Multilayer Organic (MLO®) Inductors

MLO® Inductors

Tight Tolerance

The Multilayer Organic Tight Tolerance Inductor is a low profile organic based inductor that can support mobile communications, satellite applications, GPS, matching networks, and collision avoidance. The MLO® Tight Tolerance Inductor series of components are based on AVX's patented multilayer organic technology (US patent 6,987,307). MLO® Tight Tolerance Inductors incorporate very low loss organic materials which allow for high Q and high stability over frequency. MLO® Tight Tolerance Inductors are surface mountable and are expansion matched to FR4 printed wiring boards. MLO® Tight Tolerance Inductors utilize fine line high density interconnect technology thereby allowing for tight tolerance control and high repeatability. Reliability testing is performed to JEDEC and mil standards. Finishes are available in RoHS compliant Sn.

APPLICATIONS

- Mobile communications
- Satellite Applications
- **GPS**
- Collision Avoidance
- Wireless LAN's

FEATURES

- Tight Tolerance
- High Frequency
- · High Withstanding Voltage
- Low DC Resistance
- Surface Mountable
- 0402 Case Size
- **RoHS Compliant Finishes**
- Available in Tape and Reel

SURFACE MOUNT ADVANTAGES

- Inherent Low Profile
- **Excellent Solderability**
- · Low Parasitics
- · Better Heat Dissipation
- · Expansion Matched to PCB

HOW TO ORDER

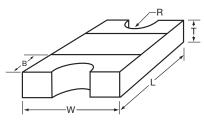
Inductance Expressed in nH (2 significant digits + number of zeros) for values <10nH,

Example:

letter R denotes decimal point. 22nH = 220 4.7nH = 4R7

Tolerance $A = \pm 0.05 nH$ $B = \pm 0.1 nH$ G = ±2%

Termination Sn100


TR **Packaging** 5000pcs

T&R

DIMENSIONS

MM (INCHES)

	(
L	w	Т	R	В		
1.00±0.10 (0.040±0.004)	0.58±0.075 (0.023±0.003)	0.35±0.10 (0.014±0.004)	0.125±0.050 (0.005±0.002)	0.23±0.0508 (0.0092±0.002)		

QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual characteristics.

TERMINATION

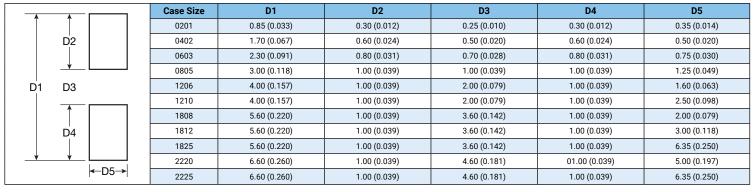
RoHS compliant Sn finish.

OPERATING TEMPERATURE

-55°C to +125°C

mm (inches)

Multilayer Organic (MLO®) Inductors


MLO® Inductors

Tight Tolerance

RECOMMENDED FOOTPRINT

mm (inches)

Component Pad Design

Component pads should be designed to achieve good solder filets and minimize component movement during reflow soldering. pad designs are given below for the most common sizes of multilayer ceramic capacitors for both wave and reflow soldering. The basis of these designs is:

- Pad width equal to component width. It is permissible to decrease this to as low as
- 85% of component width but it is not advisable to go below this.
- · Pad overlap 0.5mm beneath component.
- · Pad extension 0.5mm beyond components for relow and 1.0mm to wave soldering.

0402 ELECTRICAL SPECIFICATIONS

L (nH) 450MHz	Available Inductance Tolerance A = ±0.05nH, B = ±0.1nH, G = ±2%	Q 450MHz	Idc max (mA)	Rdc max (mΩ)	SRF min (GHz)
0.8	±0.05nH, ±0.1nH	15	450	100	7
0.9	±0.05nH, ±0.1nH	15	450	100	7
1	±0.05nH, ±0.1nH	15	420	100	7
1.1	±0.05nH, ±0.1nH	15	410	100	7
1.2	±0.05nH, ±0.1nH	15	410	110	7
1.3	±0.05nH, ±0.1nH	15	295	13	7
1.5	±0.05nH, ±0.1nH	15	295	150	7
1.6	±0.05nH, ±0.1nH	15	230	150	7
1.8	±0.05nH, ±0.1nH	15	295	160	7
2	±0.05nH, ±0.1nH	15	230	18	7
2.2	±0.05nH, ±0.1nH	15	230	200	7
2.4	±0.05nH, ±0.1nH	15	230	200	7
2.7	±0.05nH, ±0.1nH	15	230	250	7
3	±0.05nH, ±0.1nH	15	200	300	7
3.3	±0.05nH, ±0.1nH	15	200	340	7
3.6	±0.05nH, ±0.1nH	15	180	350	7
3.9	±0.05nH, ±0.1nH	15	180	400	7
4.7	±0.1nH	15	170	480	7
5.6	±0.1nH	15	150	500	7
6.8	±0.1nH	15	140	600	7
8.2	±0.1nH	15	115	800	6
10	±2%	15	105	1000	5
12	±2%	15	95	1100	4
15	±2%	15	95	1200	4
18	±2%	15	85	1500	3
22	±2%	15	75	1900	3
27	±2%	15	75	2100	3
30	±2%	15	65	2200	2
32	±2%	15	65	2200	2

Specifications based on performance of component assembled properly on printed circuit board with 50Ω nominal impedance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Fixed Inductors category:

Click to view products by Kyocera AVX manufacturer:

Other Similar products are found below:

CR43NP-680KC CR54NP-820KC CR54NP-8R5MC CTX32CT-100 70F224AI MGDQ4-00004-P MHL1ECTTP18NJ MHL1JCTTD12NJ PE-51506NL PE-53601NL PE-53602NL PE-53630NL PE-53824SNLT PE-92100NL PG0434.801NLT PG0936.113NLT 9310-16 PM06-2N7 PM06-39NJ A01TK 1206CS-471XJ HC2-2R2TR HC2LP-R47-R HC3-2R2-R 1206CS-151XG RCH664NP-140L RCH664NP-4R7M RCH8011NP-221L RCP1317NP-332L RCP1317NP-391L RCR1010NP-470M RCR110DNP-331L DH2280-4R7M DS1608C-106 ASPI-4020HI-R10M-T B10TJ B82477P4333M B82498B3101J000 B82498B3680J000 ELJ-RE27NJF2 1812CS-153XJ 1812CS-183XJ 1812CS-223XJ 1812LS-104XJ 1812LS-105XJ 1812LS-124XJ 1812LS-154XJ 1812LS-223XJ 1812LS-224XJ 1812LS-563XJ