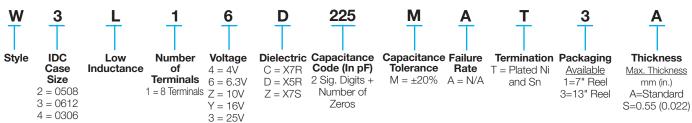
IDC Low Inductance Capacitors (RoHS)

0306/0612/0508 IDC (InterDigitated Capacitors)

GENERAL DESCRIPTION

Inter-Digitated Capacitors (IDCs) are used for both semiconductor package and board level decoupling. The equivalent series inductance (ESL) of a single capacitor or an array of capacitors in parallel determines the response time of a Power Delivery Network (PDN). The lower the ESL of a PDN, the faster the response time. A designer can use many standard MLCCs in parallel to reduce ESL or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC devices are available in versions with a maximum height of 0.95mm or 0.55mm.

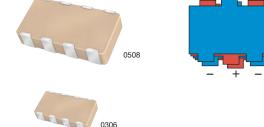

IDCs are typically used on packages of semiconductor products with power levels of 15 watts or greater. Inter-Digitated Capacitors are used on CPU, GPU, ASIC, and ASSP devices produced on 0.13µ, 90nm, 65nm, and 45nm processes. IDC devices are used on both ceramic and organic package substrates. These low ESL surface mount capacitors can be placed on the bottom side or the top side of a package substrate. The low profile 0.55mm maximum height IDCs can easily be used on the bottom side of BGA packages or on the die side of packages under a heat spreader.

IDCs are used for board level decoupling of systems with speeds of 300MHz or greater. Low ESL IDCs free up valuable board space by reducing the number of capacitors required versus standard MLCCs. There are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors.

The Inter-Digitated Capacitor (IDC) technology was developed by AVX. This is the second family of Low Inductance MLCC products created by AVX. IDCs are a cost effective alternative to AVX's first generation low ESL family for high-reliability applications known as LICA (Low Inductance Chip Array).

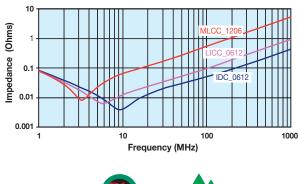
 $\ensuremath{\mathsf{AVX}}$ IDC products are available with a lead-free finish of plated Nickel/Tin.

HOW TO ORDER



NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

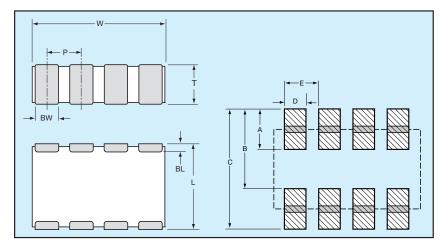
PERFORMANCE CHARACTERISTICS


Capacitance Tolerance	±20% Preferred
Operation	$X7R = -55^{\circ}C \text{ to } +125^{\circ}C$
Temperature Range	X5R = -55°C to +85°C
	X7S = -55°C to +125°C
Temperature Coefficient	±15% (0VDC), ±22% (X7S)
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	$\leq 6.3V = 6.5\%$ max;
-	10V = 5.0% max;
	$\geq 16V = 3.5\%$ max
Insulation Resistance (@+25°C, RVDC)	100,000M Ω min, or 1,000M Ω per μ F min.,whichever is less
(= ,	

Dielectric Strength	No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current							
CTE (ppm/C)	12.0							
Thermal Conductivity	4-5W/M K							
Terminations Available	Plated Nickel and Solder							

0612

TYPICAL IMPEDANCE



IDC Low Inductance Capacitors (RoHS)

0306/0612/0508 IDC (InterDigitated Capacitors)

SIZE	03	06		Th	in 05	80				0508	3			Thin	0612				0612			1	THICH	< 061	2
Max. mm Thickness (in.)		55)22)			0.55. (0.022)					0.95 (0.037))			0. (0.0				0.95 (0.037)				1.22 (0.048)			
WVDC	4	6.3	4	6.3	10	16	25	4	6.3	10	16	25	4	6.3	10	16	4	6.3	10	16	25	4	6.3	10	16
Cap (µF) 0.010																									
0.022																									
0.033																									
0.047																									
0.068																									
0.10																									
0.22																									
0.33																									
0.47																									
0.68																									
1.0																									
1.5																									
2.2																									
3.3																									

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL CHIP DIMENSIONS millimeters (inches)

