Automotive MLCC

General Specifications

GENERAL DESCRIPTION

AVX Corporation has supported the Automotive Industry requirements for Multilayer Ceramic Capacitors consistently for more than 25 years. Products have been developed and tested specifically for automotive applications and all manufacturing facilities are QS9000 and VDA 6.4 approved.
AVX is using AECQ200 as the qualification vehicle for this transition. A detailed qualification package is available on request and contains results on a range of part numbers.

HOW TO ORDER

0805	5	A	104	K	4	T	2	A
				\|			T	
Size	Voltage	Dielectric	Capacitance	Capacitance	Failure	Terminations	Packaging	Special Code
0402	$6.3 \mathrm{~V}=6$	NPO = A	Code (ln pF)	Tolerance	Rate	T=PlatedNi and Sn	2 = 7" Reel	A = Std.Product
0603	$10 \mathrm{~V}=\mathrm{Z}$	X7R = C	2 Sig. Digits +	$\mathrm{B}= \pm 0.1 \mathrm{pF}(<10 \mathrm{pF}) *$	4=Automotive	Z = FLEXITERM ${ }^{\text {®** }}$	$4=13$ "Reel	
1206	$16 \mathrm{~V}=\mathrm{Y}$	$X 8 \mathrm{R}=\mathrm{F}$	Number of Zeros	$\mathrm{C}= \pm 0.25 \mathrm{pF}(<10 \mathrm{pF})^{*}$	4-Automotive	$\mathrm{U}=$ Conductive Epo		
1210	$25 \mathrm{~V}=3$		$\text { e.g. } 10 \mathrm{~F}=106$	$\mathrm{D}= \pm 0.5 \mathrm{pF}(<10 \mathrm{pF})^{*}$				
1812	$35 \mathrm{~V}=\mathrm{D}$			$\mathrm{F}= \pm 1 \%$ *		**X7R X8Ronly		
	$50 \mathrm{~V}=5$			$\mathrm{G}= \pm 2 \%^{*}$				
	$100 \mathrm{~V}=1$			$J= \pm 5 \%(<=1 \mu \mathrm{~F})$	Contact factory	for availability of Tole	rance Options for	Specific Part Numbers.
	$200 V=2$			$\mathrm{K}= \pm 10 \%$				
	$500 \mathrm{~V}=7$			$\mathrm{M}= \pm 20 \%$	NOTE: Conta	factory for non-spec ase size available in T	fied capacitance termination only	values
				*NPO only				

COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON

	Commercial	Automotive
Administrative	Standard Part Numbers. No restriction on who purchases these parts.	Specific Automotive Part Number. sed to control supply of product to Automotive customers.
Lot Qualification (Destructive Physical Analysis - DPA)	As per EIA RS469	Increased sample plan stricter criteria.
Visual/Cosmetic Quality	Standard process and inspection	100% inspection
Application Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing.

[^0]
Automotive MLCC

NP0/X7R Dielectric

FLEXITERM FEATURES

a) Bend Test

The capacitor is soldered to the PC Board as shown:

Typical bend test results are shown below:

Style	Conventional	Soft Term
0603	$>2 m m$	>5
0805	$>2 m m$	>5
1206	$>2 m m$	>5

a) Temperature Cycle testing

FLEXITERM ${ }^{\circledR}$ has the ability to withstand at least 1000 cycles between $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$

Automotive MLCC-NPO

Capacitance Range

SIZ	ZE	0402		0603				0805					1206					
Sold	ering	Reflow/Wave		Reflow/Wave				Reflow/Wave					Reflow/Wave					
WVDC		25V	50V	25V	50V	100V	200V	25V	50V	100 V	200V	250V	25V	50V	100V	200V	250V	500V
OR5	0.5	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R0	1.0	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R2	1.2	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R5	1.5	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R8	1.8	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
2R2	2.2	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
2R7	2.7	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
3R3	3.3	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
3R9	3.9	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
4R7	4.7	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
5R6	5.6	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
6R8	6.8	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
8R2	8.2	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
100	10.0	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
120	12	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
150	15	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
180	18	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
220	22	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
270	27	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
330	33	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
390	39	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
470	47	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
510	51	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J		
560	56	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J		
680	68	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J		
820	82	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J		
101	100	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J		
121	120			G	G	G		J	J	J	N	N	J	J	J	J		
151	150			G	G	G		J	J	J	N	N	J	J	J	J		
181	180			G	G	G		J	J	J	N	N	J	J	J	J		
221	220			G	G	G		J	J	J	N	N	J	J	J	J		
271	270			G	G	G		J	J	J	N	N	J	J	J	J		
331	330			G	G	G		J	J	J	N	N	J	J	J	J		
391	390			G	G			J	J	J			J	J	J	J		
471	470			G	G			J	J	J			J	J	J	J		
561	560			G	G			J	J	J			J	J	J	J		
681	680			G	G			J	J	J			J	J	J	J		
821	820							J	J	J			J	J	J	J		
102	1000							J	J	J			J	J	J	J		
122	1200																	
152	1500																	
182	1800																	
222	2200																	
272	2700																	
332	3300																	
392	3900																	
472	4700																	
103	10nF																	
WVDC		25V	50V	25V	50V	100V	200V	25V	50V	100V	200V	250V	25V	50V	100V	200V	250V	500V
Siz	ze	0402		0603				0805					1206					

