

FFT Compiler IP Core

User Guide

FPGA-IPUG-02045 Version 2.1

October 2018

Contents

Αc	cronyms	in This Document	5
1.	Introd	ductionduction	6
		Quick Facts	
		Features	
2.		tional Description	
	2.1.	Block Diagram	10
	2.1.1.	. High Performance Architecture	11
	2.1.2.	Low Resource Architecture	11
	2.2.	Configuring the FFT Compiler	12
	2.2.1.	Number of Points	12
	2.2.2.	. Architecture	12
	2.2.3.	Output Order	12
	2.2.4.	Scaling Mode	12
	2.2.5.	Precision Reduction Method	12
	2.3.	Signal Descriptions	13
	2.4.	Interfacing with the FFT Compiler	14
	2.4.1.	Configuration Signals	14
	2.4.2.	. Handshake Signals	15
	2.4.3.	Exponent Output	15
	2.4.4.	Exceptions	15
	2.5.	Timing Specifications	15
	2.6.	Output Latency	17
3.	Paran	neter Settings	18
	3.1.	Points/Mode Tab	19
	3.1.1.	Number of Points	19
	3.1	1.1. Number of Points	19
	3.1	1.2. Maximum Points	19
	3.1	1.3. Minimum Points	19
	3.1.2.	Architecture	19
	3.1.3.	. FFT Mode	20
	3.1.4.	. Output Order	20
	3.2.	Scaling Width Tab	
	3.2.1.	Scaling Mode	20
	3.2.2.		
	3.2	.2.1. Input Data Width	21
	3.2	2.2. Twiddle Factor Width	
	3.2.3.	Precision Reduction Method	21
	3.3.	Implementation Tab	21
	3.3.1.	P - P - P - P - P - P - P - P - P -	
	3.3.2.	. Pipeline	21
	3.3	3.2.1. Multiplier Pipeline	21
	3.3	3.2.2. Adder Pipeline	21
	3.3.3.	. Memory Type	22
	3.4.	Synthesis & Simulation Tools Options Tab	22
	3.4.1.	. Support Synplify	22
	3.4.2.		
	3.4.3.	!!	
	3.4.4.	. Support ALDEC	22
4.	IP Cor	re Generation	23
		Licensing the IP Core	
		Getting Started	
	4.3.	IPexpress-Created Files and Top Level Directory Structure	25

	27
4.4. Instantiating the Core	2/
4.5. Running Functional Simulation	
4.6. Synthesizing and Implementing the Core in a Top-Level Design	27
4.7. Hardware Evaluation	28
4.7.1. Enabling Hardware Evaluation in Diamond	28
4.7.2. Enabling Hardware Evaluation in ispLEVER	28
4.8. Updating/Regenerating the IP Core	28
4.8.1. Regenerating an IP Core in Diamond	28
4.8.2. Regenerating an IP Core in ispLEVER	29
References	30
Technical Support Assistance	
Appendix A. Resource Utilization	
LatticeECP2 Devices	
LatticeECP2M Devices	31
LatticeECP3 Devices	32
LatticeXP2 Devices	
ECP5 (LFE5U) Devices	
ECP5 (LFE5UM) Devices	
ECP5-5G (LFE5UM5G) Devices	
Revision History	

Figures

Figure 2.1. FFT Compiler Interface Diagram	
Figure 2.2. Implementation Diagram for High-Performance FFT	11
Figure 2.3. Low-resource FFT Data Flow Diagram	11
Figure 2.4. Timing Diagram for Streaming I/O with Continuous Data Blocks (64 Points)	15
Figure 2.5. Timing Diagram for Streaming I/O with Gaps between Data Blocks (64 Points)	16
Figure 2.6. Timing Diagram Showing Handshake Signals for Low Resource FFT	16
Figure 2.7. Timing Diagram Showing Handshake Signals for High Performance FFT	17
Figure 3.1. Points/Mode Tab	19
Figure 3.2. Scaling Width Tab	20
Figure 3.3. Implementation Tab	21
Figure 3.4. Implementation Tab	22
Figure 4.1. IPexpress Dialog Box (Diamond Version)	24
Figure 4.2. Configuration Dialog Box (Diamond Version)	25
Figure 4.3. Lattice FFT Compiler IP Core Directory Structure	26
Tables	
Table 1.1. FFT Compiler IP Core for LatticeECP2 Devices Quick Facts	
Table 1.2. FFT Compiler IP Core for LatticeECP2M Devices Quick Facts	
Table 1.3. FFT Compiler IP Core for LatticeECP3 Devices Quick Facts	
Table 1.4. FFT Compiler IP Core for LatticeXP2 Quick Facts	
Table 1.5. FFT Compiler IP Core for ECP5 (LFE5U) Quick Facts	
Table 1.7. FFT Compiler IP Core for ECP5-5G (LFE5UM5G) Quick Facts	
Table 2.1. Top level I/O interface	
Table 2.2. Local User Interface Functional Groups	
Table 3.1. IP Core Parameters	
Table 4.1. File List	
Table A.1. Performance and Resource Utilization*	
Table A.2. Performance and Resource Utilization*	
Table A.3. Performance and Resource Utilization*	
Table A.4. Performance and Resource Utilization*	32
Table A.5. Performance and Resource Utilization*	33
Table A.6. Performance and Resource Utilization*	33
Table A.7. Performance and Resource Utilization*	34

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition	
EBR	Embedded Block RAM	
DIF	Decimation-in-Frequency	
DFT	Discrete Fourier Transform	
DSP	Digital Signal Processor	
FFT	Fast Fourier Transform	
FPGA	Field-Programmable Gate Array	
IFFT	Inverse Fast Fourier Transform	
IP	Intellectual Property	
LED	ght-emitting Diode	
OPN	Ordering Part Number	

1. Introduction

The Lattice Semiconductor's Fast Fourier Transform (FFT) Compiler intellectual property (IP) core offers forward and inverse FFTs for point sizes from 64 to 16384. The FFT Compiler IP core can be configured to perform forward FFT, inverse FFT (IFFT) or port selectable forward/inverse FFT. The FFT Compiler IP core offers two choices of implementation: high performance (Streaming I/O) and low resource (Burst I/O). In the high performance implementation, the FFT Compiler IP core can perform real-time computations with continuous data streaming in and out at clock rate. There can also be arbitrary gaps between data blocks allowing discontinuous data blocks. The low resource implementation can be used when it is required to use less slice (logic unit of Lattice FPGA devices) and Embedded Block RAM (EBR) and Digital Signal Processor (DSP) resources or if the device is too small to accommodate the high performance version.

To account for the data growth in fine register length implementations, the FFT Compiler IP core allows several different modes (fixed and dynamic) for scaling data after each radix-2 stage of the FFT computation. The low resource version also supports block floating point arithmetic that provides increased dynamic range for intermediate computations. The FFT Compiler IP core also allows the number of FFT points to be varied dynamically through a port.

1.1. Quick Facts

Table 1.1 to Table 1.7 provide quick facts about the FFT Compiler IP core for LattceECP2™, LatticeECP2M™, LatticeECP3™, LatticeXP2™, ECP5™ (LFE5U, LFE5UM) and ECP5-5G™ (LFE5UM5G) devices, respectively.

