Approved by:

Checked by:

Issued by:

Surface-Acoustic-Wave Resonator

SPECIFICATION

LR1 315.00

DEQING LADDER ELECTRONICS CO.,LTD©

www.dqladder.com

315.00 MHz

SAW

Ideal for 315.00MHz Transmitters Low Series Resistance Quartz Stability Rugged, Hermetic, Low-profile TO-39 Case

TO-39 Case

The LR1 315.00 is a true one-port, surface-acoustic-wave (SAW) resonator in low-profile TO-39 case. It provides reliable, fundamental-mode. quartz frequency stabilization of fixed-frequency transmitters operating at 315 MHz. The LR1 315.00 is designed specifically for wireless remote controls and security transmitters. Typically for automotive-keyless-entry, operating in the USA under FCC Part15, in Canada under DoC RSS-210. and in Italy.

Absolute Maximum Ratings

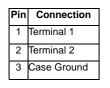
Rating	Value	Units
CW RF Power Dissipation (See Typical Test Circuit)	+0	dBm
DC Voltage Between Any Two Pins (Observe ESD Precautions)	±30	VDC
Case Temperature	-40 to +85	°C

Electrical Characteristics

(Characteristics	Sym	Notes	Minimum	Typical	Maximum	Units
Center Frequency (+25°C)	Absolute Frequency	f _c		314.925		315.075	MHz
	Tolerance from 315.000MHz	Δf_c	2,3,4,5			±75	KHz
Insertion Loss		IL	2,5,6		1.5	2.2	dB
Quality Factor	Unloaded Q	Q _U			13.300		
	50 Ω loaded Q	QL	5,6,7		2.000		
Temperature Stability	Turnover Temperature	To		10	25	40	°C
	Turnover Frequency	f _o	5,7,8		f _c		KHz
	Frequency Temperature Coefficient	FTC			0.037		ppm/℃²
Frequency Aging	Absolute Value during the First Year	lf _A I	1		≦10		ppm/y τ
DC Insulation Resistance between Any Two Pins			5	1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M			19	29	Ω
	Motional Inductance	L _M	F7 0		127.677		μH
	Motional Capacitance	См	- 5,7,9		1.99943		pF
	Pin 1 to Pin 2 Static Capacitance	Co	5,6,9	2.3	2.6	2.9	pF
	Transducer Static Capacitance	CP	5,6,7,9		2.3		pF
Test Fixture Shunt Inductance		L _{TEST}	2,7		100		nH
Lid Symbolization (in Addition to Lot and/or Date Code LR1 315.00				-			

CAUTION: electrostatic Sensitive Device, Observe precautions for handling.

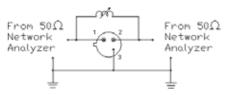
Notes:

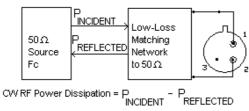

- Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
- 2. The center frequency, f_c, is measured at the minimum insertion loss point, IL_{MIN} with the resonator in the 50 Ω test system(VSWR \leq 1.2:1).The shunt inductance, L_{TEST}, is turned for parallel resonator with C₀ at f_c. Typically, f_{OSCILLATOR} or f_{TRANSMITTER} is less than the resonator f_c.
- 3. One or more of following United States patents apply:4,454,488 and 4,616,197 and others pending.
- Typically, equipment designs utilizing this device require emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 5. Unless noted otherwise, case temperature $T_c=25^{\circ}C\pm 2^{\circ}C$.
- 6. The design, manufacturing process, and specifications of this device are subject to change without notice.

- 7. Derived mathematically from one or more of the following directly measured parameter: f_c , IL, 3dB bandwidth, f_c versus T_{c_i} and C_o .
- 8. Turnover temperature, T_o , is the temperature of maximum (or turnover) frequency, f_o . The nominal frequency at any case temperature, T_c . may be calculated from:
 - $f{=}f_o~[1{-}FTC(T_o{-}T_o)^2].$ Typically, oscillator T_o is 20 $^\circ\!C$ less than the specified resonator T_o
- 9. This equivalent RLC model approximates resonators performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the static (non-motional) capacitance between pin 1 and pin 2 measured at low frequency (10MHz) with a capacitance meter. The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25pF to C₀.

