
Thin-Film RF/Microwave Inductor Technology

Accu-L® Series

L0603 AND L0805 SMD High-Q RF Inductor - Accu-L®

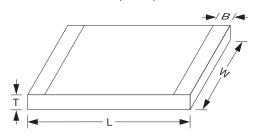
10 nH Inductor (Top View)

ACCU-L® TECHNOLOGY

The Accu-L® SMD Inductor is based on thin-film multilayer technology. This technology provides a level of control on the electrical and physical characteristics of the component which gives consistent characteristics within a lot and lot-to-lot.

The original design provides small size, excellent high-frequency performance and rugged construction for reliable automatic assembly.

The Accu-L® inductor is particularly suited for the telecommunications industry where there is a continuing trend towards miniaturization and increasing frequencies. The Accu-L® inductor meets both the performance and tolerance requirements of present cellular frequencies 450MHz and 900MHz and of future frequencies, such as 1700MHz, 1900MHz and 2400MHz.


FEATURES

- · High Q
- · RF Power Capability
- · High SRF
- · Low DC Resistance
- Ultra-Tight Tolerance on Inductance
- Standard 0603 and 0805 Chip Size
- Low Profile
- Rugged Construction
- · Taped and Reeled

APPLICATIONS

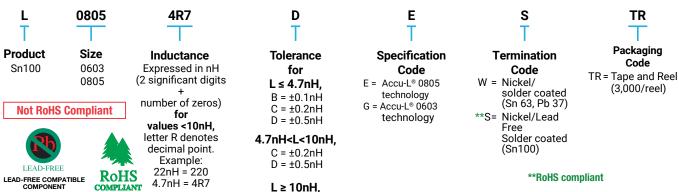
- Mobile Communications
- Satellite TV Receivers
- GPS
- · Vehicle Locations Systems
- Filters
- Matching Networks

DIMENSIONS: millimeters (inches)

		0603	0805			
L		.6±0.10 063±0.004)	2.11±0.10 (0.083±0.004)			
w		81±0.10 32±0.004)	1.5±0.10 (0.059±0.004)			
Т		61±0.10 24±0.004)	0.91±0.13 (0.036±0.005)			
В	top:	0.0 +0.3/-0.0 (0.0+0.012)	0.25±0.15			
	bottom:	0.35±0.20 (0.014±0.008)	(0.010±0.006)			

Operating/Storage Temp. Range:

-55°C to +125°C


Thin-Film RF/Microwave Inductor Technology

Accu-L® Series

L0603 AND L0805 SMD High-Q RF Inductor - Accu-L®

HOW TO ORDER

 $G = \pm 2\%$

 $J = \pm 5\%$

For RoHS compliant products,

please select correct termination style.

Engineering Kits Available see pages 118-119

ELECTRICAL SPECIFICATIONS TABLE FOR ACCU-L® 0603

450 MHz Test Frequency			900 MHz Test Frequency		1900 MHz Test Frequency		2400 MHz Test Frequency		SRF min.	R _{DC} max.	I _{DC} max.
Inductance L (nH)	Available Inductance Tolerance	Q Typical	L (nH)	Q Typical	L (nH)	Q Typical	L (nH)	Q Typical	(MHz)	(Ω)	(mA) (1)
1.2	±0.1, ±0.2nH	49	1.2	70	1.2	134	1.2	170	10000	0.04	1000
1.5	±0.1, ±0.2nH	26	1.54	39	1.52	63	1.52	76	10000	0.06	1000
1.8	±0.1, ±0.2nH	20	1.74	30	1.73	50	1.72	59	10000	0.07	1000
2.2	±0.1, ±0.2nH	20	2.2	30	2.24	49	2.24	56	10000	0.08	1000
2.7	±0.1, ±0.2nH	21	2.7	30	2.75	48	2.79	54	9000	0.08	750
3.3	±0.1, ±0.2, ±0.5nH	24	3.33	35	3.39	56	3.47	64	8400	0.08	750
3.9	±0.1, ±0.2, ±0.5nH	25	3.9	57	4.06	60	4.21	69	6500	0.12	500
4.7	±0.1, ±0.2, ±0.5nH	23	4.68	32	4.92	46	5.2	49	5500	0.15	500
5.6	±0.2, ±0.5nH	26	5.65	36	5.94	54	6.23	60	5000	0.25	300
6.8	±0.2, ±0.5nH	23	6.9	33	7.3	47	8.1	39	4500	0.30	300
8.2	±0.2, ±0.5nH	23	8.4	31	10	35	12.1	31	3800	0.35	300
10.0	±2%, ±5%	28	10	39	11.8	47	14.1	41	3500	0.45	300
12.0	±2%, ±5%	28	13.2	38	14.1	30	17.2	20	3000	0.50	300
15.0	±2%, ±5%	28	16.2	38	25.9	30	49.8	15	2500	0.60	300

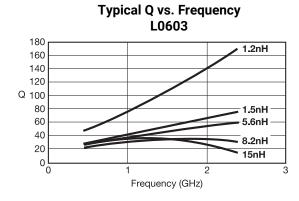
⁽¹⁾ IDC measured for 15°C rise at 25°C ambient temperature when soldered to FR-4 board. Inductance and Q measured on Agilent 4291B / 4287 using the 16196A test fixture.