Letter	A	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
	PAPER					EMBOSSED							

Automotive MLCC - X7R

Capacitance Range

Size		0402			0603							0805						1206							1210						1812		2220					
Soldering		Reflow/Wave			Reflow/Wave							Reflow/Wave						Reflow/Wave							Reflow Only						Reflow Only		Reflow Only					
$\begin{gathered} \hline \text { (L) } \\ \text { Length } \end{gathered}$	$\begin{gathered} \mathrm{mm} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} 1 \pm 0.1 \\ (0.04 \pm 0.004) \\ \hline \end{gathered}$			$\begin{gathered} 1.6 \pm 0.15 \\ (0.063 \pm 0.006) \\ \hline \end{gathered}$							$\begin{gathered} 2.01 \pm 0.2 \\ (0.079 \pm 0.008) \\ \hline \end{gathered}$						$\begin{gathered} 3.2 \pm 0.2 \\ (0.126 \pm 0.008) \end{gathered}$							$\begin{gathered} 3.2 \pm 0.2 \\ (0.126 \pm 0.008) \end{gathered}$						$\begin{gathered} 4.5 \pm 0.3 \\ (0.177 \pm 0.012) \end{gathered}$		$\begin{gathered} 5.7 \pm 0.5 \\ (0.224 \pm 0.02) \end{gathered}$					
(W) Width	$\begin{aligned} & \mathrm{mm} \\ & \text { (in.) } \end{aligned}$	$\begin{gathered} 0.5 \pm 0.1 \\ (0.02 \pm 0.004) \\ \hline \end{gathered}$			$\begin{gathered} 0.81 \pm 0.15 \\ (0.032 \pm 0.006) \\ \hline \end{gathered}$							$\begin{gathered} 1.25 \pm 0.2 \\ (0.049 \pm 0.008) \\ \hline \end{gathered}$						$\begin{gathered} 1.6 \pm 0.2 \\ (0.063 \pm 0.008) \\ \hline \end{gathered}$							$\begin{gathered} 2.5 \pm 0.2 \\ (0.098 \pm 0.008) \end{gathered}$						$\begin{array}{c\|} \hline 3.2 \pm 0.2 \\ (0.126 \pm 0.008) \end{array}$		$\begin{gathered} 5 \pm 0.4 \\ (0.197 \pm 0.016) \end{gathered}$					
$\begin{array}{\|c\|} \hline(\mathrm{t}) \\ \text { Terminal } \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{mm} \\ & (\mathrm{in} .) \\ & \hline \end{aligned}$	$\begin{gathered} 0.25 \pm 0.15 \\ (0.01 \pm 0.006) \\ \hline \end{gathered}$			$\begin{gathered} 0.35 \pm 0.15 \\ (0.014 \pm 0.006) \\ \hline \end{gathered}$							$\begin{gathered} 0.5 \pm 0.25 \\ (0.02 \pm 0.01) \\ \hline \end{gathered}$						$\begin{gathered} 0.5 \pm 0.25 \\ (0.02 \pm 0.01) \\ \hline \end{gathered}$							$\begin{gathered} 0.5 \pm 0.25 \\ (0.02 \pm 0.01) \\ \hline \end{gathered}$						$\begin{gathered} 0.61 \pm 0.36 \\ (0.024 \pm 0.014) \\ \hline \end{gathered}$		$\begin{gathered} 0.64 \pm 0.39 \\ (0.025 \pm 0.015) \\ \hline \end{gathered}$					
WVDC		16 V	25 V	50 V	10 V	16 V	25 V	50 V	100 V	200 V	250 V	16 V	25 V	50 V	100 V	200 V	250 V	16 V	25 V	50 V	100 V	200 V	250 V	500 V	16 V	25 V	50 V	100 V	200 V	250 V	50 V	100 V	25 V	50 v	100 V	200 V	250 V	500v
101	100																												M	Q								
221	220	c	c	c	G	G	G	G	G	G																			M	Q								
271	270	c	c	c	G	G	G	G	G	G																			M	Q								
331	330	c	c	c	6	G	G	G	G	G																			M	Q								
391	390	c	c	c	G	G	G	G	G	G																			M	Q								
471	470	c	c	c	G	G	G	G	G	G																			M	Q								
561	560	c	c	c	G	G	G	G	G	G																			M	Q								
