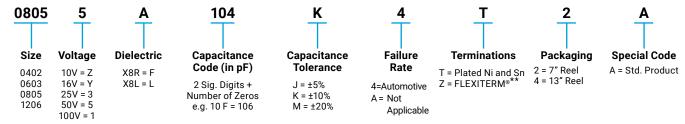
X8R/X8L Dielectric General Specifications



AVX has developed a range of multilayer ceramic capacitors designed for use in applications up to 150°C. These capacitors are manufactured with an X8R and an X8L dielectric material. X8R material has capacitance variation of \pm 15% between -55°C and +150°C. The X8L material has capacitance variation of \pm 15% between -55°C to 125°C to 125°C and +15/40% from +125°C to +150°C.

The need for X8R and X8L performance has been driven by customer requirements for parts that operate at elevated temperatures. They provide a highly reliable capacitor with low loss and stable capacitance over temperature.

They are ideal for automotive under the hood sensors, and various industrial applications. Typical industrial application would be drilling monitoring system. They can also be used as bulk capacitors for high temperature camera modules.

Both X8R and X8L dielectric capacitors are automotive AEC-Q200 qualified. Optional termination systems, tin, FLEXITERM® and conductive epoxy for hybrid applications are available. Providing this series with our FLEXITERM® termination system provides further advantage to customers by way of enhanced resistance to both, temperature cycling and mechanical damage.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

	Style		0603			0805	1206		
S	oldering	Ret	flow/W	ave	Ret	flow/W	Reflow/Wave		
	WVDC	25V	50V	100V	25V	50V	100V	25V	50V
221	220				J	J	J		
271	270	G	G		J	J	J		
331	pF 330	G	G		J	J	J		
471	470	G	G	G	J	J	J		
681	680	G	G	G	J	J	J		
102	1000	G	G	G	J	J	J	J	J
152	1500	G	G	G	J	J	J	J	J
222	2200	G	G	G	J	J	J	J	J
332	3300	G	G	G	J	J	J	J	J
472	4700	G	G	G	J	J	J	J	J
682	6800	G	G	G	J	J	J	J	J
103	uF 0.01	G	G	G	J	J	J	J	J
153	0.015	G	G		J	J	N	J	J
223	0.022	G	G		J	J	N	J	J
333	0.033	G	G		J	J		J	J
473	0.047	G	G		J	J		J	J
683	0.068	G			N	N		М	М
104	0.1				N	N		М	М
154	0.15				N	N		М	М
224	0.22				N			М	М
334	0.33							М	М
474	0.47							М	Q
684	0.68							Q	Q
105	uF 1							Q	Q
	WVDC	25V	50V	100V	25V	50V	100V	25V	50V
Style			0603			0805	1206		

Size		0603	0805	1206	1210	
Soldering		Reflow/Wave	Reflow/Wave	Reflow/Wave	Reflow/Wave	
Packaging		All Paper	Paper/Embossed	Paper/Embossed	Paper/Embossed	
(L) Length (in)		1.60 ± 0.15	2.01 ± 0.20	3.20 ± 0.20	3.30 ± 0.4	
		(0.063 ± 0.006)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.130 ± 0.016)	
(W) Width	(W) Width mm 0.81 ± 0.1		1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20	
	(in) (0.032 ± 0.0		(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)	
(t) Terminal mm		0.35 ± 0.15	0.50 ± 0.25	0.50 ± 0.25	0.50 ± 0.25	
(in)		(0.014 ± 0.006)	(0.020 ± 0.010)	(0.020 ± 0.010)	(0.020 ± 0.010)	