Table 1.1. FFT Compiler IP Core for LatticeECP2 Devices Quick Facts

			FFT IP Configuration			
		High performance 256 points	High performance 1024 points	Low resource 256 points	Low resource 1024 points	
Core	FPGA Families Supported		Lattice	ECP2		
Requirements	Minimal Device Needed	LFE2-6E	LFE2-12E	LFE2-6E	LFE2-6E	
Resource	Targeted Device	LFE2-50E-7F672C				
Utilization	Data Path Width	16	16	16	16	
	LUTs	2193	2754	769	834	
	sysMEM™ EBRs	3	6	3	3	
	Registers	1686	2106	770	800	
	MULT18X18ADDSUB	6	8	2	2	
Design Tool	Lattice Implementation	Lattice Diamond® 3.10.2.115				
Support	Synthesis	Synplify™ Pro M-2017.03L-SP1-1				
	Simulation		Aldec® Active-HDL™	10.3 Lattice Edition		

Table 1.2. FFT Compiler IP Core for LatticeECP2M Devices Quick Facts

			FFT IP Configuration		
		High performance 256 points	High performance 1024 points	Low resource 256 points	Low resource 1024 points
Core	FPGA Families Supported		Lattice	ECP2M	
Requirements	Minimal Device Needed		M20E		
Resource	Targeted Device		LFE2M35E-7F672C		
Utilization	Data Path Width	16	16	16	16
	LUTs	2193	2754	852	920
	sysMEM EBRs	3	6	3	3
	Registers	1686	2106	805	835
	MULT18X18ADDSUB	6	8	2	2
Design Tool	Lattice Implementation	Lattice Diamond 3.10.2.115			
Support	Synthesis		Synplify Pro M-	2017.03L-SP1-1	
	Simulation		Aldec Active-HDL 1	.0.3 Lattice Edition	

Table 1.3. FFT Compiler IP Core for LatticeECP3 Devices Quick Facts

		FFT IP Configuration				
		High performance 256 points	High performance 1024 points	Low resource 256 points	Low resource 1024 points	
Core	FPGA Families Supported		Lattice	eECP3		
Requirements Minimal Device Needed		LFE3-	LFE3-35EA			
Resource	Targeted Device	LFE3-95E-8FN672CES				
Utilization	Data Path Width	16	16	16	16	
	LUTs	2341	2907	820	893	
	sysMEM EBRs	3	6	3	3	
	Registers	1679	2098	803	833	
	MULT18X18C	12	16	4	4	
	ALU54A	6	8	2	2	
Design Tool	Lattice Implementation	Lattice Diamond 3.10.2.115				
Support	Synthesis	Synplify Pro M-2017.03L-SP1-1				
	Simulation		Aldec Active-HDL 1	.0.3 Lattice Edition		

Table 1.4. FFT Compiler IP Core for LatticeXP2 Quick Facts

			FFT IP Configuration			
		High performance 256 points	High performance 1024 points	Low resource 256 points	Low resource 1024 points	
Core FPGA Families Supported			Lattic	eXP2		
Requirements	Minimal Device Needed	LFXP2-5E	LFXP2-8E	LFXP2-5E	LFXP2-5E	
Resource	Targeted Device	LFXP2-17E-7F484C				
Utilization	Data Path Width	16	16	16	16	
	LUTs	2185	2746	844	912	
	sysMEM EBRs	3	6	3	3	
	Registers	1684	2104	803	833	
	MULT18X18ADDSUB	6	8	2	2	
Design Tool	Lattice Implementation	Lattice Diamond 3.10.2.115				
Support	Synthesis	Synplify Pro M-2017.03L-SP1-1				
	Simulation		Aldec Active-HDL 1	0.3 Lattice Edition		

Table 1.5. FFT Compiler IP Core for ECP5 (LFE5U) Quick Facts

			FFT IP Configuration		
		High performance 256 points	High performance 1024 points	Low resource 256 points	Low resource 1024 points
Core	FPGA Families Supported		ECP5 (I	LFE5U)	
Requirements	Minimal Device Needed	LFE5U-12F	LFE5U-12F	LFE5U-12F	LFE5U-12F
Resource	Targeted Device		LFE5U-85F	-8BG756C	
Utilization	Data Path Width	16	16	16	16
	LUTs	2335	2917	807	882
	sysMEM EBRs	3	6	3	3
	Registers	1679	2098	803	833
	MULT18X18D	12	16	4	4
	ALU54B	6	8	2	2
Design Tool	Lattice Implementation	Lattice Diamond 3.10.2.115			
Support	Synthesis		Synplify Pro M-	2017.03L-SP1-1	
	Simulation	Aldec Active-HDL 10.3 Lattice Edition			

Table 1.6. FFT Compiler IP Core for ECP5 (LFE5UM) Quick Facts

		FFT IP Configuration			
		High performance 256 points	High performance 1024 points	Low resource 256 points	Low resource 1024 points
Core	FPGA Families Supported		ECP5 (Li	E5UM)	
Requirements	Minimal Device Needed	LFE5UM-25F	LFE5UM-25F	LFE5UM-25F	LFE5UM-25F
Resource	Targeted Device		LFE5UM-85	F-8BG756C	
Utilization	Data Path Width	16	16	16	16
	LUTs	2335	2917	807	882
	sysMEM EBRs	3	6	3	3
	Registers	1679	2098	803	833
	MULT18X18D	12	16	4	4
	ALU54B	6	8	2	2
Design Tool	Lattice Implementation	Lattice Diamond 3.10.2.115			
Support	Synthesis		Synplify Pro M-2	2017.03L-SP1-1	
	Simulation		Aldec Active-HDL 1	0.3 Lattice Edition	

Table 1.7. FFT Compiler IP Core for ECP5-5G (LFE5UM5G) Quick Facts

			FFT IP Configuration		
		High performance 256 points	High performance 1024 points	Low resource 256 points	Low resource 1024 points
Core	FPGA Families Supported		ECP5-5G (L	FE5UM5G)	
Requirements	Minimal Device Needed	LFE5UM5G-25F	LFE5UM5G-25F	LFE5UM5G-25F	LFE5UM5G-25F
Resource	Targeted Device		LFE5UM5G-8	35F-8BG756C	
Utilization	Data Path Width	16	16	16	16
	LUTs	1671	2917	772	879
	sysMEM EBRs	1	6	3	3
	Registers	1218	2098	775	833
	MULT18X18D	8	16	4	4
	ALU54B	4	8	2	2
Design Tool	Lattice Implementation	Lattice Diamond 3.10.2.115			
Support	Synthesis		Synplify Pro M-	2017.03L-SP1-1	
	Simulation	Aldec Active-HDL 10.3 Lattice Edition			

1.2. Features

- Wide range of point sizes: 64, 128, 256, 512, 1024, 2048, 4096, 8192, and 16384
- Choice of high-performance (streaming I/O) or low resource (burst I/O) versions
- Run-time variable FFT point size
- Forward, inverse or port-configurable forward/inverse transform modes
- Choice of no scaling, fixed scaling (RS111/RS211) or dynamically variable stage-wise scaling
- Data precision of 8 to 24 bits
- Twiddle factor precision of 8 to 24 bits
- Natural order for input and choice of bit-reversed or natural order for output
- Support for arbitrary gaps between input data blocks in high-performance realization
- Block floating point scaling support in low resource configurations

2. Functional Description

This chapter provides a functional description of the FFT Compiler IP core.

2.1. Block Diagram

Figure 2.1 shows the interface diagram for the FFT compiler. The diagram shows all of the available ports for the IP. It should be noted that not all the I/O ports are available for a chosen configuration.

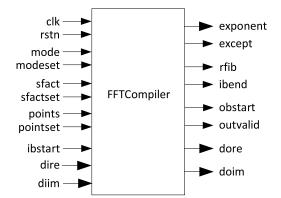


Figure 2.1. FFT Compiler Interface Diagram

FFT is a fast algorithm to implement the following N point Discrete Fourier Transform (DFT) function.

$$X(k) = \sum_{n=0}^{N-1} x(n) W_{N}^{nk}$$
(1)

where W_N is given by:

$$W_N = e^{\frac{2n}{N}} \tag{2}$$

The inverse DFT is given by:

$$X(n) = \frac{1}{n} \sum_{k=0}^{N-1} X(k) W_{N}^{-nk}$$
(3)

However, the output of the FFT Compiler IP core differs from the true output by a scale factor determined by the scaling scheme. If *right-shift by 1 at all stages* scaling mode (RS111) is used, there is a division by 2 at every stage resulting in an output that is 1/Nth of the true output of Equation (1). The output for inverse FFT matches with Equation (3) for this scaling mode. Using other scaling modes results in outputs scaled by other appropriate scale factors.

The FFT Compiler IP corer offers two different implementation modes - High Performance and Low Resource. In High Performance mode, the FFT Compiler IP core can continuously read in and give out one data sample per clock, block after block. The FFT throughput is equal to the clock rate when the data blocks are applied continuously. Low Resource mode uses less logic and memory resources, but requires 4 to 8 block periods to compute the FFT for one block of input data. Both versions of FFT do not allow breaks in the data stream within a block but do allow arbitrary additional gaps between data blocks.

© 2006-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2.1.1. High Performance Architecture

The implementation diagram for the high performance FFT is shown in Figure 2.2.

