Features

- SuperFAST HIGH DENSITY IN-SYSTEM PROGRAMMABLE LOGIC
- 8000 PLD Gates
- 96 I/O Pins, Nine or Twelve Dedicated Inputs
- 192 Registers
- High Speed Global Interconnect
- Wide Input Gating for Fast Counters, State Machines, Address Decoders, etc.
- Small Logic Block Size for Random Logic
- Pinout Compatible with ispLSI 2096V and 2096VE
- 3.3V LOW VOLTAGE ARCHITECTURE
- Interfaces with Standard 5V TTL Devices
- HIGH PERFORMANCE E²CMOS ${ }^{\circledR}$ TECHNOLOGY
- $\mathbf{f m a x}^{\mathbf{m}} \mathbf{2 2 5 M H z}$ Maximum Operating Frequency
- tpd = 4.0ns Propagation Delay
- Electrically Erasable and Reprogrammable
- Non-Volatile
- 100\% Tested at Time of Manufacture
- Unused Product Term Shutdown Saves Power
- IN-SYSTEM PROGRAMMABLE
- 3.3V In-System Programmability (ISP ${ }^{\text {TM }}$) Using Boundary Scan Test Access Port (TAP)
- Open-Drain Output Option for Flexible Bus Interface Capability, Allowing Easy Implementation of WiredOR Bus Arbitration Logic
- Increased Manufacturing Yields, Reduced Time-toMarket and Improved Product Quality
- Reprogram Soldered Devices for Faster Prototyping
- 100\% IEEE 1149.1 BOUNDARY SCAN TESTABLE
- THE EASE OF USE AND FAST SYSTEM SPEED OF PLDs WITH THE DENSITY AND FLEXIBILITY OF FPGAS
- Enhanced Pin Locking Capability
- Three Dedicated Clock Input Pins
- Synchronous and Asynchronous Clocks
- Programmable Output Slew Rate Control
- Flexible Pin Placement
- Optimized Global Routing Pool Provides Global Interconnectivity
- LEAD-FREE PACKAGE OPTIONS
ispLSI 2192VE

3.3V In-System Programmable

 SuperFAST ${ }^{\text {TM }}$ High Density PLD
Functional Block Diagram

Description

The ispLSI 2192VE is a High Density Programmable Logic Device containing 192 Registers, nine or twelve Dedicated Input pins, three Dedicated Clock Input pins, two dedicated Global OE input pins and a Global Routing Pool (GRP). The GRP provides complete interconnectivity between all of these elements. The ispLSI 2192VE features in-system programmability through the Boundary Scan Test Access Port (TAP) and is 100% IEEE 1149.1 Boundary Scan Testable. The ispLSI 2192VE offers non-volatile reprogrammability of the logic, as well as the interconnect to provide truly reconfigurable systems.
The basic unit of logic on the ispLSI 2192VE device is the Generic Logic Block (GLB). The GLBs are labeled A0, A1 .. F7 (see Figure 1). There are a total of 48 GLBs in the ispLSI 2192VE device. Each GLB is made up of four macrocells. Each GLB has 18 inputs, a programmable AND/OR/Exclusive OR array, and four outputs which can be configured to be either combinatorial or registered. Inputs to the GLB come from the GRP and dedicated inputs. All of the GLB outputs are brought back into the GRP so that they can be connected to the inputs of any GLB on the device.

Functional Block Diagram

Figure 1. ispLSI 2192VE Functional Block Diagram

The 2192VE contains 96 I/O cells. Each I/O cell is directly connected to an I/O pin and can be individually programmed to be a combinatorial input, output or bi-directional I/O pin with 3 -state control. The signal levels are TTL compatible voltages and the output drivers can source 4 mA or sink 8 mA . Each output can be programmed independently for fast or slow output slew rate to minimize overall output switching noise. Device pins can be safely driven to 5 V signal levels to support mixed-voltage systems.

Eight GLBs, 16 I/O cells, two dedicated inputs and an ORP are connected together to make a Megablock (see Figure 1). The outputs of the eight GLBs are connected to a set of 16 universal I/O cells by the ORP. Each ispLSI 2192VE device contains six Megablocks.

The GRP has as its inputs, the outputs from all of the GLBs and all of the inputs from the bi-directional I/O cells. All of these signals are made available to the inputs of the GLBs. Delays through the GRP have been equalized to minimize timing skew.