		•						X8	L						
Size 0603				0805			1206				1210				
S	Soldering Reflow/Wave				Reflow/Wave			Reflow/Wave				Reflow/Wave			
		WVDC	25V	50V	100V	25V	50V	100V	16V	25V	50V	100V	10V	50V	100V
271	Сар	270	G	G											
331	(pF)	330	G	G	G	J	J	J							
471		470	G	G	G	J	J	J							
681		680	G	G	G	J	J	J							
102		1000	G	G	G	J	J	J		J	J				
152		1500	G	G	G	J	J	J		J	J	J			
182		1800	G	G	G	J	J	J		J	J	J			
222		2200	G	G	G	J	J	J		J	J	J			ļ
272		2700	G	G	G	J	J	J		J	J	J			ļ
332		3300	G	G	G	J	J	J		J	J	J			
392		3900	G	G	G	J	J	J		J	J	J			ļ
472		4700	G	G	G	J	J	J		J	J	J			ļ
562		5600	G	G	G	J	J	J		J	J	J			ļ
682		6800	G	G	G	J	J	J		J	J	J			
822		8200	G	G	G	J	J	J		J	J	J			ļ
103	Cap	0.01	G	G	G	J	J	J		J	J	J			
123	(µF)	0.012	G	G		J	J	J		J	J	J			
153		0.015	G	G		J	J	J		J	J	J			
183		0.018	G	G		J	J	J		J	J	J			
223		0.022	G	G		J	J	J		J	J	J			ļ
273		0.027	G	G		J	J	J		J	J	J			
333		0.033	G	G		J	J	N		J	J	J			
393		0.039	G	G		J	J	N		J	J	J			
473		0.047	G	G		J	J	N		J	J	J			
563		0.056	G	G		J	J	N		J	J	J			
683		0.068	G	G G		J	J J	N N		J	J	J			
823		0.082	G			-				J					
104		0.1	G	G		J	J	N		J	J	M			
124 154		0.12				J	N		J	J J	J	M Q			
184		0.13				N	N		J	J	J	Q			
224		0.18				N	N		J	J	J	Q			
274		0.22				N	IN		J	M	M	Q			
334		0.27				N			J	M	M	Q			<u> </u>
334 394		0.33		<u> </u>		N			M	M	P	Q	<u> </u>		
474		0.39				N			M	M	P P	Q			
684		0.47		1		N			M	M	P	Q			
824		0.82				N			M	M	P P	Q			<u> </u>
105		0.82				N			M	M	P	0			<u> </u>
155		1.5				IN			M	M	F	ų			<u> </u>
225		2.2							M	M				Z	Z
475		Z.Z							IVI	IVI				Z	2
106													Z	2	
100		WVDC	25V	50V	100V	25V	50V	100V	16V	25V	50V	100V	10V	50V	100V
	SIZE	WVDC	237	0603	1000	257	0805	1000	100			1000	100	1210	1000
	SIZE	SIZE 0603 0805 1206					1210								

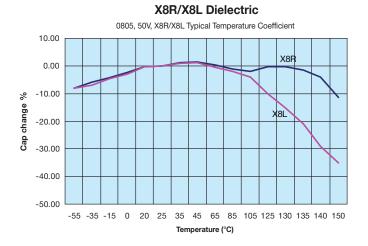
Letter	Α	С	E	G	J	К	М	Ν	Р	Q	Х	Y	Z
Max. Thickness	0.33 (-0.013)	0.56 (-0.022)	0.71 (-0.028)	0.9 (-0.035)	0.94 (-0.037)	1.02 (-0.04)	1.27 (-0.05)	1.4 (-0.055)	1.52 (-0.06)	1.78 (-0.07)	2.29 (-0.09)	2.54 (-0.1)	2.79 (-0.11)
	PAPER					EMBOSSED							

16

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

APPLICATIONS FOR X8R AND X8L CAPACITORS

- · All market sectors with a 150°C requirement
- Automotive on engine applications
- Oil exploration applications
- Hybrid automotive applications
 - Battery control
 - Inverter / converter circuits
 - Motor control applications
 - Water pump
- · Hybrid commercial applications
 - Emergency circuits
 - Sensors
 - Temperature regulation



ADVANTAGES OF X8R AND X8L MLC CAPACITORS

- Both ranges are qualified to the highest automotive AEC-Q200 standards
- Excellent reliability compared to other capacitor technologies
- RoHS compliant
- Low ESR / ESL compared to other technologies
- Tin solder finish
- FLEXITERM® available
- · Epoxy termination for hybrid available
- 100V range available