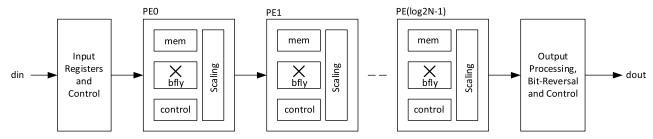


Figure 2.2. Implementation Diagram for High-Performance FFT

The high performance FFT implementation consists of several processing elements (PEs) connected in cascade. The number of PEs is equal to log2 N, where N is the number of FFT points. Each PE has a radix-2 decimation-in-frequency (DIF) butterfly (bfly), a memory (mem), an address generation and control logic (control), and a scaling unit (scaling). Some of the butterflies include a twiddle multiplier and a twiddle factor memory. The scaling unit per- forms a division by 2, a division by 4, or no division, depending on the scaling mode and scale factor inputs at the port. There is an input-processing block at the beginning of the PE chain and an output-processing block at the end of the PE chain. The input processing block has registers and control logic for handshake signals and dynamic mode control. The output-processing block contains handshake, mode control and bit-reversal logic, if configured for natural ordered output.

The high performance FFT implementation enables streaming I/O operation, where the data is processed at clock speed without any gaps between blocks. This implementation can also be employed for burst I/O situations by using the handshake signals.

2.1.2. Low Resource Architecture

The low resource implementation employs only one physical radix-2 butterfly and reuses the same butterfly over multiple time periods to perform all stages of the FFT computation. Hence the resource requirement (EBR and slices) is lower compared to the high-performance version. Depending on the number of points, an N-point FFT computation may require 4N to 8N cycles. The implementation diagram for the low-resource FFT is shown in Figure 2.3.

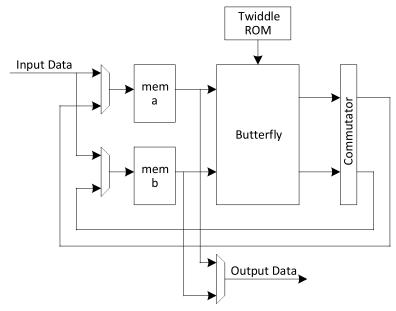


Figure 2.3. Low-resource FFT Data Flow Diagram

FPGA-IPUG-02045-2 1

As Figure 2.3 shows, the FFT module is built with a butterfly reading from and writing to two memories at the same time. There is a commutator after the butterfly to handle the writing sequence of the intermediate outputs. The twiddle memory contains the pre-computed twiddle factors for the FFT. When an input block is applied, the first half of the block is written into memory **a** and the second half into memory **b** in a bit-reversed order. The butterfly reads from the two memories, performs stage 0 computation and writes out the intermediate results to the same sites in each memory. Again, for stage 1 computation, the butterfly reads from the two memories, performs computation and writes back into the two memories through the commutator. A similar process of reading, computing and writing continues for each of the remaining stages. For every block of input data read, four to eight blocks of computation time is required for this scheme. Due to the twin memory architecture, when data is unloaded form FFT in bit-reversed mode, the data in memory a (points 0 to N/2-1) is unloaded first, followed by the data in memory b (N/2 to N-1), both in a bit-reversed order.

2.2. Configuring the FFT Compiler

2.2.1. Number of Points

The number of points can be either fixed and specified in the interface or specified through the points input port. If the FFT core is going to be used for fixed points, it is better to configure it that way, to avoid the additional resource utilization in dynamic points configurations. In dynamic points configurations, the hardware resources used correspond to the maximum number of points. So to minimize resource utilization, the minimum and maximum points must be set to the minimum and maximum values expected in the usage.

2.2.2. Architecture

The operation mode must be chosen to suit the throughput requirements and resource availability. If block floating point scaling is required, then the Low Resource architecture must be selected.

2.2.3. Output Order

Output data can be chosen either to be in bit-reversed order or natural order. Natural order output is preferred in many applications, where the output is directly fed to the following stage. But in applications where a FIFO or a buffer is used between the output of FFT and the input to the next processing block, as in multi-clock systems, bit-reversal can be done in that glue memory. Selecting bit-reversed output results in reduced latency and/or lesser EBR usage. In low resource modes, the bit-reversed order is applicable separately to the lower and upper half of the output. For an N point FFT, the first N/2 points are available in bit-reversed order first, followed by the second N/2 points in a bit-reversed order.

2.2.4. Scaling Mode

12

The selection of scaling mode depends on the statistical properties of the data and the trade-off between increased dynamic range and occasional overflows. If a large dynamic range is required for the internal computations and if the low-resource implementation is used, block floating point is the recommended choice. If memory and logic resource utilization (and possibly throughput reduction) is not a problem, full precision arithmetic (scaling selected as *None*) can be used. The data width grows by one bit every stage requiring bigger multipliers, wider data path logic and wider memories. The output width is equal to input width $+ \log_2 N$.

Among the fixed scale factors, RS111 is a more uniform scaling method than RS211. If the input data magnitude is known to be higher on the average, the RS211 method may be employed. Dynamic scale mode is for more complex scenarios where the statistical properties of the input differ between data blocks and the user wants to use more than one scaling scheme.

2.2.5. Precision Reduction Method

Precision reduction method selection applies to the scaling process after every stage. When scaling is employed (a divide by 2 or 4), the scaled data is obtained either by truncating the data (discarding last one or two bits) or rounding the data to the nearest number in the scaled precision (discarding one or two bits and making correction to the output data based on discarded bits). Truncation results in less logic utilization while rounding improves the accuracy of results.

© 2006-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2.3. Signal Descriptions

The top-level interface diagram for the FFT Compiler is shown in Figure 2.1 and the details of the I/O ports are summarized in Table 2.1.

Table 2.1. Top level I/O interface

Port	Bits	1/0	Description
Clock and Reset			
clk	1	I	System clock.
rstn	1	I	System wide asynchronous active-low reset signal.
Data Input and Output	•		
dire	8 - 24	I	Data in real. Real part of the input data.
diim	8 - 24	I	Data in imaginary. Imaginary part of the input data.
dore	8 - 24	0	Data out real. Real part of the output data.
doim	8 - 24	0	Data out imaginary. Imaginary part of the output data.
exponent	Log2(N)+1	0	Exponent output for block floating point. This value denotes the effective scaling that was done during block floating scaling.
Configuration Signals			
mode	1	I	FFT mode signal. Programs core to perform forward or inverse FFT. 0 - Forward FFT 1 - Inverse FFT The value at mode is loaded into the system whenever modeset input goes high. The changes are effective from the start of the next input data block, i.e., for an ibstart going high during or after modeset.
modeset	1	I	Set FFT mode signal. When this input signal goes high, the value at mode port is read and the FFT mode (forward or inverse FFT) is set.
sfact	12 - 28	I	Stage-wise scaling factors. This signal is a concatenation of individual 2-bit stage scaling factors. The most significant 2 bits correspond to stage 1 scale factor, the next significant 2 bits to stage 2 scale factor and so on. When the number of point is not a power of 4, the last stage has only 1-bit scaling factor. Each scaling factor denotes the number of right shifts performed to that stage's output data. The scale factors are loaded into the system when sfactset input goes high. The changes are effective from the start of the next input data block, for example, for an ibstart going high during or after sfactset.
sfactset	1	I	Set scale factor signal. When this signal goes high, stagewise scaling factors are set with the values at sfact input port.
points	3 if maximum points = 128 4, otherwise	I	Number of FFT points. This input is used to specify the number of points in the dynamic points mode. The value at this port must be equal to the log2 of the number of points represented in unsigned binary form. The valid range of values is from 6 to 14. A value less than 6 is read as 6 and a value greater than 14 is read as 14.

Port	Bits	1/0	Description
pointset	1	I	Set number of points signal. When this input signal goes high, the value at points port is read and the number of FFT points is set accordingly. The new number of points is effective from the next block of data, for example, for a valid ibstart applied after pointset going high. For low resource mode, pointset can be applied during or before ibstart . For high performance mode, pointset must be applied five cycles before ibstart .
Status and Handshake Signals			
ibstart	1	I	Input block start. Asserted high by the user to identify the start of an input data block. Once this signal goes high for a cycle, the core enters an <i>input read cycle</i> , during which input data is read in N consecutive cycles (N is the number of FFT points). Any ibstart signal during an input read cycle is ignored.
except	1	0	Exception. Denotes that an exception (overflow) has occurred in the computation. This could be due to the use of a wrong set of scaling factors. The exception always corresponds to a problem with the data that is currently output and not with a problem with the data that is being processed.
rfib	1	0	Ready for input block. This signal indicates that the core is ready to receive the next block of input data. The driving system can assert ibstart one cycle after rfib goes high. After ibstart goes high, the core pulls rfib low in the next clock cycle.
ibend	1	0	Input block end. This signal goes high for one cycle to coincide with the last sample of the current input data block that is being read through input ports.
obstart	1	0	Output block start. This signal is asserted high by the core for one clock cycle, to signify the start of an output block of data.
outvalid	1	0	Output data valid. This signal indicates that the core is now giving out valid output data through dore and doim ports.

