally be heated from the bottom-Side prior to wave. PTH (Pin through hole) parts on the topside should not be separately heated.


Wave:

250°C - 260°C recommended for optimum solderability.


Cool Down:

As with reflow solder, cool down should not be forced and 6°C/sec is recommended. Any air knives at the end of the 2nd wave should be heated

IMPORTANT NOTE: Typical Pb-Free reflow solders have a more dull and grainy appearance compared to traditional SnPb. Elevating the reflow temperature will not change this, but extending the cool down can help improve the visual appearance of the joint.

🗴 KUDEERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Surface Mounting Guide MLC Chip Capacitors

APPLICATION NOTES

Storage

The components should be stored in their "as received packaging" where possible. If the components are removed from their original packaging then they should be stored in an airtight container (e.g. a heat sealed plastic bag) with desiccant (e.g. silica gel). Storage area temperature should be kept between +5 degrees C and +30 degrees C with humidity < 70% RH. Storage atmosphere must be free of gas containing sulfur and chlorine. Avoid exposing the product to saline moisture or to temperature changes that might result in the formation of condensation. To assure good solderability performance we recommend that the product be used within 6 months from our shipping date, but can be used for up to 12 months. Chip capacitors may crack if exposed to hydrogen (H2) gas while sealed or if coated with silicon, which generates hydrogen gas.

Solderability

Terminations to be well soldered after immersion in a 60/40 tin/lead solder bath at $245^{\circ}C$ +/- $5^{\circ}C$ for 5 +0/-0.5 seconds.

Leaching

Terminations will resist leaching for at least the immersion times and conditions shown below.

Termination Type	Solder Tin/	Solder	Immersion
	Lead/Silver	Temp °C	Time Seconds
Nickel Barrier	60/40/0	260 ± 5	30 ± 1

Lead-Free Wave Soldering

The recommended peak temperature for lead-free wave soldering is 250° C-260°C for 3-5 seconds. The other parameters of the profile remains the same as above.

The following should be noted by customers changing from lead based systems to the new lead free pastes.

- A. The visual standards used for evaluation of solder joints will need to be modified as lead free joints are not as bright as with tin-lead pastes and the fillet may not be as large.
- B. Lead-free solder pastes do not allow the same self alignment as lead containing systems. Standard mounting pads are acceptable, but machine set up may need to be modified.

General

Surface mounting chip multilayer ceramic capacitors are designed for soldering to printed circuit boards or other substrates. The construction of the components is such that they will withstand the time/temperature profiles used in both wave and reflow soldering methods.

Handling

Chip multilayer ceramic capacitors should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of tweezers or vacuum pick ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized. Taped and reeled components provides the ideal medium for direct presentation to the placement machine. Any mechanical shock should be minimized during handling chip multilayer ceramic capacitors.

Preheat

It is important to avoid the possibility of thermal shock during soldering and carefully controlled preheat is therefore required. The rate of preheat should not exceed 4°C/second and a target figure 2°C/second is recommended. Although an 80°C to 120°C temperature differential is preferred, recent developments allow a temperature differential between the component surface and the soldering temperature of 150°C (Maximum) for capacitors of 1210 size and below with a maximum thickness of 1.25mm. The user is cautioned that the risk of thermal shock increases as chip size or temperature differential increases.

Soldering

Mildly activated rosin fluxes are preferred. The minimum amount of solder to give a good joint should be used. Excessive solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. KYOCERA AVX terminations are suitable for all wave and reflow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

Cooling

Natural cooling in air is preferred, as this minimizes stresses within the soldered joint. When forced air cooling is used, cooling rate should not exceed 4°C/second. Quenching is not recommended but if used, maximum temperature differentials should be observed according to the preheat conditions above.

Cleaning

Flux residues may be hygroscopic or acidic and must be removed. KYOCERA AVX MLC capacitors are acceptable for use with all of the solvents described in the specifications MIL-STD-202 and EIA-RS-198. Alcohol based solvents are acceptable and properly controlled water cleaning systems are also acceptable. Many other solvents have been proven successful, and most solvents that are acceptable to other components on circuit assemblies are equally acceptable for use with ceramic capacitors.

Prevention of Metallic Migration

Note that when components with Sn plating on the end terminations are to be used in applications that are likely to experience conditions of high humidity under bias voltage, we strongly recommend that the circuit boards be conformally coated to protect the Sn from moisture that might lead to migration and eventual current leakage.

When using Capacitor Arrays we recommend that there is no differential in applied voltage between adjacent elements.

Surface Mounting Guide

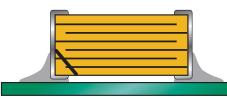
MLC Chip Capacitors

POST SOLDER HANDLING

Once SMP components are soldered to the board, any bending or flexure of the PCB applies stresses to the soldered joints of the components. For leaded devices, the stresses are absorbed by the compliancy of the metal leads and generally don't result in problems unless the stress is large enough to fracture the soldered connection.

Ceramic capacitors are more susceptible to such stress because they don't have compliant leads and are brittle in nature. The most frequent failure mode is low DC resistance or short circuit. The second failure mode is significant loss of capacitance due to severing of contact between sets of the internal electrodes.