Clocks in the ispLSI 2192VE device are selected using the dedicated clock pins. Three dedicated clock pins (YO, Y1, Y2) or an asynchronous clock can be selected on a GLB basis. The asynchronous or Product Term clock can be generated in any GLB for its own clock.

Programmable Open-Drain Outputs

In addition to the standard output configuration, the outputs of the ispLSI 2192VE are individually programmable, either as a standard totem-pole output or an open-drain output. The totem-pole output drives the specified Voh and Vol levels, whereas the open-drain output drives only the specified Vol. The Voh level on the open-drain output depends on the external loading and pull-up. This output configuration is controlled by a programmable fuse. The default configuration when the device is in bulk erased state is totem-pole configuration. The open-drain/totem-pole option is selectable through the Lattice software tools.

Specifications ispLSI 2192VE
Absolute Maximum Ratings ${ }^{1}$

1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

DC Recommended Operating Condition

SYMBOL	PARAMETER	MIN.	MAX.	UNITS	
VCC	Supply Voltage	Commercial $\quad \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	3.0	3.6	V
VIL	Input Low Voltage	$\mathrm{V}_{\text {SS }}-0.5$	0.8	V	
VIH	Input High Voltage	2.0	5.25	V	

Capacitance $\left(\mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right.$)

SYMBOL	PARAMETER	TYPICAL	UNITS	TEST CONDITIONS
\mathbf{C}_{1}	Dedicated Input Capacitance	8	pf	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.0 \mathrm{~V}$
\mathbf{C}_{2}	I/O Capacitance	8	pf	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=0.0 \mathrm{~V}$
\mathbf{C}_{3}	Clock and Global Output Enable Capacitance	12	pf	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{Y}}=0.0 \mathrm{~V}$

Erase Reprogram Specifications

PARAMETER	MINIMUM	MAXIMUM	UNITS
Erase/Reprogram Cycles	10,000	-	Cycles

Switching Test Conditions

Input Pulse Levels	GND to 3.0 V
Input Rise and Fall Time	$\leq 1.5 \mathrm{~ns} 10 \%$ to 90%
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load	See Figure 2

3-state levels are measured 0.5V from steady-state active level.
Table 2-0003/2192VE

Output Load Conditions (see Figure 2)

TEST CONDITION		R1	R2	CL
A		316Ω	348Ω	35 pF
B	Active High	∞	348Ω	35 pF
	Active Low	316Ω	348Ω	35 pF
C	Active High to Z at $V_{\text {OH }}-0.5 \mathrm{~V}$	∞	348Ω	5 pF
	Active Low to Z at $V_{\text {OL }}+0.5 \mathrm{~V}$	316Ω	348Ω	5 pF

Figure 2. Test Load

${ }^{*} C_{L}$ includes Test Fixture and Probe Capacitance.

DC Electrical Characteristics

Over Recommended Operating Conditions

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNITS
Vol	Output Low Voltage	$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$	-	-	0.4	V
VOH	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	2.4	-	-	V
IIL	Input or I/O Low Leakage Current	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{IL}}$ (Max.)	-	-	-10	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current	$\left(\mathrm{V}_{\mathrm{CC}}-0.2\right) \mathrm{V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$	-	-	10	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\text {IN }} \leq 5.25 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
IIL-isp	$\overline{\text { BSCAN }}$ Input Low Leakage Current	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}$	-	-	-150	$\mu \mathrm{A}$
IIL-PU	I/O Active Pull-Up Current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{IL}}$	-	-	-150	$\mu \mathrm{A}$
IOS ${ }^{1}$	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V}$	-	-	-100	mA
ICC ${ }^{2,4}$	Operating Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=3.0 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{CLOCK}}=1 \mathrm{MHz} \end{aligned}$	-	275	-	mA

1. One output at a time for a maximum duration of one second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ was selected to avoid test

Table 2-0007/2192VE problems by tester ground degradation. Characterized but not 100% tested.
2. Measured using twelve 16-bit counters.
3. Typical values are at $\mathrm{V}_{C C}=3.3 \mathrm{~V}$ and $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.
4. Maximum $I_{C C}$ varies widely with specific device configuration and operating frequency. Refer to the Power Consumption section of this data sheet and Thermal Management section of the Lattice Semiconductor Data Book or CD-ROM to estimate maximum I_{CC}.