2.4. Interfacing with the FFT Compiler

2.4.1. Configuration Signals

There are three dynamic configuration signals used in the FFT compiler: mode, **sfact** and points. The user independently selects each of these. The configuration signals are sampled and stored when the corresponding set signals are active. Specifically, mode is set when **modeset** is active, **sfact** is set when **sfactset** is active, and points is set when **pointset** becomes active. However, these values must be set during or before the start of a block for them to be effective for that block. In other words, the set signals must be active at or before **ibstart** going active, for them to be effective for that block. There are a couple of exceptions to this rule. In low-resource implementation and in bit-reversed output mode, the set signals are ignored when **outvalid** is high. Refer to Figure 2.6 for an illustration of configuration signal timing. In high performance implementation, the **pointset** must be applied five cycles before **ibstart** for it to be effective for the next block.

15

2.4.2. Handshake Signals

The input **ibstart** is used to specify the start of a data block and it is assumed to coincide with first data point in the input block. This signal also sets the configuration of the core based on the values set by the corresponding set signals. Once **ibstart** is valid, the core starts reading the input in consecutive clocks without gap until all the N- points are read. When the last data in a block is being read from input, the output **ibend** is asserted high by the core. The output control signal **rfib** indicates that the core is ready for a new input block. One cycle after **ibstart**, the output **rfib** goes low and it remains low until one cycle before the next block can be applied. The external driving system can check for **rfib** and start an input block in the next cycle after **rfib** goes high. Refer to Figure 2.6 for an illustration of configuration signal timing.

2.4.3. Exponent Output

The output port exponent gives the value of the exponent of the multiplicative factor for the output to get the true FFT output. The value of exponent is an unsigned number. The true (i)FFT output is given by:

True (i)FFT output = (dore * 2^exponent) + j (doim * 2^exponent)

2.4.4. Exceptions

Exceptions occur if there is an internal overflow in the computation of an output block. An exception is notified by the **except** signal going high during a valid output. The **except** signal goes high if one or more overflows occur during the computation of a block. The severity and number of overflow exceptions in a block depends on the scaling scheme used and the property of the input data. If the user is using an appropriate scaling method for the expected input data and can tolerate occasional exceptions, the **except** output may be left unconnected leading to a slightly reduced resource utilization.

2.5. Timing Specifications

The top-level timing diagrams for several cases are given in Figure 2.4 through Figure 2.7.

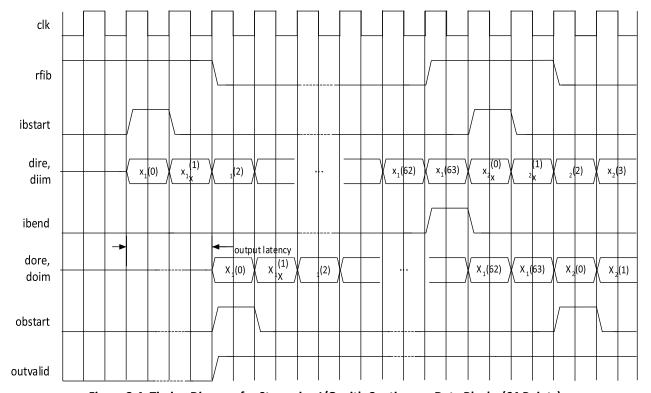


Figure 2.4. Timing Diagram for Streaming I/O with Continuous Data Blocks (64 Points)

© 2006-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-IPLIG-02045-2 1

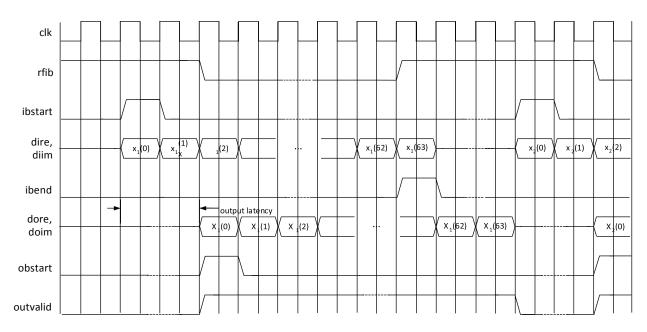


Figure 2.5. Timing Diagram for Streaming I/O with Gaps between Data Blocks (64 Points)

Figure 2.6. Timing Diagram Showing Handshake Signals for Low Resource FFT

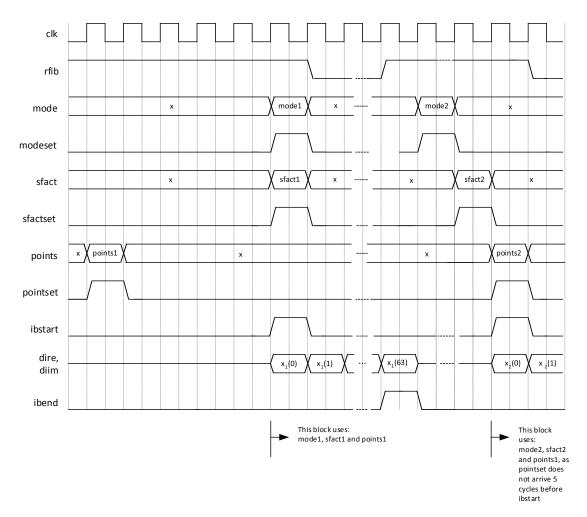


Figure 2.7. Timing Diagram Showing Handshake Signals for High Performance FFT

2.6. Output Latency

Table 2.2 provides the latency through the IP core as a function of FFT point size and implementation mode.

Table 2.2. Local User Interface Functional Groups

FFT Point Size	Low Resource Mode	High Performance Mode
64	278	83
128	598	152
256	1302	282
512	2838	543
1024	6166	1057
2048	13334	2086
4096	28694	4136
8192	61462	8237
16384	131094	16431

3. Parameter Settings

The IPexpress™ tool is used to create IP and architectural modules in the Diamond and ispLEVER software. Refer to the IP Core Generation section for a description on how to generate the IP.

Table 3.1 provides the list of user configurable parameters for the FFT Compiler IP core. The parameter settings are specified using the FFT Compiler IP core Configuration interface in IPexpress.

Table 3.1. IP Core Parameters

Parameters	Range	Default	
Number of Points			
Points variability	Fixed, Variable	Fixed	
Number of Points (N)	64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384	64	
Minimum points	64, 128, 256, 512, 1024, 2048, 4096, 8192	64	
Maximum points	{128, 256, 512, 1024, 2048, 4096, 8192, 16384} only values > Min points are valid	128	
Architecture			
Architecture	High Performance, Low Resource	Low Resource	
FFT Mode			
FFT Mode	Forward, Inverse, Dynamic through Port	Forward	
Output Order			
Output order	Bit-reversed, Natural	Bit-reversed	
Scaling Mode			
Scaling Mode	None, RS111, RS211, Dynamic Through Port, Block Floating Point	, Block RS111	
Data Width			
Input Data Width	8 to 24	16	
Twiddle Factor Width	8 to 24	16	
Precision Reduction Method			
Precision Reduction	Truncation, Rounding	Truncation	
Implementation			
Multiplier Type	DSP block based, LUT based	DSP block based	
Adder Pipeline	0, 1	0	
Multiplier Pipeline	2, 3, 4	3	
Memory Type	EBR Memory, Distributed Memory, Automatic	EBR Memory	
Synthesis and Simulation Tool	s		
Synthesis Tools	Support Synplify Support Precision RTL Synthesis	Both are selected	
Simulation Tools	Support ModelSim Support Active-HDL	Both are selected	

19

3.1. Points/Mode Tab

Figure 3.1 shows the contents of the Points/Mode tab.

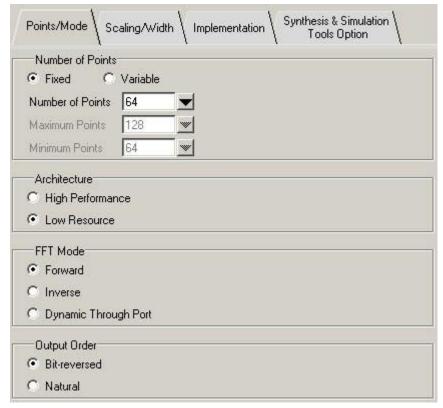


Figure 3.1. Points/Mode Tab

The Points/Mode tab provides the following options.