681	680	c	c	c	G	G	G	G	G	G																			M	Q								
821	820	c	c	c	G	G	G	G	G	G																			M	Q								
102	1000	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
122	1220	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
152	1500	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
182	1800	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
222	2200	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
272	2700	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
332	3300	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
392	3900	c	c	c	G	G	G	G	6	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
472	4700	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
562	5600	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
682	6800	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
822	8200	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
103	Cap 0.01	c	c	c	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	M	Q	K	K						
123	(uF) 0.012	c			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	M	Q	K	K						
153	0.015	c			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	M	Q	K	K						
183	0.018	c			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	M	Q	K	K						
223	0.022	c			G	G	G	G	G			J	J	,	N	N	N	J	J	J	J	J	J		K	K	K	K	M	Q	K	K						
273	0.027	c			G	G	G	G	J			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	M	Q	K	K						
333	0.033	c			G	G	G	G	J			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	M	Q	K	K						
393	0.039				G	G	G	G	J			J	J	J	N	N	N	J	J	J	J	M	M		K	K	K	K	M	Q	K	K						
473	0.047				G	G	G	G	J			J	J	J	N	N	N	J	J	J	M	M	M		K	K	K	K	M	Q	K	K						
563	0.056				G	G	G	G	J			J	J	J	N			J	J	J	M	M	M		K	K	K	M	M	Q	K	K						
683	0.068				G	G	G	G	J			J	J	J	N			J	J	J	M	M	M		K	K	K	M	M	Q	K	K						
823	0.082				G	G	G	G	J			J	J	J	N			J	J	J	M	M	M		K	K	K	M	Q	Q	K	K						
104	0.1				G	G	G	G	J			J	J	J	N			J	J	J	M	P	P		K	K	K	M	Q	Q	K	K						x
124	0.12				G	J	J					J	J	N	N			J	J	M	M	Q	Q		K	K	K	P	Q	Q	K	K						
154	0.15				G	J	J					M	N	N	N			J	J	M	M	Q	Q		K	K	K	P	Q	Q	K	K						
224	0.22				G	J	J					M	N	N	N			J	M	M	Q	Q	Q		M	M	M	P	Q	Q	M	M						
334	0.33											N	N	N	N			J	M	P	Q				P	P	P	Q	z	z	x	x						
474	0.47											N	N	N	N			M	M	P	Q				P	P	P	Q			x	x						
684	0.68											N	N	N	N			M	Q	Q	Q				P	P	Q	x			x	x						
105	1											N	N	N	N			M	Q	Q	Q				P	Q	Q	z			x	x		z	z	x	x	
155	1.5											N	N					Q	Q	Q	Q				P	Q	z	z			x	x		z	z	z	z	
225	2.2											N	N					Q	Q	Q	Q				z	z	z	z			z	z		z	z			
335	3.3																	Q	Q	Q					x	z	z	z			z			z	z			
475	4.7																	Q	Q	Q					x	z	z	z			z			z	z			
106	10																								z	z	z				z		z	z	z			
226	22																																z					
WVDC		16 V	25 V	50 V	10 V	16 V	25 V	50 V	100 V	200 V	250 V	16 V	25 V	50 V	100V	200 V	250 V	16 V	25 V	50 V	100V	200 V	250 V	500 V	16 V	25 V	50 V	100 V	200 V	250V	50 V	100V	25 V	50 V	100 V	200 V	250V	500 V
Size		0402			0603							0805						1206							1210						1812		2220					