Specifications ispLSI 2192VE

External Timing Parameters

Over Recommended Operating Conditions

PARAMETER	$\begin{aligned} & \text { TEST }^{3} \\ & \text { COND. } \end{aligned}$	\#	DESCRIPTION ${ }^{1}$	-225		-180		UNITS
				MIN.	MAX.	MIN.	MAX.	
tpd1	A	1	Data Propagation Delay, 4PT Bypass, ORP Bypass	-	4.0	-	5.0	ns
tpd2	A	2	Data Propagation Delay	-	6.2		7.5	ns
fmax	A	3	Clock Frequency with Internal Feedback ${ }^{2}$	225	-	180	-	MHz
fmax (Ext.)	-	4	Clock Frequency with External Feedback ($\frac{1}{\text { tsu2 }+ \text { tco1 }}$)	150	-	125	-	MHz
fmax (Tog.)	-	5	Clock Frequency, Max. Toggle	250	-	200		MHz
tsu1	-	6	GLB Reg. Setup Time before Clock, 4 PT Bypass	2.5	-	3.5	-	ns
tco1	A	7	GLB Reg. Clock to Output Delay, ORP Bypass	-	3.2	\bigcirc	3.5	ns
th1	-	8	GLB Reg. Hold Time after Clock, 4 PT Bypass	0.0	-	$0: 0$	-	ns
tsu2	-	9	GLB Reg. Setup Time before Clock	3.5	-	4.5	-	ns
tco2	A	10	GLB Reg. Clock to Output Delay	-	3.7	-	4.5	ns
th2	-	11	GLB Reg. Hold Time after Clock	0.0	-	0.0	\pm	ns
tr1	A	12	Ext. Reset Pin to Output Delay, ORP Bypass	-	6.0	C	7.0	ns
trw1	-	13	Ext. Reset Pulse Duration	3.5	-	4.0	-	ns
tptoeen	B	14	Input to Output Enable	-	6.0	(6)	10.0	ns
tptoedis	C	15	Input to Output Disable	-	6.0	7	10.0	ns
tgoeen	B	16	Global OE Output Enable	-	4.5	-	5.0	ns
tgoedis	C	17	Global OE Output Disable	-	4.5	-	5.0	ns
twh	-	18	External Synchronous Clock Pulse Duration, High	2.0	-	2.5	-	ns
twl	-	19	External Synchronous Clock Pulse Duration, Low	2.0	-	2.5	-	ns
1. Unless noted 2. Standard 16- 3. Reference S		, all usin st	parameters use a GRP load of four, 20 PTXOR path, ing GRP feedback. onditions section.	clock.			able 2-003	30A/2192VE

Specifications ispLSI 2192VE

External Timing Parameters

Over Recommended Operating Conditions

PARAMETER	$\begin{aligned} & \text { TEST }^{3} \\ & \text { COND. } \end{aligned}$	\#	DESCRIPTION ${ }^{1}$	-135		-100		UNITS
				MIN.	MAX.	MIN.	MAX.	
tpd1	A	1	Data Propagation Delay, 4PT Bypass, ORP Bypass	-	7.5	-	10.0	ns
tpd2	A	2	Data Propagation Delay	-	10.0	-	13.0	ns
fmax	A	3	Clock Frequency with Internal Feedback ${ }^{2}$	135	-	100	-	MHz
fmax (Ext.)	-	4	Clock Frequency with External Feedback ($\frac{1}{\text { tsu2 }+ \text { tco1 }}$)	100	-	77	-	MHz
fmax (Tog.)	-	5	Clock Frequency, Max. Toggle	143	-	100	-	MHz
tsu1	-	6	GLB Reg. Setup Time before Clock, 4 PT Bypass	5.0	-	6.5	-	ns
tco1	A	7	GLB Reg. Clock to Output Delay, ORP Bypass	-	4.0	-	5.0	ns
th1	-	8	GLB Reg. Hold Time after Clock, 4 PT Bypass	0.0	-	0.0	-	ns
tsu2	-	9	GLB Reg. Setup Time before Clock	6.0	-	8.0	-	ns
tco2	A	10	GLB Reg. Clock to Output Delay	-	5.0	-	6.0	ns
th2	-	11	GLB Reg. Hold Time after Clock	0.0	-	0.0	-	ns
tr1	A	12	Ext. Reset Pin to Output Delay, ORP Bypass	-	9.0	-	12.5	ns
trw1	-	13	Ext. Reset Pulse Duration	5.0	-	6.5	-	ns
tptoeen	B	14	Input to Output Enable	-	12.0	-	15.0	ns
tptoedis	C	15	Input to Output Disable	-	12.0	-	15.0	ns
tgoeen	B	16	Global OE Output Enable	-	7.0	-	9.0	ns
tgoedis	C	17	Global OE Output Disable	-	7.0	-	9.0	ns
twh	-	18	External Synchronous Clock Pulse Duration, High	3.5	-	5.0	-	ns
twl	-	19	External Synchronous Clock Pulse Duration, Low	3.5	-	5.0	-	ns
Unless noted otherwise, all parameters use a GRP load of four, 20 PTXOR path, ORP and Y0 clock. . Standard 16 -bit counter using GRP feedback. 3. Reference Switching Test Conditions section.								