3.1.1. Number of Points

This parameter allows the user to specify fixed or variable number of points.

3.1.1.1. Number of Points

This parameter specifies the number of FFT points if points variability is **Fixed**.

3.1.1.2. Maximum Points

This parameter denotes the maximum for the points range if points variability is Variable.

3.1.1.3. Minimum Points

This parameter denotes the minimum for the points range if points variability is Variable.

3.1.2. Architecture

This option selects either High-Performance (Streaming I/O) or Low Resource (Burst I/O) architecture. The high performance implementation offers high throughput and allows streaming input and output data, with optional gaps between blocks. The low resource implementation results in low memory and logic resource utilization, but takes multiple block periods (typically between 4 to 8) of computation time to process each data block.

3.1.3. FFT Mode

This parameter configures operating mode of the core to forward FFT, inverse FFT or dynamically variable forward/inverse FFT. In the **Dynamic Through Port** mode, the FFT mode can be set to forward or inverse FFT using the input ports mode and modeset.

3.1.4. Output Order

This parameter specifies whether the output data is in bit-reversed or natural order.

3.2. Scaling Width Tab

Figure 3.2 shows the contents of the Scaling Width tab.

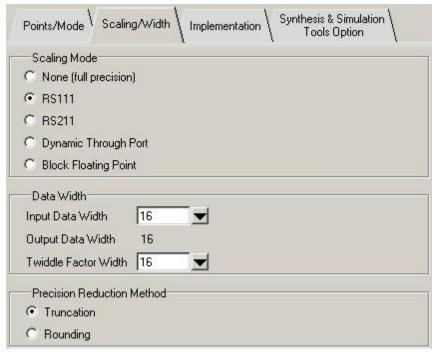


Figure 3.2. Scaling Width Tab

The Scaling Width tab provides the following options.

3.2.1. Scaling Mode

This parameter defines whether the data is scaled or not after each radix-2 butterfly and if so, what kind of scaling is used. The value can be **None**, **RS111**, **RS211**, **Dynamic Through Port** and **Block Floating Point**.

- If the value is **None** there is no scaling at the output of butterflies.
- The option **RS111** results in a fixed scaling of *right shift by 1* in all FFT stages.
- The option **RS211** results in a fixed scaling of *right shift by 2* in the first stage and *right shift by 1* in the subsequent stages.
- If Scale Mode is set to **Dynamic Through Port**, the scale factors for the FFT stages are read dynamically from the input port sfact for every data block. In the dynamic scaling mode, for high performance architecture, there is an option to set the last stage (or the last two stages, if FFT Mode is dynamic) scaling to fixed scaling to improve the performance.
- In **Block Floating Point** scaling, the dynamic range for the intermediate computation is increased by extracting a common exponent for all the data points in each stage and using the full arithmetic width for processing only the mantissa. An additional output port exponent is added to the FFT compiler core when this option is selected. This option is not available for the Streaming I/O mode.

© 2006-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.2.2. Data Width

3.2.2.1. Input Data Width

This parameter specifies input data width (width of either of the components: real or imaginary).

3.2.2.2. Twiddle Factor Width

This parameter specifies twiddle factor width (width of either of the components: real or imaginary).

3.2.3. Precision Reduction Method

This parameter specifies whether the data is truncated or rounded nearest during scaling. In rounding mode, for high performance architecture, there is an additional option to set the last stage (or the last two, if FFT Mode is dynamic) to truncation. Setting the last stage to truncation results in better throughput.

3.3. Implementation Tab

Figure 3.3 shows the contents of the Implementation tab.

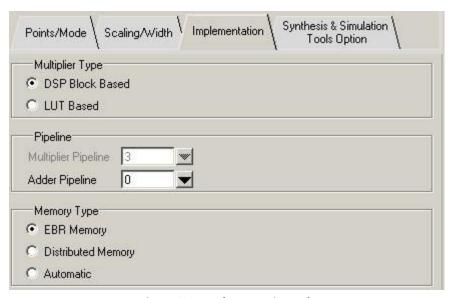


Figure 3.3. Implementation Tab

The Implementation tab provides the following options.

3.3.1. Multiplier Type

This option specifies whether DSP blocks or LUTs are used for implementing multipliers and multiply-add components.

3.3.2. Pipeline

3.3.2.1. Multiplier Pipeline

This option is used to specify the pipeline of LUT based multipliers in low resource mode. Higher values for pipeline leads to better performance at the cost of slightly increased utilization and latency.

3.3.2.2. Adder Pipeline

This option is used to specify an additional pipeline after the adders. Additional pipeline leads to better performance at the cost of slightly increased utilization and latency. This option is available only when architecture is low resource and the scale mode is not block floating point.

3.3.3. Memory Type

This parameter specifies the balance between using EBR and distributed memories. If EBR memory is selected, EBRs are used for memory depths 32 and higher. If the Distributed Memory option is selected, EBR memories are used only for depths 512 or more and the rest uses distributed memories. In the automatic option, the IP generator uses a predefined setting to select the EBR and distributed memories based on the FFT parameters.

3.4. Synthesis & Simulation Tools Options Tab

Figure 3.4 shows the contents of the Synthesis & Simulation Tools Options tab.

Figure 3.4. Implementation Tab

The Synthesis and Simulation Tools Options tab provides the following options.

3.4.1. Support Synplify

If selected, IPexpress generates evaluation scripts and other associated files required to synthesize the top-level design using the Synplify synthesis tool.

3.4.2. Support Precision

If selected, IPexpress generates evaluation script and other associated files required to synthesize the top-level design using the Precision synthesis tool.

3.4.3. Support ModelSim

If selected, IPexpress generates evaluation script and other associated files required to run simulation using the ModelSim simulator.

3.4.4. Support ALDEC

If selected, IPexpress generates evaluation script and other associated files required to run simulation using the ALDEC simulator.

4. IP Core Generation

This chapter provides information on licensing the FFT Compiler IP core, generating the core using the Diamond or ispLEVER software IPexpress tool, running functional simulation, and including the core in a top-level design. The Lattice FFT Compiler IP core can be used in LatticeECP3, LatticeECP2/M, and LatticeXP2 device families.

4.1. Licensing the IP Core

An IP license is required to enable full, unrestricted use of the FFT Compiler IP core in a complete, top-level design. An IP license that specifies the IP core and device family is required to enable full use of the core in Lattice devices. Instructions on how to obtain licenses for Lattice IP cores are given at:

http://www.latticesemi.com/products/intellectualproperty/aboutip/isplevercoreonlinepurchas.cfm

Users may download and generate the IP core and fully evaluate the core through functional simulation and implementation (synthesis, map, place and route) without an IP license. The FFT Compiler IP core also supports Lattice's IP hardware evaluation capability, which makes it possible to create versions of the IP core that operate in hardware for a limited time (several hours) without requiring an IP license (see the Instantiating the Core section for further details). However, a license is required to enable timing simulation, to open the design in the Diamond or ispLEVER EPIC tool, and to generate bitstreams that do not include the hardware evaluation timeout limitation.

4.2. Getting Started

The FFT Compiler IP core is available for download from the Lattice IP Server using the IPexpress tool. The IP files are automatically installed using InstallShield technology in any customer-specified directory. After the IP core is installed, it becomes available in the IPexpress interface dialog box shown in Figure 4.1.

The IPexpress tool interface for the FFT Compiler IP core is shown in Figure 4.1. To generate a specific IP core configuration, the user specifies:

- **Project Path** Path to the directory where the generated IP files are loaded.
- File Name Username designation given to the generated IP core and corresponding folders and files.
- (Diamond) Module Output Verilog or VHDL.
- (ispLEVER) Design Entry Type Verilog HDL or VHDL.
- **Device Family** Device family to which IP is to be targeted (such as LatticeSCM™, Lattice ECP2M, LatticeECP3, and others). Only families that support the particular IP core are listed.
- Part Name Specific targeted part within the selected device family.

