RH Style - Surface Mount 'J' Lead Range

The RH range uses high volumetric efficient X7R capacitors in a " J " style lead frame.
The range of components are uncoated and are suitable for input or output filter capacitors in high frequency DC-DC convertor, automotive, telecom, industrial and military applications.

When large ceramic capacitors are used in applications they can easily be affected by stresses caused by temperature variations, thermal shock, mechanical vibrations and PCB bend movement. The RH range is designed with a " J " type lead frame which greatly reduces all of these thermo mechanical stresses experienced by large capacitors. The RH range allows the capacitors to be doubled stacked so a higher volumetric efficiency can be achieved by the customer and this saves PCB space.

FEATURES

- RH 21/22 are AEC-Q200 compliant.
- RH range has low ESR/ESL capability
- PCB space saving using double stacked MLCCs
- Enhanced thermo mechanical stress resistance Note: AVX does not recommend or advise the use of adhesives to secure the RH components to the PCB.

ELECTRICAL SPECIFICATIONS

Temperature Coefficient CECC 30 000, (4.24.1)
X7R: C Temperature Characteristic $- \pm 15 \%,-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Capacitance Test

Measured at 1 VRMS max at 1 KHz

Dissipation Factor $25^{\circ} \mathrm{C}$

2.5\% max at 1KHz, 1 VRMS max

Insulation Resistance $\mathbf{2 5}^{\circ} \mathrm{C}$
100 K megohms or 1000 megohms- $\mu \mathrm{F}$, whichever is less
Dielectric Withstanding Voltage $\mathbf{2 5}^{\circ} \mathrm{C}$ (Flash Test)
250% rated voltage for 5 seconds with 50 mA max charging current. (500 Volt units @ 150\% rated voltage)
Life Test (1000 hrs) CECC 30000 (4.23)
200% rated voltage at $+125^{\circ} \mathrm{C}$.
(500 Volt units @ 120% rated voltage)
Thermal Shock IEC 68.2.14
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, 5$ cycles
Resistance to Solder Heat IEC 68.2.20

DIMENSIONS: MILLIMETERS (INCHES)

Typical ESR (m@) 3 $\boldsymbol{\mu F}, \mathbf{1 0 0 V} \mathbf{~ X 7 R}$	
ESR @ 100KHz	17
ESR @ 500KHz	12
ESR @ 1MHz	14

DIMENSIONS millimeters (inches)

Style	L max	W max	H max	S ± 0.1 (± 0.004)	\mathbf{h}	No. of leads per side
RH21	$7.20(0.283)$	$5.40(0.213)$	$4.60(0.181)$	$2.50(0.098)$	1.50 ± 0.30 (0.059 ± 0.012)	2
RH22	$7.20(0.283)$	$5.40(0.213)$	$7.50(0.295)$	$2.50(0.098)$	1.50 ± 0.30 (0.059 ± 0.012)	2
RH31	$7.62(0.300)$	$7.00(0.270)$	$5.08(0.200)$	$5.08(0.200)$	1.78 ± 0.25 (0.070 ± 0.010)	3
RH32	$7.62(0.300)$	$7.00(0.270)$	$8.13(0.320)$	$5.08(0.200)$	1.78 ± 0.25 (0.070 ± 0.010)	3
RH41	$9.20(0.362)$	$8.70(0.342)$	$4.90(0.192)$	$5.08(0.200)$	1.60 ± 0.10 (0.062 ± 0.004)	3
RH42	$9.20(0.362)$	$8.70(0.342)$	$8.20(0.323)$	$5.08(0.200)$	1.60 ± 0.10 (0.062 ± 0.004)	3
RH51	$10.7(0.421)$	$10.7(0.421)$	$4.90(0.192)$	$7.62(0.300)$	1.60 ± 0.10 (0.062 ± 0.004)	4
RH52	$10.7(0.421)$	$10.7(0.421)$	$8.20(0.323)$	$7.62(0.300)$	1.60 ± 0.10 (0.062 ± 0.004)	4
RH61	$14.9(0.586)$	$13.6(0.535)$	$4.90(0.192)$	$10.2(0.400)$	1.60 ± 0.10 (0.062 ± 0.004)	5
RH62	$14.9(0.586)$	$13.6(0.535)$	$8.20(0.323)$	$10.2(0.400)$	1.60 ± 0.10 (0.062 ± 0.004)	5

Performance of SMPS capacitors can be simulated by downloading SpiCalci software program -
http://www.avx.com/download/software/SpiCalci-AVX.zip
Custom values, ratings and configurations are also available.

