

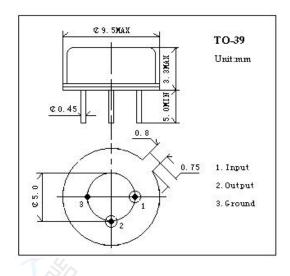
深圳市凯越翔电子有限公司

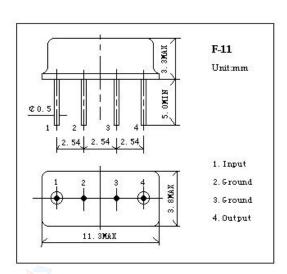
声表谐振器规格书

产品名称:	声表谐振器
产品型号:	F11/433. 92M
产品参数:	± 75KHZ
原厂型号:	KF143392
凯越翔技术部:	董宗全

客户确	认 栏
认 证 印 章 年 月 日	负责人印章 年月日
* 割几度发生了。 自己是是	平 對几度的

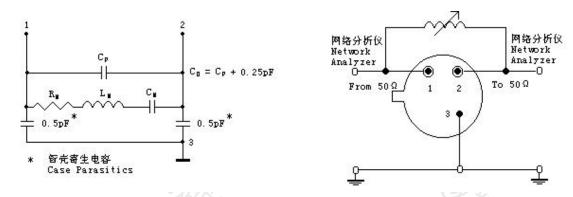
工厂地址:深圳市龙华区观澜人民路蔡发工业城一栋四层 TEL: 0755-89315823 89315866 FAX: 0755-89315223 官网: www.kaiyuexiang.com


- Ideal for 433.92 MHz Transmitters
- Very Low Series Resistance
- Quartz Stability
- Rugged, Hermetic, Low-Profile TO39 or F11 Case


TheYRR433.92 is a true one-port, surface-acoustic-wave (SAW) resonator in a low-profile TO39 or F11 case. It provides reliable, fundamental-mode, quartz stabilization of fixed-frequency transmitters operating at 433.92 MHz. The YRR433.92 is designed specifically for remote control and wireless security transmitters operating in Europe under ETSI I-ETS 300 220 and in Germany under FTZ 17 TR 2100.

1. Marking R433

Color:Black or Blue Center Frequnecy:433.92 MHz


2. Package Dimension

3. Equivalent LC Model

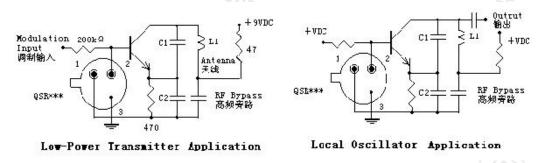
4. Test Circuit

5. Absolute Maximum Ratings

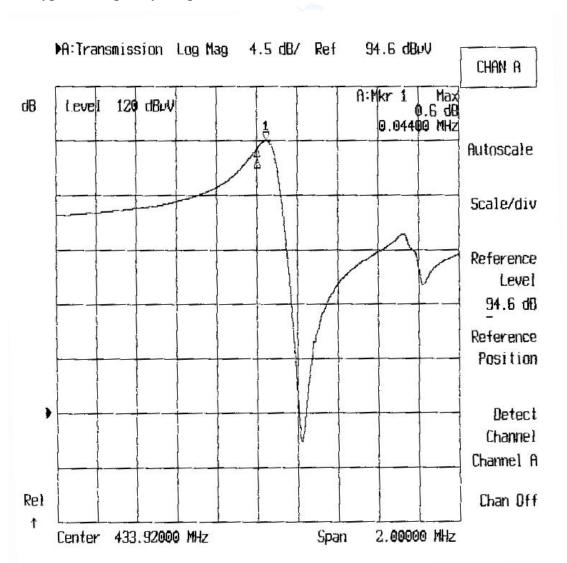
Rating	Value	Units
CW RF Power Dissipation	+0	dBm
DC Voltage Between Any Two Pins (Observe ESD Precautions)	±30	VDC
Storage Temperature	-40 to ± 85	° C
Operation Temperature	-20 to ± 70	° C

6. Electrical Characteristics

Characteristic		Syc	Min	Typical	Max	Units
Center	Absolute Frequency	fc	433.845	433.920	433.995	MHz
Frequency(+25°C)	Tolerance from 433.920MHz	△fc		75	±75	kHz
Insertion Loss		IL		1.5	2.0	dB
Quality Factor	Unloaded Q	Q_U		12,800	*·//\	
	50 Ω Loaded Q	Q_L		2,000		
Temperarture Stability	Turnover Temperature	To	24	39	54	$^{\circ}\!\mathbb{C}$
	Turnover Frequency	fo		fc+2.7		kHz
	Freq. Temp. Coefficient	FTC		0.037		ppm/°C²
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance between Any Two Pins			7.5	1.0		ΜΩ
RF Equivalent RLC Model	Motional Resistance	R _M	15	18	26	Ω
	Motional Inductance	L _M		86.0075		μН
	Motional Capacitance	C _M		1.56417		fF
	Pin 1 to 2 Static Capacitance	Co	1.7	2.0	2.3	pF
Transducer Static Capacitance		Ср		1.7		pF
Test Fixture Shunt Inductance		L _{TEST}		78		nН


CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

Notes:


- 1. Frequency aging is the change in fc with time and is specified at +65 °C or less. Aging may exceed the specification for prolonged temperatures above +65 °C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2. The center frequency, fc, is measured at the minimum insertion loss point, IL $_{MIN}$, with the resonator in the 50 Ω test system (VSWR \leq 1.2: 1). The shunt inductance, L $_{TEST}$, is tuned for parallel resonance with Co at fc.
- 3. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 4. Unless noted otherwise, case temperature $Tc=+25^{\circ}C \pm 2^{\circ}C$.
- 5. Derived mathematically from one or more of the following directly measured parameters: fc,

- IL, 3dB bandwidth, fc versus Tc, and Co.
- 6. Turnover temperature, To, is the temperature of maximum (or turnover) frequency, fo. The nominal frequency at any case temperature, Tc, may be calculated from: f=fo [1-FTC(To-Tc)²]. Typically, *oscillator* To is 20°C less than the specified *resonator* To.
- 7. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance Co is the static (nonmotional) capacitance between Pin 1 and Pin 2 measured at low frequency (10 MHz) with a capacitance meter. The measurement includes parasitic capacitance with floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25pF to Co.

7. Application Circuits

8. Typical Frequency Response

9. Reliability

- Mechanical Shocks: The components I remain within the electrical specifications after 1000 shocks, acceleration 392m/s² duration 6 milliseconds.
- Vibration Fatigue: The components shall remain within the electrical specifications after loaded vibration at 20 Hz, amplitude 1.5 mm, for 2 hours.
- Terminal Strength: The components shall remain within the electrical specifications after pulled 2 Kgs weight for 10 seconds towards an axis of each terminal.
- High Temperature Storage: The components shall remain within the electrical specifications after being kept at the $85^{\circ}\text{C} \pm 2^{\circ}\text{C}$ for 48 hours, then kept at room temperature for 2 hours.
- Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the -25° C $\pm 2^{\circ}$ C for 48 hours, then kept at room temperature for 2 hours.
- Temperature Cycle: The components shall remain within the electrical specifications after 5 Cycles of high and low temperature testing (one cycle: 80 °C for 30 minutes → 25 °C for 5 minutes → -25 °C for 30 minutes) than kept at room temperature for 2 hours.
- Solder-heat Resistance: The components shall remain within the electrical specifications after dipped in the solder at $260 \,^{\circ}\text{C}$ for 10 ± 1 seconds, then kept at room temperature for 2 hours (Terminal must be dipped leaving 1.5 mm from the case).
- Solderability: Solderability of terminal shall be kept at more than 80% after dipped in the solder flux at $230^{\circ}\text{C} \pm 5^{\circ}\text{C}$ for 5 ± 1 seconds.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Resonators category:

Click to view products by KYX manufacturer:

Other Similar products are found below:

B39431R820H210 ECS-HFR-40.00-B-TR CSTLS4M00G53Z-A0 ECS-HFR-20.00-B-TR CSTNE16M0V510000R0

CSTNE14M7V510000R0 CSTNE8M00GH5C060R0 DJ2032K768C5T8188X01 KZA20000 KZA3580 KZA107 HCTB1-1.000-CRBHRL

SF11S5-1582.400-F04IL02AL AWSZT-3.58CP-T4 SF33M6-836.500-F25IL28AL HCTB1-460.000-CRBEL SF33M6-1960.000-F60IL25AL

SRD11-315.000-F75IL22AL SR21S4-433.920-F75IL18AL SF11S5-915.000-F26IL02AL SF33M6-1575.420-F02IL40AL SR32M4-433.920-F75IL25AL SRTO39-316.800-F75IL13AL HCTB1-455.000-CRBEL KZA24000 KZT6000 KZA8000 KZA169344 KZT2350 KZT169344

KZT24000 KF143392 KZA4000 KTOR423 KUM20950 KZB455E KZA16000 KZT16000 KZT4190 KZA12000 KZA3640 KZT10000

KD143392 KZT20000 KTO43392 KZA2000 KZA5000 KZT3640 KZT12000 KZB460E