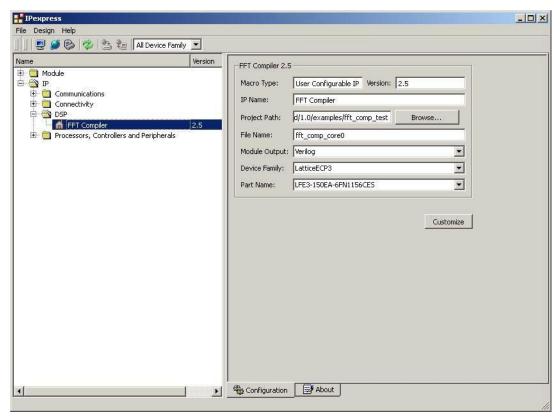


Figure 4.1. IPexpress Dialog Box (Diamond Version)

Note that if the IPexpress tool is called from within an existing project, Project Path, Module Output (Design Entry in ispLEVER), Device Family and Part Name default to the specified project parameters. Refer to the IPexpress tool online help for further information.

To create a custom configuration, the user clicks the **Customize** button in the IPexpress tool dialog box to display the FFT Compiler IP core Configuration interface, as shown in Figure 4.2. From this dialog box, the user can select the IP parameter options specific to their application. Refer to Parameter Settings section for more information on the parameter settings.

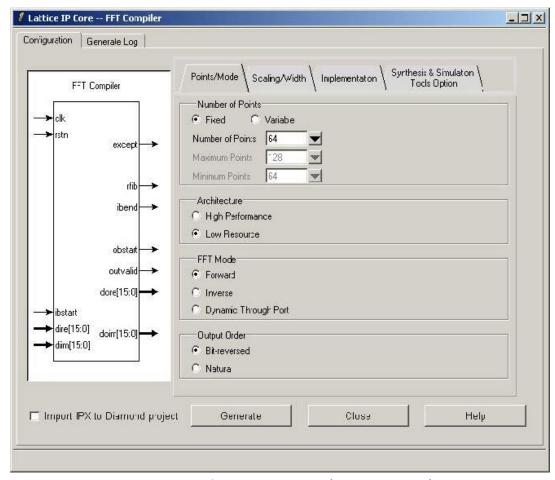


Figure 4.2. Configuration Dialog Box (Diamond Version)

4.3. IPexpress-Created Files and Top Level Directory Structure

When you click the **Generate** button in the IP Configuration dialog box, the IP core and supporting files are generated in the specified **Project Path** directory. The directory structure of the generated files is shown in Figure 4.3.

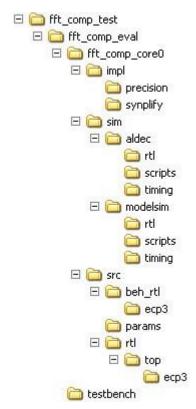


Figure 4.3. Lattice FFT Compiler IP Core Directory Structure

Table 4.1 provides a list of key files created by the IPexpress tool and how they are used. The IPexpress tool creates several files that are used throughout the design cycle. The names of most of the created files are customized to the user's module name specified in the IPexpress tool.

Table 4.1. File List

File	Description
<username>_inst.v</username>	This file provides an instance template for the IP.
<username>.v</username>	This file provides the FFT core for simulation.
<username>_beh.v</username>	This file provides a behavioral simulation model for the FFT core.
<username>_bb.v</username>	This file provides the synthesis black box for the user's synthesis.
<username>.ngo</username>	The ngo files provide the synthesized IP core.
<username>.lpc</username>	This file contains the IPexpress tool options used to recreate or modify the core in the IPexpress tool.
<username>.ipx</username>	The IPX file holds references to all of the elements of an IP or Module after it is generated from the IPexpress tool (Diamond version only). The file is used to bring in the appropriate files during the design implementation and analysis. It is also used to re-load parameter settings into the IP/Module generation interface when an IP/Module is being re-generated.
<username>_top.[v,vhd]</username>	This file provides a module which instantiates the FFT core. This file can be easily modified for the user's instance of the FFT core. This file is located in the fft_comp_eval/ <username>/src/rtl/top directory.</username>
twidx <username>.mem</username>	Twiddle factor to initialize ROM. The x in file name can be 0,1,2, and others.
<username>_generate.tcl</username>	This file is created when the Generate button is pushed and generation is invoked. This file may be run from command line.
<username>_generate.log</username>	This is the IPexpress scripts log file.
<username>_gen.log</username>	This is the IPexpress IP generation log file.

© 2006-2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

27

4.4. Instantiating the Core

The \<fft_comp_eval> and subtending directories provide files supporting FFT IP core evaluation. The \<fft_comp_eval> directory shown in Figure 4.3 contains files and folders with content that is constant for all configurations of the FFT. The \centerror subfolder (\fft comp core0 in this example) contains files and folders with content specific to the username configuration. The \fft_comp_eval directory is created by IPexpress the first time the core is generated and updated each time the core is regenerated. A \<username> directory is created by IPexpress each time the core is generated and regenerated each time the core with the same file name is regenerated. A separate \<username> directory is generated for cores with different names, such as \fft compiler eval0, \fft_compiler_eval1 and others.

4.5. Running Functional Simulation

Simulation support for the FFT IP core is provided for Aldec Active-HDL (Verilog and VHDL) simulator and for Men- tor Graphics ModelSim simulator. The functional simulation includes a configuration-specific behavioral model of the FFT IP core. The test bench sources stimulus to the core, and monitors output from the core. The generated IP core package includes the configuration-specific behavior model (<username>_beh.v) for functional simulation in the Project Path root directory. The simulation scripts supporting ModelSim evaluation simulation is provided in \cproject dir>\fff comp eval\<username>\sim\modelsim\scripts. The simulation script supporting Aldec evaluation simulation is provided in \<project_dir>\fft_comp_eval\<username>\sim\aldec\scripts. Both ModelSim and Aldec simulation are supported via test bench files provided in \project_dir>\fft_comp_eval\testbench. Models required for simulation are provided in the corresponding \models folder.

To run the Aldec evaluation simulation:

- 1. Open Active-HDL.
- Under the Tools tab, select **Execute Macro**.
- 3. Browse to folder \roject dir>\fft comp eval\<username>\sim\aldec\scripts and execute one of the do scripts shown.

To run the ModelSim evaluation simulation:

- 1. Open ModelSim.
- 2. Under the File tab, select Change Directory and choose the folder
- 3. Under the Tools tab, select **Execute Macro** and execute the ModelSim *do* script shown.

Note: When the simulation completes, a pop-up window opens asking Are you sure you want to finish? Click No to analyze the results. Click Yes to close ModelSim.

4.6. Synthesizing and Implementing the Core in a Top-Level Design

Synthesis support for the FFT IP core is provided for Mentor Graphics Precision or Synopsys Synplify. The FFT IP core itself is synthesized and is provided in NGO format when the core is generated in IPexpress. Users may synthesize the core in their own top-level design by instantiating the core in their top-level as described previously and then synthesizing the entire design with either Synplify or Precision RTL Synthesis. The following text describes the evaluation implementation flow for Windows platforms. The flow for Linux and UNIX platforms is described in the Readme file included with the IP core. The top-level files <username>_top.v are provided in \cproject_dir>\fft_comp_eval\<username>\src\rtl\top. Push-button implementation of the reference design is supported via Diamond or ispLEVER project files, <user-name>.syn, located in the following directory: \\ct_dir>\fft_comp_eval\<username>\impl\synplify (or precision).

To use this project file in Diamond:

- 1. Choose File > Open > Project.
- 2. Browse to \\comp_eval\<username>\impl\synplify (or precision) in the Open Project dialog box.
- Select and open <username>.ldf. All the files needed to support top-level synthesis and implementation are imported to the project.

- 4. Select the **Process** tab in the left-hand interface window.
- 5. Implement the complete design via the standard Diamond interface flow.

To use this project file in ispLEVER:

- 1. Choose File > Open Project.
- 2. Browse to \project_dir>\fft_comp_eval\quad username>\impl\synplify (or precision) in the Open Project dialog box.
- 3. Select and open **<username>.syn**. All the files needed to support top-level synthesis and implementation are imported to the project.
- 4. Select the device top-level entry in the left-hand interface window.
- 5. Implement the complete design via the standard ispLEVER interface flow.

4.7. Hardware Evaluation

The FFT Compiler IP core supports Lattice's IP hardware evaluation capability, which makes it possible to create versions of the IP core that operate in hardware for a limited period of time (several hours) without requiring the purchase of an IP license. It may also be used to evaluate the core in hardware in user-defined designs.

4.7.1. Enabling Hardware Evaluation in Diamond

Choose **Project > Active Strategy > Translate Design Settings**. The hardware evaluation capability may be enabled/disabled in the Strategy dialog box. It is enabled by default.