Specifications ispLSI 2192VE

Internal Timing Parameters ${ }^{1}$

Over Recommended Operating Conditions

PARAMETER	$\#^{2}$	DESCRIPTION	-225	-180	(
		MIN. MAX.	MIN.	MAX.	UNITS

Inputs

tio	20	Input Buffer Delay	-	0.3	-	0.5	ns
tdin	21	Dedicated Input Delay	-	0.5	-	1.1	ns
GRP	tgrp	22	GRP Delay	-	0.2	-	0.6

GLB			2				
t4ptbpc	23	4 Product Term Bypass Path Delay (Combinatorial)	-	1.5	-	1.9	ns
t4ptbpr	24	4 Product Term Bypass Path Delay (Registered)	-	2.2	-	2.4	ns
t1ptxor	25	1 Product Term/XOR Path Delay	-	3.2	-	13.4	ns
t20ptxor	26	20 Product Term/XOR Path Delay	-	3.2	-	3.4	ns
txoradj	27	XOR Adjacent Path Delay ${ }^{3}$	-	3.2	-	3.4	ns
tgbp	28	GLB Register Bypass Delay	-	0.0	-	0.0	ns
tgsu	29	GLB Register Setup Time before Clock	0.7	-	1.2	-	ns
tgh	30	GLB Register Hold Time after Clock	1.8	-			ns
tgco	31	GLB Register Clock to Output Delay	-	0.3		0.3	ns
tgro	32	GLB Register Reset to Output Delay	-	0.3		0.6	ns
tptre	33	GLB Product Term Reset to Register Delay	-	4.0		4.3	ns
tptoe	34	GLB Product Term Output Enable to I/O Cell Delay	-	2.9		5.9	s
tptck	35	GLB Product Term Clock Delay	0.8	3.2	1.0	4.0	ns
ORP							
torp	36	ORP Delay	-	0.9		1.4	ns
torpbp	37	ORP Bypass Delay	-	0.4		0.4	ns

Outputs			
tob	38	Output Buffer Delay	
tsl	39	Output Slew Limited Delay Adder	
toen	40	I/O Cell OE to Output Enabled	
todis	41	I/O Cell OE to Output Disabled	
tgoe	42	Global Output Enable	

-	1.6	-	1.6	ns
-	2.0	-	2.0	ns
-	2.6	-	3.0	ns
-	2.6	-	3.0	ns
-	1.9	-	2.0	ns

Clocks

tgy0	43	Clock Delay, Y0 to Global GLB Clock Line (Ref. clock)	0.9	0.9	1.2	1.2	ns
tgy $1 / 2$	44	Clock Delay, Y1 or Y2 to Global GLB Clock Line	1.1	1.1	1.4	1.4	ns

Global Reset

tgr	45	Global Reset to GLB	-	3.7	-	4.4	ns
1. Internal Timing Parameters are not tested and are for reference only.	Table 2-0036E/2192VE vo.1						

1. Internal Timing Parameters are not tested and are for reference only.

Table 2-0036E/2192VE v0.1
2. Refer to Timing Model in this data sheet for further details.
3. The XOR adjacent path can only be used by hard macros.