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order

RH Style - Surface Mount 'J' Lead Range

X7R STABLE DIELECTRIC

	$\begin{gathered} \hline \text { RH21/RH22 } \\ \text { Style } \\ \hline \end{gathered}$					$\begin{gathered} \hline \text { RH31/RH32 } \\ \text { Style } \\ \hline \end{gathered}$				$\begin{gathered} \text { RH41/RH42 } \\ \text { Style } \\ \hline \end{gathered}$				$\begin{gathered} \text { RH51/RH52 } \\ \text { Style } \\ \hline \end{gathered}$				$\begin{gathered} \text { RH61/RH62 } \\ \text { Style } \end{gathered}$			
Voltage DC																					
Cap $\mu \mathrm{F}$	25	50	100	200	500	50	100	200	500	50	100	200	500	50	100	200	500	50	100	200	500
0.047																					
0.056																					
0.068									RH31												
0.082																					
0.1																					
0.12																					
0.15									RH32				RH41								
0.18																					
0.22																					
0.27								RH31													
0.33													RH42				RH51				
0.39												RH41									
0.47																					
0.56								RH32									RH52				
0.68																					RH61
0.78																RH51					
0.82							RH31					RH42									
1																					
1.2																					RH62
1.5						RH31					RH41					RH52				RH61	
1.8																					
2.2							RH32			RH41											
3																					
3.3			RH21			RH32					RH42									RH62	
3.9															RH51						
4.7										RH42											
5.6															RH52						
6.8														RH51					RH61		
8.2		RH21																RH61			
10														RH52	RH51						
12			RH22																RH62		
15	RH21	RH22												RH51				RH62			
18															RH52						
22														RH52							
33	RH22	DEV	DEV												DEV						
47														DEV							
68	DEV																				
BM		BM			PME		PM			BME	evelop	ment									

PACKAGING

For availability of further parts in the RH21/RH22 Series, contact manufacturing.

Style	Qty/Reel 13"	Max. Qty/Waffle Pack
RH21	800	270
RH22	500	270
RH31	800	108
RH32	500	108
RH41	see note	108
RH42	500	100
RH51	750	88
RH52	see note	88
RH61	500	42
RH62	see note	42

Note: T\&R is not yet available. Contact manufacturing for further information as this will be available in the future.

HOW TO ORDER

RH	31	5	C	225	M	A	3	$\underset{\sim}{\mathbf{0}}$	$\frac{\mathbf{A}}{\top}$	3
		T	1			T	†		Lead Space	Lead Style
$\begin{gathered} \text { Style } \\ \text { Code } \\ \text { (see table } \end{gathered}$ above)	$\begin{gathered} \text { Size } \\ \text { Code } \end{gathered}$	$\begin{gathered} \text { Voltage } \\ \text { Code } \\ 3=25 \mathrm{~V} \\ 5=50 \mathrm{~V} \\ 1=100 \mathrm{~V} \\ 2=200 \mathrm{~V} \\ 7=500 \mathrm{~V} \end{gathered}$	Dielectric Code $\mathrm{C}=\mathrm{X7R}$	Capacitance Code (2 significant digits + no. of zeros) eg. $105=1 \mathrm{uF}$ 104= 0.1 uF	Capacitance Tolerance $\mathrm{K}= \pm 10 \%$ $\mathrm{M}= \pm 20 \%$	$\begin{aligned} & \text { Specification } \\ & \text { Code } \\ & A=\begin{array}{c} 0 \\ \text { customized } \end{array} \end{aligned}$	$\begin{gathered} \text { Package } \\ \text { Code } \\ 3=\text { Waffle Pack } \\ A=\text { Tape } \& \text { Reel } \end{gathered}$	$\begin{aligned} & \text { Lead Dia. } \\ & \text { Code } \\ & 0 \text { Standard } \\ & \mathrm{R}=\text { RoHS Compliant } \end{aligned}$	Code	$\begin{gathered} \text { Code } \\ 3 \text { = } \end{gathered}$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:
Click to view products by Kyocera AVX manufacturer:
Other Similar products are found below :
D55342E07B523DR-T/R NCA1206X7R104K16TRPF NIN-FB391JTRF NIN-FC2R7JTRF NMC0402NPO220J50TRPF
NMC0402X5R105K6.3TRPF NMC0402X5R224K6.3TRPF NMC0402X7R103J25TRPF NMC0402X7R153K16TRPF
NMC0402X7R392K50TRPF NMC0603NPO1R8C50TRPF NMC0603NPO201J50TRPF NMC0603NPO330G50TRPF
NMC0603X5R475M6.3TRPF NMC0805NPO220J100TRPF NMC0805NPO270J50TRPF NMC0805NPO681F50TRPF
NMC0805NPO820J50TRPF NMC1206X7R102K50TRPF NMC1210Y5V105Z50TRPLPF NMC-L0402NPO7R0C50TRPF NMC-
L0603NPO2R2B50TRPF NMC-P1206X7R103K1KVTRPLPF NMC-Q0402NPO8R2D200TRPF C1206C101J1GAC C1608C0G2A221J C1608X7R1E334K C2012C0G2A472J 2220J2K00562KXT KHC201E225M76N0T00 1812J2K00332KXT CCR06CG153FSV CDR14BP471CJUR CDR31BX103AKWR CDR33BX683AKUS CGA2B2C0G1H010C CGA2B2C0G1H040C CGA2B2C0G1H050C CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H120J CGA2B2C0G1H151J CGA2B2C0G1H1R5C CGA2B2C0G1H2R2C CGA2B2C0G1H390J CGA2B2C0G1H391J CGA2B2C0G1H3R3C CGA2B2C0G1H680J CGA2B2C0G1H6R8D CGA2B2C0G1H820J