4.7.2. Enabling Hardware Evaluation in ispLEVER

In the Processes for Current Source pane, right-click the **Build Database** process and choose **Properties** from the dropdown menu. The hardware evaluation capability may be enabled/disabled in the Properties dialog box. It is enabled by default.

4.8. Updating/Regenerating the IP Core

By regenerating an IP core with the IPexpress tool, you can modify any of its settings including device type, design entry method, and any of the options specific to the IP core. Regenerating can be done to modify an existing IP core or to create a new but similar one.

4.8.1. Regenerating an IP Core in Diamond

To regenerate an IP core in Diamond:

- 1. In IPexpress, click the Regenerate button.
- 2. In the Regenerate view of IPexpress, choose the IPX source file of the module or IP you wish to regenerate.
- IPexpress shows the current settings for the module or IP in the Source box. Make your new settings in the Target box.
- 4. If you want to generate a new set of files in a new location, set the new location in the IPX Target File box. The base of the file name will be the base of all the new file names. The **IPX Target File** must end with an .ipx extension.
- 5. Click **Regenerate**. The module's dialog box opens showing the current option settings.
- 6. In the dialog box, choose the desired options. To get information about the options, click **Help**. Also, check the About tab in IPexpress for links to technical notes and user guides. IP may come with additional information. As the options change, the schematic diagram of the module changes to show the I/O and the device resources the module needs.
- 7. To import the module into your project, if it's not already there, select **Import IPX to Diamond Project** (not available in stand-alone mode).
- 8. Click Generate.

9. Check the **Generate** Log tab to check for warnings and error messages.

10. Click Close.

The IPexpress package file (.ipx) supported by Diamond holds references to all of the elements of the generated IP core required to support simulation, synthesis and implementation. The IP core may be included in a user's design by importing the .ipx file to the associated Diamond project. To change the option settings of a module or IP that is already in a design project, double-click the module's .ipx file in the File List view. This opens IPexpress and the module's dialog box showing the current option settings. Then go to step 6 above.

4.8.2. Regenerating an IP Core in ispLEVER

To regenerate an IP core in ispLEVER:

- 1. In the IPexpress tool, choose Tools > Regenerate IP/Module.
- 2. In the Select a Parameter File dialog box, choose the Lattice Parameter Configuration (.lpc) file of the IP core you wish to regenerate, and click **Open**.
- 3. The Select Target Core Version, Design Entry, and Device dialog box shows the current settings for the IP core in the Source Value box. Make your new settings in the Target Value box.
- 4. If you want to generate a new set of files in a new location, set the location in the LPC Target File box. The base of the .lpc file name will be the base of all the new file names. The LPC Target File must end with an .lpc extension.
- 5. Click **Next**. The IP core's dialog box opens showing the current option settings.
- 6. In the dialog box, choose desired options. To get information about the options, click **Help**. Also, check the About tab in the IPexpress tool for links to technical notes and user guides. The IP core might come with additional information. As the options change, the schematic diagram of the IP core changes to show the I/O and the device resources the IP core needs.
- 7. Click Generate.
- 8. Click the **Generate Log** tab to check for warnings and error messages.

References

- ECP5 and ECP5-5G Family Data Sheet (FPGA-DS-02012)
- LatticeECP2/M Family Data Sheet (DS1006)
- LatticeECP3 Family Data Sheet (DS1021)
- Lattice XP2 Family Data Sheet
- Lawrence R. Rabiner and Bernard Gold, "Theory and Application of Digital Signal Processing", Prentice-Hall, Inc., Englewood Cliffs, NJ, 1975.

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

Appendix A. Resource Utilization

This appendix provides resource utilization information for Lattice FPGAs using the FFT Compiler IP core. The IP configurations shown in this chapter were generated using the IPexpress software tool. IPexpress is the Lattice IP configuration utility, and is included as a standard feature of the Diamond and ispLEVER design tools. Details regarding the usage of IPexpress can be found in the IPexpress and Diamond or ispLEVER help system. For more information on the Diamond or ispLEVER design tools, visit the Lattice web site at: www.latticesemi.com/software.

LatticeECP2 Devices

Table A.1. Performance and Resource Utilization*

# Dainta	On a vertice a BA a dia	CLICE	LUTA	Pogistors	sysMEM	s	f _{MAX}	
# Points	Operating Mode	SLICEs	LUTs	Registers	EBRs	Blocks	MULT18X18ADDSUB	(MHz)
64	Low resource	585	741	742	3	1	2	271
64	High performance	1059	1556	1224	1	2	4	291
256	Low resource	608	769	770	3	1	2	263
256	High performance	1492	2193	1686	3	3	6	274
1024	Low resource	645	834	800	3	1	2	289
1024	High performance	1870	2754	2106	6	4	8	262

^{*}Note: Performance and utilization data are generated targeting an LFE2-50-7F672C device using Lattice Diamond 3.10 and Synplify Pro M-2017.03L-SP1-1. Performance may vary when using a different software version or targeting a different device density or speed grade within the LatticeECP2 family.

Ordering Part Number

The Ordering Part Number (OPN) for the FFT Compiler for LatticeECP2 devices is FFT-COMP-P2-U2.

LatticeECP2M Devices

Table A.2. Performance and Resource Utilization*

# Points	Operating Mede	SLICEs	LUTs	Pogistors	sysMEM		sysDSP	f _{MAX}	
# POIIILS	Operating Mode	SLICES	LUIS	Registers	EBRs	Blocks	MULT18X18ADDSUB	(MHz)	
64	Low resource	624	818	777	3	1	2	281	
64	High performance	1059	1556	1224	1	2	4	289	
256	Low resource	648	852	805	3	1	2	282	
256	High performance	1492	2193	1686	3	3	6	253	
1024	Low resource	681	920	835	3	1	2	286	
1024	High performance	1870	2754	2106	6	4	8	208	
8192	Low resource	723	999	879	18	1	2	251	
8192	High performance	2442	3607	2812	23	6	12	234	

^{*}Note: Performance and utilization data are generated targeting an LFE2M-35E-7F672C device using Lattice Diamond 3.10 and Synplify Pro M-2017.03L-SP1-1. Performance may vary when using a different software version or targeting a different device density or speed grade within the LatticeECP2M family.

Ordering Part Number

The Ordering Part Number (OPN) for the FFT Compiler for LatticeECP2M devices is FFT-COMP-PM-U2.

LatticeECP3 Devices

Table A.3. Performance and Resource Utilization*

# D - ! t -	0	CLICE-		D!-t	sysMEM		sysDSP		f _{MAX}
# Points	Operating Mode	SLICEs	LUTs	Registers	EBRs	Blocks	MULT18x18	ALU54	(MHz)
64	Low resource	561	787	775	3	1	4	2	274
64	High performance	1040	1675	1218	1	2	8	4	298
256	Low resource	585	820	803	3	1	4	2	264
256	High performance	1471	2341	1679	3	3	12	6	293
1024	Low resource	623	893	833	3	1	4	2	272
1024	High performance	1836	2907	2098	6	4	16	8	259
8192	Low resource	650	946	875	18	1	4	2	278
8192	High performance	2410	3783	2803	23	6	24	12	260

^{*}Note: Performance and utilization data are generated targeting an LFE3-95E-8FN672C device using Lattice Diamond 3.10 and Synplify Pro M-2017.03L-SP1-1. Performance may vary when using a different software version or targeting a different device density or speed grade within the LatticeECP3 family.

Ordering Part Number

The Ordering Part Number (OPN) for the FFT Compiler for LatticeECP3 devices is FFT-COMP-E3-U2.

LatticeXP2 Devices

Table A.4. Performance and Resource Utilization*

# Points	Points Operating Mode SLICES LUTS Registers		sysMEM		f _{MAX}			
# PUIILS	Operating wode	SLICES	LUIS	Registers	EBRs	Blocks	MULT18X18ADDSUB	(MHz)
64	Low resource	619	810	775	3	1	2	278
64	High performance	1054	1548	1222	1	2	4	227
256	Low resource	643	844	803	3	1	2	252
256	High performance	1487	2185	1684	3	3	6	228
1024	Low resource	676	912	833	3	1	2	225
1024	High performance	1865	2746	2104	6	4	8	213

^{*}Note: Performance and utilization data are generated targeting an LFXP2-17E-7F484C device using Lattice Diamond 3.10 and Synplify Pro M-2017.03L-SP1-1. Performance may vary when using a different software version or targeting a different device density or speed grade within the LatticeXP2 family.