Specifications ispLSI 2192VE

Internal Timing Parameters ${ }^{1}$

Over Recommended Operating Conditions

PARAMETER	$\#^{2}$	DESCRIPTION	-135		-100		UNITS
			MIN.	MAX.	MIN.	MAX.	
Inputs							
tio	20	Input Buffer Delay	-	0.5	-	0.7	ns
tdin	21	Dedicated Input Delay	-	1.7	-	2.5	ns
GRP							
tgrp	22	GRP Delay	-	1.2	-	1.8	ns
GLB							
t4ptbpc	23	4 Product Term Bypass Path Delay (Combinatorial)	-	3.7	-	5.2	ns
t4ptbpr	24	4 Product Term Bypass Path Delay (Registered)	-	3.7	-	4.7	ns
t1ptxor	25	1 Product Term/XOR Path Delay	-	4.7	-	6.2	ns
t20ptxor	26	20 Product Term/XOR Path Delay	-	4.7	-	6.2	ns
txoradj	27	XOR Adjacent Path Delay ${ }^{3}$	-	4.7	-	6.2	ns
tgbp	28	GLB Register Bypass Delay	-	0.5	-	1.0	ns
tgsu	29	GLB Register Setup Time before Clock	1.2	-	1.7	-	ns
tgh	30	GLB Register Hold Time after Clock	3.8	-	4.8	-	ns
tgco	31	GLB Register Clock to Output Delay	-	0.3	-	0.3	ns
tgro	32	GLB Register Reset to Output Delay	-	1.1	-	3.1	ns
tptre	33	GLB Product Term Reset to Register Delay	-	6.1	-	7.1	ns
tptoe	34	GLB Product Term Output Enable to I/O Cell Delay	-	6.9	-	9.1	ns
tptck	35	GLB Product Term Clock Delay	1.6	4.6	2.6	5.6	ns
ORP							
torp	36	ORP Delay	-	1.5	-	1.7	ns
torpbp	37	ORP Bypass Delay	-	0.5	-	0.7	ns
Outputs							
tob	38	Output Buffer Delay	-	1.6	-	1.6	ns
tsl	39	Output Slew Limited Delay Adder	-	2.0	-	2.0	ns
toen	40	I/O Cell OE to Output Enabled	-	3.4	-	3.4	ns
todis	41	I/O Cell OE to Output Disabled	-	3.4	-	3.4	ns
tgoe	42	Global Output Enable	-	3.6	-	5.6	ns
Clocks							
tgy0	43	Clock Delay, Y0 to Global GLB Clock Line (Ref. clock)	1.6	1.6	2.4	2.4	ns
tgy 1/2	44	Clock Delay, Y1 or Y2 to Global GLB Clock Line	1.8	1.8	2.6	2.6	ns
Global Reset							
tgr	45	Global Reset to GLB	-	5.8	-	7.1	ns

1. Internal Timing Parameters are not tested and are for reference only.

Table 2-0036D/2192VE v0.1
2. Refer to Timing Model in this data sheet for further details.
3. The XOR adjacent path can only be used by hard macros.
ispLSI 2192VE Timing Model

Derivations of tsu, th and tco from the Product Term Clock
tsu
$=$ Logic + Reg su - Clock (min)
$=($ tio + tgrp $+\mathbf{t} 20$ ptxor $)+($ tgsu $)-($ tio + tgrp + tptck $($ min $))$
$=(\# 20+\# 22+\# 26)+(\# 29)-(\# 20+\# 22+\# 35)$
$3.1 \mathrm{~ns}=(0.3+0.2+3.2)+(0.7)-(0.3+0.2+0.8)$
th $\quad=$ Clock (max $)+$ Reg $\mathrm{h}-$ Logic
$=($ tio $+\boldsymbol{t g r p}+\boldsymbol{t p t c k}($ max $))+($ tgh $)-($ tio $+\boldsymbol{t g r p}+\mathbf{t} 20 \mathrm{ptxor})$
$=(\# 20+\# 22+\# 35)+(\# 30)-(\# 20+\# 22+\# 26)$
$1.8 \mathrm{~ns}=(0.3+0.2+3.2)+(1.8)-(0.3+0.2+3.2)$
tco = Clock (max) + Reg co + Output
$=($ tio $+\mathbf{t g r p}+\mathbf{t p t c k}($ max $))+(\mathbf{t g c o})+($ torp $+\mathbf{t o b})$
$=(\# 20+\# 22+\# 35)+(\# 31)+(\# 36+\# 38)$
$6.5 \mathrm{~ns}=(0.3+0.2+3.2)+(0.3)+(0.9+1.6)$
Note: Calculations are based upon timing specifications for the ispLSI 2192VE-225L.