Letter	A	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max. Thickness	$\begin{gathered} 0.33 \\ (0.013) \\ \hline \end{gathered}$	$\begin{gathered} 0.56 \\ (0.022) \\ \hline \end{gathered}$	$\begin{gathered} 0.71 \\ (0.028) \\ \hline \end{gathered}$	$\begin{gathered} 0.90 \\ (0.035) \\ \hline \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \\ \hline \end{gathered}$	$\begin{gathered} 1.02 \\ (0.04) \\ \hline \end{gathered}$	$\begin{gathered} 1.27 \\ (0.05) \\ \hline \end{gathered}$	$\begin{gathered} 1.40 \\ (0.055) \\ \hline \end{gathered}$	$\begin{gathered} 1.52 \\ (0.060) \\ \hline \end{gathered}$	$\begin{gathered} 1.78 \\ (0.07) \\ \hline \end{gathered}$	$\begin{gathered} 2.29 \\ (0.09) \\ \hline \end{gathered}$	$\begin{aligned} & 2.54 \\ & (0.1) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2.79 \\ (0.11) \\ \hline \end{gathered}$
	PAPER					EMBOSSED							

Automotive MLCC - X8R
A KYOCERA GROUP COMPANY

Capacitance Range

SIZE			0603			0805			1206	
Soldering			Reflow/Wave			Reflow/Wave			Reflow/Wave	
WVDC	WVDC		25V	50 V	100V	25V	50V	100V	25V	50V
472	pF	4700	G	G	G	J	J	J	J	J
562		5600	G	G	G	J	J	J	J	J
682		6800	G	G	G	J	J	J	J	J
822		8200	G	G	G	J	J	J	J	J
103	uF	0.01	G	G	G	J	J	J	J	J
123		0.012	G	G		J	J	N	J	J
153		0.015	G	G		J	J	N	J	J
183		0.018	G	G		J	J	N	J	J
223		0.022	G	G		J	J	N	J	J
273		0.027	G	G		J	J		J	J
333		0.033	G	G		J	J		J	J
393		0.039	G	G		J	J		J	J
473		0.047	G	G		J	J		J	J
563		0.056	G			N	N		M	M
683		0.068	G			N	N		M	M
823		0.082				N	N		M	M
104		0.1				N	N		M	M
124		0.12				N	N		M	M
154		0.15				N	N		M	M
184		0.18				N			M	M
224		0.22				N			M	M
274		0.27							M	M
334		0.33							M	M
394		0.39							M	M
474		0.47							M	Q
684		0.68							Q	Q
824		0.82							Q	Q
105		1							Q	Q
WVDC			25V	50 V	100V	25 V	50 V	100V	25 V	50V
SIZE			0603			0805			1206	

Letter	A	C	E	G	J	K	M	N	P	Q	X	Y	Z
Max. Thickness	$\begin{gathered} \hline 0.33 \\ (0.013) \end{gathered}$	$\begin{array}{\|c} \hline 0.56 \\ (0.022) \end{array}$	$\begin{array}{\|c\|} \hline 0.71 \\ (0.028) \\ \hline \end{array}$	$\begin{gathered} 0.90 \\ (0.035) \end{gathered}$	$\begin{gathered} 0.94 \\ (0.037) \end{gathered}$	$\begin{array}{\|c\|} \hline 1.02 \\ (0.040) \\ \hline \end{array}$	$\begin{gathered} \hline 1.27 \\ (0.050) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1.40 \\ (0.055) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1.52 \\ (0.060) \\ \hline \end{array}$	$\begin{gathered} \hline 1.78 \\ (0.070) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.29 \\ (0.090) \end{gathered}$	$\begin{array}{\|c\|} \hline 2.54 \\ (0.100) \end{array}$	$\begin{gathered} \hline 2.79 \\ (0.110) \\ \hline \end{gathered}$
	PAPER					EMBOSSED							

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:
Click to view products by Kyocera AVX manufacturer:
Other Similar products are found below :
D55342E07B523DR-T/R NCA1206X7R104K16TRPF NIN-FB391JTRF NIN-FC2R7JTRF NMC0402NPO220J50TRPF
NMC0402X5R105K6.3TRPF NMC0402X5R224K6.3TRPF NMC0402X7R103J25TRPF NMC0402X7R153K16TRPF
NMC0402X7R392K50TRPF NMC0603NPO1R8C50TRPF NMC0603NPO201J50TRPF NMC0603NPO330G50TRPF
NMC0603NPO331F50TRPF NMC0603X5R475M6.3TRPF NMC0805NPO220J100TRPF NMC0805NPO270J50TRPF
NMC0805NPO681F50TRPF NMC0805NPO820J50TRPF NMC1206X7R102K50TRPF NMC1210Y5V105Z50TRPLPF NMC-
L0402NPO7R0C50TRPF NMC-L0603NPO2R2B50TRPF NMC-P1206X7R103K1KVTRPLPF NMC-Q0402NPO8R2D200TRPF
C1206C101J1GAC C1608C0G2A221J C1608X7R1E334K C2012C0G2A472J 2220J2K00562KXT KHC201E225M76N0T00
1812J2K00332KXT CCR06CG153FSV CDR14BP471CJUR CDR31BX103AKWR CDR33BX683AKUS CGA2B2C0G1H010C
CGA2B2C0G1H040C CGA2B2C0G1H050C CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H120J CGA2B2C0G1H151J
CGA2B2C0G1H1R5C CGA2B2C0G1H2R2C CGA2B2C0G1H390J CGA2B2C0G1H391J CGA2B2C0G1H3R3C CGA2B2C0G1H680J
CGA2B2C0G1H6R8D

[^0]: All Tests have Accept/Reject Criteria 0/1