Electrical Connections

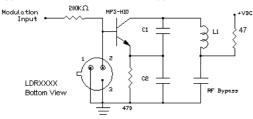
This one-port, two-terminal SAW resonator is bi-directional. The terminals are interchangeable with the exception of circuit board layout.



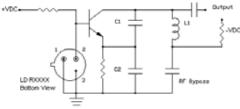

Typical Test Circuit

The test circuit inductor, L_{TEST} is turn to resonate with the static capacitance, C_o at $F_c.$

Electrical Test:

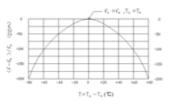


Power Test:

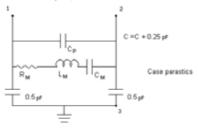


Typical Application Circuits

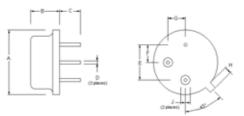
Typical Low-Power Transmitter Application:



Typical Local Oscillator Application:

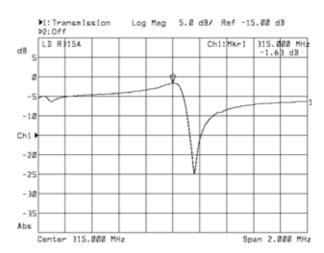

Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include oscillator temperature characteristics.



Equivalent LC Model

The following equivalent LC model is valid near resonance:



Case Design

Dimensions	Millim	eters	Inches		
Dimonorono	Min	Max	Min	Max	
Α		9.30		0.366	
В		3.50		0.138	
С	2.50	3.50	0.098	0.138	
D	0.50 Nominal		0.020 Nominal		
E	5.08 Nominal		0.200 Nominal		
F	2.54Nominal		0.100 Nominal		
G	2.54Nominal		0.100 Nominal		
Н		1.02		0.040	
J	1.75		0.069		

Frequency Response

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Resonators category:

Click to view products by LADDER manufacturer:

Other Similar products are found below :

 B39431R820H210
 CSAC2.00MGCM-TC
 ECS-HFR-40.00-B-TR
 CSTLS4M00G53Z-A0
 ZTB455E
 ECS-CR2-16.00-A-TR
 ECS-HFR-20.00

 B-TR
 ECS-CR2-20.00-A-TR
 RO3164E-3
 ASR418S2-T
 CSTNE10M0G520000R0
 CSTLS8M00G53093-A0
 CSTNE12M0G52A000R0

 CSTLS18M4X54-A0
 CSTLS16M9X53Z-B0
 CSTLS24M0X51-A0
 CSTLS25M0X51-B0
 CSTLS18M0X51-B0
 CSTLS4M00G53093-A0

 CSTLS18M4X53-A0
 CSTNE16M0V510000R0
 CSTLS30M0X53-B0
 CSTLS33M8X53-B0
 CSTLS16M9X53-A0
 CSTLS6M40G56-B0

 CSTLS6M25G56-A0
 CSTNE14M7V510000R0
 CSTLS18M4X53-B0
 CSTLS33M0X51-B0
 CSTLS5M50G56-B0
 7B008000101

 7D038400101
 TAXM24M2ILDBET2T
 TAXM26M2IHDBET2T
 146-32.768-12.5-20-20/A
 3225-24.00-12-10-10/A
 7B009843M01

 CF4016M00009T8188042
 S32400001B0730D1JB
 X252016MLB4SI
 Q24FA20H00389
 CSTLS16M0X54-B0
 CSTLS4M19G56-B0

 9AC04194152080D2JB
 CST3.58MGW
 CSTCR4M91G55B-R0
 CSTLS3M68G56-B0
 \$2100327072090
 FC-12M32.768KHZ9PF20PPM

 ASR315S2

 CSTLS3M68G56-B0
 \$2100327072090
 FC-12M32.768KHZ9PF20PPM