ENGINEERING TOOLS FOR HIGH VOLTAGE MLC CAPACITORS

- Samples
- Technical Articles
- Application Engineering
- Application Support

X8R/X8L Dielectric

Specifications and Test Methods

Parameter/Test		X8R/X8L Specification Limits	Measuring Conditions				
Operating Temperature Range		-55°C to +150°C	Temperature C	ycle Chamber			
Capac	itance	Within specified tolerance	Freg.: 1.0 l	(Hz + 10%			
Dissipatio	on Factor	\leq 2.5% for \geq 50V DC rating \leq 3.5% for 25V DC and 16V DC rating	Voltage: 1.0Vrms ± .2V				
Insulation I	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with rated @ room tem				
Dielectric	Strength	No breakdown or visual defects	Charge device with 250% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltag for 500V devices.				
Appearance Capacitance Resistance to Variation		No defects	Deflectio	n. 2mm			
		≤ ±12%	Test Time:				
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)					
	Insulation Resistance	≥ Initial Value x 0.3	90	mm			
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic sole 0.5 set				
	Appearance	No defects, <25% leaching of either end terminal					
	Capacitance Variation	≤ ±7.5%	Dip device in eutectic solder at 260°C				
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)		room temperature for			
	Insulation Resistance	Meets Initial Values (As Above)	properties.	J			
Dielectric Strength		Meets Initial Values (As Above)					
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes			
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes			
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes			
	Insulation Resistance Meets Initial Values (As Abo		Step 4: Room Temp	≤ 3 minutes			
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature				
	Appearance	No visual defects	-				
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 rated voltage (\leq 10V) in				
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	test chamber set at 150°C ± 2°C for 1000 hours (+48, -0)				
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h				
	Dielectric Strength	Meets Initial Values (As Above)					
	Appearance	No visual defects	-				
	Capacitance Variation	≤ ±12.5%	Store in a test chamber set at 85°C ± 2°C/ 85% 5% relative humidity for 1000 hours				
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated voltage applied. Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours befor				
,	Insulation Resistance	≥ Initial Value x 0.3 (See Above)					
	Dielectric Strength	Meets Initial Values (As Above)	measuring				

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by Kyocera AVX manufacturer:

Other Similar products are found below :

D55342E07B523DR-T/R NCA1206X7R104K16TRPF NIN-FB391JTRF NIN-FC2R7JTRF NMC0402NPO220J50TRPF NMC0402X5R105K6.3TRPF NMC0402X5R224K6.3TRPF NMC0402X7R103J25TRPF NMC0402X7R153K16TRPF NMC0402X7R392K50TRPF NMC0603NPO1R8C50TRPF NMC0603NPO20JJ50TRPF NMC0603NPO330G50TRPF NMC0603NPO331F50TRPF NMC0603X5R475M6.3TRPF NMC0805NPO220J100TRPF NMC0805NPO270J50TRPF NMC0805NPO681F50TRPF NMC0603X5R475M6.3TRPF NMC1206X7R102K50TRPF NMC1210Y5V105Z50TRPLPF NMC-L0402NPO7R0C50TRPF NMC0805NPO820J50TRPF NMC1206X7R102K50TRPF NMC1210Y5V105Z50TRPLPF NMC-L0402NPO7R0C50TRPF NMC-L0603NPO2R2B50TRPF NMC-P1206X7R103K1KVTRPLPF NMC-Q0402NPO8R2D200TRPF C1206C101J1GAC C1608C0G2A221J C1608X7R1E334K C2012C0G2A472J 2220J2K00562KXT KHC201E225M76N0T00 1812J2K00332KXT CCR06CG153FSV CDR14BP471CJUR CDR31BX103AKWR CDR33BX683AKUS CGA2B2C0G1H010C CGA2B2C0G1H040C CGA2B2C0G1H050C CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H120J CGA2B2C0G1H151J CGA2B2C0G1H1R5C CGA2B2C0G1H2R2C CGA2B2C0G1H390J CGA2B2C0G1H391J CGA2B2C0G1H3R3C CGA2B2C0G1H680J CGA2B2C0G1H6R8D