Ordering Part Number

The Ordering Part Number (OPN) for the FFT Compiler for LatticeXP2 devices is FFT-COMP-X2-U2.

ECP5 (LFE5U) Devices

Table A.5. Performance and Resource Utilization*

# Doints	Outputing Made	CLICE	1117-	Danistana	sysMEM		f _{MAX}		
# Points	Operating Mode	SLICEs	LUTs	Registers	EBRs	SLICEs	MULT18x18	ALU54	(MHz)
64	Low resource	583	773	775	3	2	4	2	235
64	High performance	1043	1671	1218	1	4	8	4	294
256	Low resource	605	807	803	3	2	4	2	258
256	High performance	1471	2335	1679	3	6	12	6	293
1024	Low resource	648	882	833	3	2	4	2	248
1024	High performance	1837	2917	2098	6	8	16	8	259

^{*}Note: Performance and utilization data are generated targeting an LFE5U-85F-8BG756C device using Lattice Diamond 3.10 and Synplify Pro M-2017.03L-SP1-1. Performance may vary when using a different software version or targeting a different device density or speed grade within the ECP5 (LFE5U) family.

Ordering Part Number

The Ordering Part Number (OPN) for the FFT Compiler for ECP5 (LFE5U) devices is FFT-COMP-E5-U.

ECP5 (LFE5UM) Devices

Table A.6. Performance and Resource Utilization*

# Points	Operating Mode	SLICEs	LUTe	LUTs Registers	sysMEM		f _{MAX}		
# Points	Operating Mode	SLICES	LUIS	Registers	EBRs	SLICEs	MULT18x18	ALU54	(MHz)
64	Low resource	583	773	775	3	2	4	2	260
64	High performance	1043	1671	1218	1	4	8	4	279
256	Low resource	605	807	803	3	2	4	2	249
256	High performance	1471	2335	1679	3	6	12	6	286
1024	Low resource	648	882	833	3	2	4	2	244
1024	High performance	1837	2917	2098	6	8	16	8	271

^{*}Note: Performance and utilization data are generated targeting an LFE5UM-85F-8BG756C device using Lattice Diamond 3.10 and Synplify Pro M-2017.03L-SP1-1. Performance may vary when using a different software version or targeting a different device density or speed grade within the ECP5 (LFE5UM) family.

Ordering Part Number

The Ordering Part Number (OPN) for the FFT Compiler for ECP5 (LFE5UM) devices is FFT-COMP-E5-U.

ECP5-5G (LFE5UM5G) Devices

Table A.7. Performance and Resource Utilization*

# Dainta	Ou a matin a BA a da	CLICE	1117-	Danistana	sysMEM		f _{MAX}		
# Points	Operating Mode	SLICEs	LUTs	Registers	EBRs	SLICEs	MULT18x18	ALU54	(MHz)
64	Low resource	582	772	775	3	2	4	2	285
64	High performance	1043	1671	1218	1	4	8	4	335
256	Low resource	607	810	803	3	2	4	2	301
256	High performance	1471	2335	1679	3	6	12	6	289
1024	Low resource	646	879	833	3	2	4	2	274
1024	High performance	1837	2917	2098	6	8	16	8	289

^{*}Note: Performance and utilization data are generated targeting an LFE5UM5G-85F-8BG756C device using Lattice Diamond 3.10 and Synplify Pro M-2017.03L-SP1-1. Performance may vary when using a different software version or targeting a different device density or speed grade within the ECP5-5G (LFE5UM5G) family.

Ordering Part Number

The Ordering Part Number (OPN) for the FFT Compiler for ECP5-5G (LFE5UM5G) devices is FFT-COMP-E5-U.

35

Revision History

Document Revision 2.1, IP Version 2.9, October 2018

Section	Change Summary
Resource Utilization	 Removed LatticeECP Devices section. Adjusted table numbers to align with the change. Updated Table A.1. Performance and Resource Utilization* in LatticeECP2 Devices section. Updated Table A.2. Performance and Resource Utilization* in LatticeECP2M Devices
	 Section. Updated Table A.3. Performance and Resource Utilization* in LatticeECP3 Devices section. Updated Table A.4. Performance and Resource Utilization* in LatticeXP2 Devices section.
	 Updated Table A.5. Performance and Resource Utilization* in ECP5 (LFE5U) Devices section. Updated Table A.6. Performance and Resource Utilization* in ECP5 (LFE5UM) Devices
	 Updated Table A.7. Performance and Resource Utilization* in ECP5-5G (LFE5UM5G) Devices section.

Document Revision 2.0, IP Version 2.5, July 2018

Section	Change Summary
All	Changed document number from IPUG54 to FPGA-IPUG-02045.
	Updated document template.
Introduction	Changed the FFT IP Configuration headings from Low performance 256 points to Low resource 256 points and from Low performance 256 points to Low resource 1024 points in Table 1.1 through Table 1.4. Add of Table 1.5 to Table 1.7 to include FCD5 and FCD5 for decisions.
References	 Added Table 1.5 to Table 1.7 to include ECP5 and ECP5-5G devices. Provided links to data sheets since the publication of handbooks is discontinued.
References	 Provided links to data sheets since the publication of handbooks is discontinued. Added reference to ECP5 and ECP5-5G Family Data Sheet.
Technical Support	Updated contact information.
Resource Utilization	Updated Table A.1 through Table A.5.
	Added Table A.6 to Table A.8 to include ECP5 and ECP5-5G devices.
	Added Ordering Part Number information for ECP5 and ECP5-5G devices.

Document Revision 01.9, IP Version 2.5, August 2011

Section	Change Summary
Functional Description	Added Output Latency section.

Document Revision 01.8, IP Version 2.5, August 2010

Section	Change Summary
All	Added support for Diamond software.

Document Revision 01.7, IP Version 2.4, June 2010

Section	Change Summary
All	Divided document into chapters. Added table of contents.
Introduction	Added Quick Facts tables.
IP Core Generation	Added new content.

All other brand or product names are trademarks or registered trademarks of their respective noiders. The specifications and information herein are subject to change without notice.

FPGA-IPUG-02045-2.1

^{© 2006-2018} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

Document Revision 01.6, IP Version 2.4, May 2009

Section	Change Summary
All	Added support for LatticeECP3, updated figures and tables.

Document Revision 01.5, IP Version 2.3, February 2008

Section	Change Summary
Resource Utilization	General update

Document Revision 01.4, IP Version 2.2, May 2007

Section	Change Summary
All	Added support for LatticeXP2 FPGA family.

Document Revision 01.2, IP Version 2.0, September 2006

Section	Change Summary
All	Added support for LatticeECP2 FPGA family.

Previous Document Revisions, Previous IP Versions

Section	Change Summary
_	Previous Lattice releases.

7th Floor, 111 SW 5th Avenue Portland, OR 97204, USA T 503.268.8000 www.latticesemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Development Software category:

Click to view products by Lattice manufacturer:

Other Similar products are found below:

RAPPID-560XBSW RAPPID-567XFSW DG-ACC-NET-CD SRP004001-01 SW006021-1NH SW163052 SYSWINEV21 Core429-SA SW500006-HPA CWP-BASIC-FL W128E13 CWP-PRO-FL SYSMACSE210L SYSMACSE203L AD-CCES-NODE-1 NT-ZJCAT1-EV4 CWA-BASIC-FL RAPPID-567XKSW CWA-STANDARD-R SW89CN0-ZCC CWA-LS-DVLPR-NL VDSP-21XX-PCFLOAT RAPPID-563XMSW IPS-EMBEDDED SWR-DRD-L-01 SDAWIR-4532-01 SYSMAC-SE201L MPROG-PRO535E AFLCF-08-LX-CE060-R21 WS02-CFSC1-EV3-UP SYSMAC-STUDIO-EIPCPLR LIB-PL-PC-N-1YR-DISKID SYSMACSE2XXL LS1043A-SWSP-PRM 1120270005 1120270006 MIKROBASIC PRO FOR FT90X (USB DONGLE) MIKROC PRO FOR AVR (USB DONGLE LICENSE) MIKROC PRO FOR FT90X (USB DONGLE LICENSE) MIKROC PRO FOR DSPIC30/33 (USB DONGLE LI MIKROC PRO FOR FT90X MIKROC PRO FOR PIC32 (USB DONGLE LICENSE 52202-588 MIKROPASCAL PRO FOR ARM (USB DONGLE LICE MIKROPASCAL PRO FOR FT90X (USB DONGLE LI SW006021-2H