ELECTRICAL SPECIFICATIONS TABLE FOR ACCU-L® 0805

450 MHz Test Frequency				900 MHz Test Frequency		1900 MHz Test Frequency		2400 MHz Test Frequency		R _{nc} max.	I _{pc} max. (mA)	
Inductance L (nH)	Available Inductance Tolerance	Q Typical	L (nH)	Q Typical	L (nH)	Q Typical	L (nH)	Q Typical	(MHz)	Ω)	T = 15°C (1)	T = 70°C (2)
1.2	±0.1nH, ±0.2nH, ±0.5nH	60	1.2	92	1.2	122	1.2	92	10000	0.05	1000	2000
1.5	±0.1nH, ±0.2nH, ±0.5nH	50	1.5	74	1.5	102	1.5	84	10000	0.05	1000	2000
1.8	±0.1nH, ±0.2nH, ±0.5nH	50	1.8	72	1.8	88	1.9	73	10000	0.06	1000	2000
2.2	±0.1nH, ±0.2nH, ±0.5nH	42	2.2	62	2.2	82	2.3	72	10000	0.07	1000	2000
2.7	±0.1nH, ±0.2nH, ±0.5nH	42	2.7	62	2.8	80	2.9	70	10000	0.08	1000	2000
3.3	±0.1nH, ±0.2nH, ±0.5nH	38	3.3	46	3.4	48	3.5	57	10000	0.11	750	1500
3.9	±0.1nH, ±0.2nH, ±0.5nH	27	3.9	36	4.0	38	4.1	42	10000	0.20	750	1500
4.7	±0.1nH, ±0.2nH, ±0.5nH	43	4.8	62	5.3	76	5.8	60	5500	0.10	750	1500
5.6	±0.5nH	50	5.7	68	6.3	73	7.6	62	4600	0.10	750	1500
6.8	±0.5nH	43	7.0	62	7.7	71	9.4	50	4500	0.11	750	1500
8.2	±0.5nH	43	8.5	56	10.0	55	15.2	32	3500	0.12	750	1500
10	±2%, ±5%	46	10.6	60	13.4	52	-	-	2500	0.13	750	1500
12	±2%, ±5%	40	12.9	50	17.3	40	-	-	2400	0.20	750	1500
15	±2%, ±5%	36	16.7	46	27	23	-	-	2200	0.20	750	1000
18	±2%, ±5%	30	21.9	27	-	-	-	-	1700	0.35	500	1000
22	±2%, ±5%	36	27.5	33	-	-	-	-	1400	0.40	500	1000

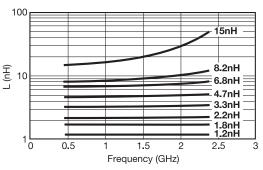
⁽¹⁾ I_{DC} measured for 15°C rise at 25°C ambient temperature (2) I_{DC} measured for 70°C rise at 25°C ambient temperature

L, Q, SRF measured on HP 4291A, Boonton 34A and Wiltron 360 Vector Analyzer, RDC measured on Keithley 580 micro-ohmmeter.


Thin-Film RF/Microwave Inductor Technology

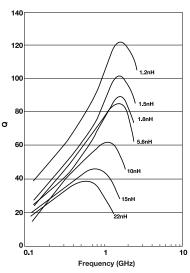
Accu-L® Series

L0603 AND L0805 SMD High-Q RF Inductor - Accu-L®

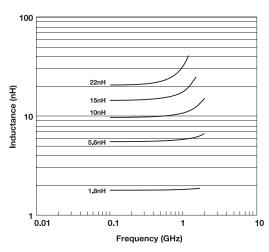


L0603

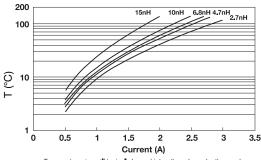
Measured on AGILENT 4291B/4287 using the 16196A test fixture


Typical Inductance vs. Frequency L0603

Measured on AGILENT 4291B/4287 using the 16196A test fixture


L0805

Typical Q vs. Frequency L0805


Measured on HP4291A and **Boonton 34A Coaxial Line**

Typical Inductance vs. Frequency L0805

Measured on HP4291A and Wiltron 360 Vector Analyzer

Maximum Temperature Rise at 25°C ambient temperature (on FR-4) L0805

Temperature rise will typically be no higher than shown by the graph

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Fixed Inductors category:

Click to view products by Kyocera AVX manufacturer:

Other Similar products are found below:

CR43NP-680KC CR54NP-820KC CR54NP-8R5MC CTX32CT-100 70F224AI MGDQ4-00004-P MHL1ECTTP18NJ MHL1JCTTD12NJ PE-51506NL PE-53601NL PE-53602NL PE-53630NL PE-53824SNLT PE-62892NL PE-92100NL PG0434.801NLT PG0936.113NLT 9310-16 PM06-2N7 PM06-39NJ A01TK 1206CS-471XJ HC2-2R2TR HC2LP-R47-R HC3-2R2-R 1206CS-151XG RCH664NP-140L RCH664NP-4R7M RCH8011NP-221L RCP1317NP-332L RCP1317NP-391L RCR1010NP-470M RCR110DNP-331L DH2280-4R7M DS1608C-106 ASPI-4020HI-R10M-T B10TJ B82477P4333M B82498B3101J000 B82498B3680J000 ELJ-RE27NJF2 1812CS-153XJ 1812CS-183XJ 1812CS-223XJ 1812LS-104XJ 1812LS-105XJ 1812LS-124XJ 1812LS-154XJ 1812LS-223XJ 1812LS-224XJ