Cracks caused by mechanical flexure are very easily identified and generally take one of the following two general forms:


Mechanical cracks are often hidden underneath the termination and are difficult to see externally. However, if one end termination falls off during the removal process from PCB, this is one indication that the cause of failure was excessive mechanical stress due to board warping.

COMMON CAUSES OF MECHANICAL CRACKING

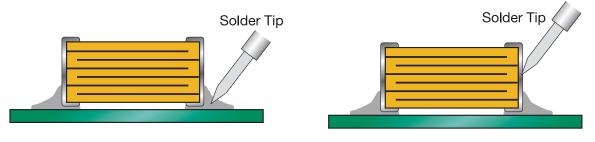
The most common source for mechanical stress is board depanelization equipment, such as manual breakapart, v-cutters and shear presses. Improperly aligned or dull cutters may cause torqueing of the PCB resulting in flex stresses being transmitted to components near the board edge. Another common source of flexural stress is contact during parametric testing when test points are probed. If the PCB is allowed to flex during the test cycle, nearby ceramic capacitors may be broken.

A third common source is board to board connections at vertical connectors where cables or other PCBs are connected to the PCB. If the board is not supported during the plug/unplug cycle, it may flex and cause damage to nearby components.

Special care should also be taken when handling large (>6" on a side) PCBs since they more easily flex or warp than smaller boards.

🔇 КУОСЕRа

Type A: Angled crack between bottom of device to top of solder joint.

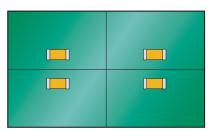


Type B: Fracture from top of device to bottom of device.

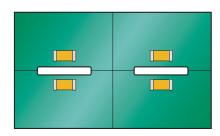
REWORKING OF MLCS

Thermal shock is common in MLCs that are manually attached or reworked with a soldering iron. KYOCERA AVX strongly recommends that any reworking of MLCs be done with hot air reflow rather than soldering irons. It is practically impossible to cause any thermal shock in ceramic capacitors when using hot air reflow.

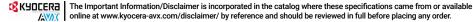
However direct contact by the soldering iron tip often causes thermal cracks that may fail at a later date. If rework by soldering iron is absolutely necessary, it is recommended that the wattage of the iron be less than 30 watts and the tip temperature be <300°C. *Rework should be performed by applying the solder iron tip to the pad and not directly contacting any part of the ceramic capacitor.*



Preferred Method - No Direct Part Contact



PCB BOARD DESIGN


To avoid many of the handling problems, KYOCERA AVX recommends that MLCs be located at least .2" away from nearest edge of board. However when this is not possible, KYOCERA AVX recommends that the panel be routed along the cut line, adjacent to where the MLC is located.

No Stress Relief for MLCs

Routed Cut Line Relieves Stress on MLC

FOLLOW US: 🖸 🗹 🖬 🗅

VISIT US AT WWW.KYOCERA-AVX.COM

North America Tel: +1 864-967-2150

Central America Tel: +55 11-46881960 **Europe** Tel: +44 1276-697000 **Asia** Tel: +65 6286-7555

Japan Tel: +81 740-321250

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by Kyocera AVX manufacturer:

Other Similar products are found below :

D55342E07B523DR-T/R NCA1206X7R104K16TRPF NIN-FB391JTRF NIN-FC2R7JTRF NMC0402NPO220J50TRPF NMC0402X5R105K6.3TRPF NMC0402X5R224K6.3TRPF NMC0402X7R103J25TRPF NMC0402X7R153K16TRPF NMC0402X7R392K50TRPF NMC0603NPO1R8C50TRPF NMC0603NPO20JJ50TRPF NMC0603NPO330G50TRPF NMC0603NPO331F50TRPF NMC0603X5R475M6.3TRPF NMC0805NPO220J100TRPF NMC0805NPO270J50TRPF NMC0805NPO681F50TRPF NMC0603X5R475M6.3TRPF NMC1206X7R102K50TRPF NMC1210Y5V105Z50TRPLPF NMC-L0402NPO7R0C50TRPF NMC0805NPO820J50TRPF NMC1206X7R102K50TRPF NMC1210Y5V105Z50TRPLPF NMC-L0402NPO7R0C50TRPF NMC-L0603NPO2R2B50TRPF NMC-P1206X7R103K1KVTRPLPF NMC-Q0402NPO8R2D200TRPF C1206C101J1GAC C1608C0G2A221J C1608X7R1E334K C2012C0G2A472J 2220J2K00562KXT KHC201E225M76N0T00 1812J2K00332KXT CCR06CG153FSV CDR14BP471CJUR CDR31BX103AKWR CDR33BX683AKUS CGA2B2C0G1H010C CGA2B2C0G1H040C CGA2B2C0G1H050C CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H120J CGA2B2C0G1H151J CGA2B2C0G1H1R5C CGA2B2C0G1H2R2C CGA2B2C0G1H390J CGA2B2C0G1H391J CGA2B2C0G1H3R3C CGA2B2C0G1H680J CGA2B2C0G1H6R8D