SIZE	W	L	BW	BL	Р
0306	1.60 ± 0.20	0.82 ± 0.10	0.25 ± 0.10	0.20 ± 0.10	0.40 ± 0.05
	(0.063 ± 0.008)	(0.032 ± 0.006	(0.010 ± 0.004)	(0.008± 0.004)	(0.015 ± 0.002)
0508	2.03 ± 0.20	1.27 ± 0.20	0.30 ± 0.10	0.25 ± 0.15	0.50 ± 0.05
	(0.080 ± 0.008)	(0.050 ± 0.008)	(0.012 ± 0.004)	(0.010± 0.006)	(0.020 ± 0.002)
0612	3.20 ± 0.20	1.60 ± 0.20	0.50 ± 0.10	0.25 ± 0.15	0.80 ± 0.10
	(0.126 ± 0.008)	(0.063 ± 0.008)	(0.020 ± 0.004)	(0.010 ± 0.006)	(0.031 ± 0.004)

Consult factory for additional requirements

PAD LAYOUT DIMENSIONS

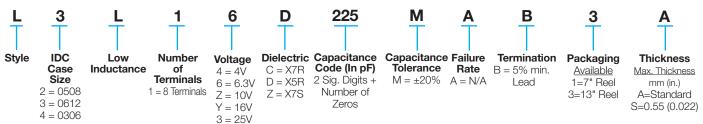
SIZE	А	В	С	D	E
0306	0.38	0.89	1.27	0.20	0.40
	(0.015)	(0.035)	(0.050)	(0.008)	(0.015)
0508	0.64	1.27	1.91	0.28	0.50
	(0.025)	(0.050)	(0.075)	(0.011)	(0.020)
0612	0.89	1.65	2.54	0.45	0.80
	(0.035)	(0.065)	(0.010)	(0.018)	(0.031)

IDC Low Inductance Capacitors (SnPb)

0306/0612/0508 IDC with Sn/Pb Termination

GENERAL DESCRIPTION

Inter-Digitated Capacitors (IDCs) are used for both semiconductor package and board level decoupling. The equivalent series inductance (ESL) of a single capacitor or an array of capacitors in parallel determines the response time of a Power Delivery Network (PDN). The lower the ESL of a PDN, the faster the response time. A designer can use many standard MLCCs in parallel to reduce ESL or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC devices are available in versions with a maximum height of 0.95mm or 0.55mm.

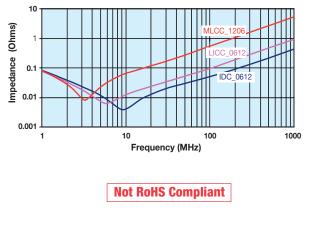

IDCs are typically used on packages of semiconductor products with power levels of 15 watts or greater. Inter-Digitated Capacitors are used on CPU, GPU, ASIC, and ASSP devices produced on 0.13µ, 90nm, 65nm, and 45nm processes. IDC devices are used on both ceramic and organic package substrates. These low ESL surface mount capacitors can be placed on the bottom side or the top side of a package substrate. The low profile 0.55mm maximum height IDCs can easily be used on the bottom side of BGA packages or on the die side of packages under a heat spreader.

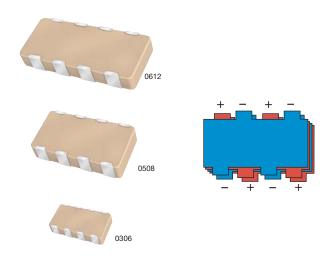
IDCs are used for board level decoupling of systems with speeds of 300MHz or greater. Low ESL IDCs free up valuable board space by reducing the number of capacitors required versus standard MLCCs. There are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors.

The Inter-Digitated Capacitor (IDC) technology was developed by AVX. This is the second family of Low Inductance MLCC products created by AVX. IDCs are a cost effective alternative to AVX's first generation low ESL family for high-reliability applications known as LICA (Low Inductance Chip Array).

AVX IDC products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues.

HOW TO ORDER

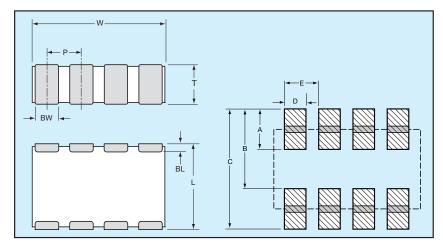

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.


PERFORMANCE CHARACTERISTICS

Capacitance Tolerance	±20% Preferred
Operation	X7R = -55°C to +125°C
Temperature Range	X5R = -55°C to +85°C
	X7S = -55°C to +125°C
Temperature Coefficient	±15% (0VDC), ±22% (X7S)
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	≤ 6.3V = 6.5% max;
	10V = 5.0% max;
	$\geq 16V = 3.5\%$ max
Insulation Resistance	100,000M Ω min, or 1,000M Ω per
(@+25°C, RVDC)	μF min.,whichever is less

Dielectric Strength	No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current
CTE (ppm/C)	12.0
Thermal Conductivity	4-5W/M K
Terminations Available	Plated Nickel and Solder

TYPICAL IMPEDANCE



IDC Low Inductance Capacitors (SnPb)

0306/0612/0508 IDC with Sn/Pb Termination

SIZE	03	06		Th	in 05	08				0508	;			Thin	0612	2			0612			1	HICH	(061	2
Max. mm Thickness (in.)		55)22)			0.55.					0.95					55)22)			0.95 (0.037)					22)48)		
WVDC	4	6.3	4	6.3	10	16	25	4	6.3	10	16	25	4	6.3	10	16	4	6.3	10	16	25	4	6.3	10	16
Cap (µF) 0.010																									
0.022																									
0.033																									
0.047																									
0.068																									
0.10																									
0.22																									
0.33																									
0.47																									
0.68																									
1.0																									
1.5																									
2.2																									
3.3																									

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL CHIP DIMENSIONS millimeters (inches)

SIZE	W	L	BW	BL	Р
0306	1.60 ± 0.20	0.82 ± 0.10	0.25 ± 0.10	0.20 ± 0.10	0.40 ± 0.05
	(0.063 ± 0.008)	(0.032 ± 0.006	(0.010 ± 0.004)	(0.008± 0.004)	(0.015 ± 0.002)
0508	2.03 ± 0.20	1.27 ± 0.20	0.30 ± 0.10	0.25 ± 0.15	0.50 ± 0.05
	(0.080 ± 0.008)	(0.050 ± 0.008)	(0.012 ± 0.004)	(0.010± 0.006)	(0.020 ± 0.002)
0612	3.20 ± 0.20	1.60 ± 0.20	0.50 ± 0.10	0.25 ± 0.15	0.80 ± 0.10
	(0.126 ± 0.008)	(0.063 ± 0.008)	(0.020 ± 0.004)	(0.010 ± 0.006)	(0.031 ± 0.004)

Consult factory for additional requirements

PAD LAYOUT DIMENSIONS

SIZE	А	В	С	D	E
0306	0.38	0.89	1.27	0.20	0.40
	(0.015)	(0.035)	(0.050)	(0.008)	(0.015)
0508	0.64	1.27	1.91	0.28	0.50
	(0.025)	(0.050)	(0.075)	(0.011)	(0.020)
0612	0.89	1.65	2.54	0.45	0.80
	(0.035)	(0.065)	(0.010)	(0.018)	(0.031)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Capacitor Arrays & Networks category:

Click to view products by Kyocera AVX manufacturer:

Other Similar products are found below :

20109D1X102K5P_CKCA43C0G1H150K_CKCA43X7R1H222M_CKCL22C0G1H101K_CKCL22C0G1H150K_CKCL22C0G1H680K CKCL22X5R0J105M_CKCL22X5R1A474M_CKCL22X7R1H103M_CKCL44C0G1H151K_CKCL44X7R1C223M_CKCM25C0G1H470K CKCM25C0G1H680K_CKCM25X5R0J474M_CKCM25X5R1C223M_CKCM25X7R1H222M_W2L16C473MAT1S_W2L16C683MAT1A CKCM25X5R1A473M_CKCM25X7R1H472M_CKCM25X5R0J105M_CKCL44X5R1A473M_CKCL22X7R1H223M_CKCL22X7R1H102M CKCL22X5R1C224M_CKCL22C0G1H470K_CKCL22C0G1H221K_CKCL22C0G1H151K_W2L16C474MAT1A_W2L14Z225MAT1A 2255-126-15636_W2L1YC104MAT1F_CA064X102K1RACTU_CA064X102K3RACTU_CA064X102K4RACTU_CA064X150J5GACTU CA064X151J5GACTU_CA064X181J5GACTU_CA064X331J5GACTU_CA064X391J5GACTU_CA064C470K5GACTU CA0508KPNPO9BN220_NCA1206X7R103K16TRPF_CA0508KRNPO9BN101_CA0508KRNPO9BN470_CA0612JRNPO9BN221 CA0612KRNPO9BN151_CA0612KRX7R9BB103_CA064C103K5RACAUTO_CA064C103M5RACTU