Power Consumption

Power consumption in the ispLSI 2192VE device de- used. Figure 3 shows the relationship between power pends on two primary factors: the speed at which the device is operating and the number of Product Terms and operating speed.

Figure 3. Typical Device Power Consumption vs fmax

ICC can be estimated for the ispLSI 2192VE using the following equation:
ICC $=25+(\#$ of PTs * 0.670) + (\# of nets * max freq * 0.0051)
Where:
\# of PTs = Number of Product Terms used in design
\# of nets = Number of Signals used in device
Max freq = Highest Clock Frequency to the device (in MHz)
The ICC estimate is based on typical conditions ($\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, room temperature) and an assumption of two GLB loads on average exists. These values are for estimates only. Since the value of ICC is sensitive to operating conditions and the program in the device, the actual ICC should be verified.

Signal Descriptions

Signal Name	Description
$\overline{\text { RESET }}$	Active Low (0) Reset pin resets all the registers in the device.
GOE 0, GOE1	Global Output Enable input pins.
Y0, Y1, Y2	Dedicated Clock Input - These clock inputs are connected to one of the clock inputs of all the GLBs in the device.
$\overline{\text { BSCAN }}$	Input - Dedicated in-system programming Boundary Scan enable input pin. This pin is brought low to enable the programming mode. The TMS, TDI, TDO and TCK controls become active.
TDI/IN 0	Input - This pin performs two functions. When $\overline{\text { BSCAN is logic low, it functions as a serial data input pin }}$ to load programming data into the device. When $\overline{\text { SSCAN is high, it functions as a dedicated input pin. }}$
TCK/IN 7	Input - This pin performs two functions. When $\overline{\text { BSCAN }}$ is logic low, it functions as a clock pin for the Boundary Scan state machine. When $\overline{\text { BSCAN is high, it functions as a dedicated input pin. }}$
TMS/IN 1	Input - This pin performs two functions. When $\overline{\text { BSCAN is logic low, it functions as a mode control pin for }}$ the Boundary Scan state machine. When $\overline{\text { BSCAN is high, it functions as a dedicated input pin. }}$
TDO/IN 6	Output/Input - This pin performs two functions. When $\overline{\text { BSCAN is logic low, it functions as an output pin }}$ to read serial shift register data. When $\overline{\text { BSCAN is high, it functions as a dedicated input pin. }}$
IN 2-5, IN 8-11	Dedicated Input Pins to the device.
GND	Ground (GND)
VCC	Vcc
NC ${ }^{1}$	No Connect
I/O	Input/Output Pins - These are the general purpose I/O pins used by the logic array.

1. NC pins are not to be connected to any active signals, VCC or GND.

Signal Locations

Signal Name	128-Pin TQFP	144-Ball fpBGA
RESET	15	G4
GOE 0, GOE 1	80,17	F12, G2
Y0, Y1, Y2	$14,83,78$	F3, F10, G11
BSCAN	19	F1
TDI/IN 0	20	G3
TMS/IN 1	48	J6
TDO/IN 6	112	C7
TCK/IN 7	77	G12
IN 2-5, IN 8-11	$-, 49,82,-, 84,113,13,-$	M7, J7, F9, G10, E12, B6, F2, E1
GND	$18,34,50,63, ~ 79, ~ 98, ~ 111, ~$ G1,	A1, A12, D4, D9, E5, E8, F6, F7, G6, G7, H5, H8, J4, J9, M1, M12
VCC	$2,16,31,47,66,81, ~ 95, ~ 114 ~$	B1, B12, E6, E7, F5, F8, G5, G8, H6, H7, L1, L12
NC ${ }^{1}$	-	K2

1. NC pins are not to be connected to any active signals, VCC or GND.

I/O Locations

Signal	128 TQFP	144 fpBGA	Signal	128 TQFP	144
fpBGA					

Pin Configuration

ispLSI 2192VE 128-Pin TQFP Pinout Diagram

Signal Configuration

ispLSI 2192VE 144-Ball fpBGA Signal Diagram

	12	11	10	9	8	7	6	5	4	3	2	1	
A	GND	$\begin{aligned} & \text { I/O } \\ & 59 \end{aligned}$	$\begin{aligned} & \text { I/O } \\ & 61 \end{aligned}$	$\begin{aligned} & \text { I/O } \\ & 64 \end{aligned}$	$1 / 0$	$\begin{aligned} & \text { I/O } \\ & 70 \end{aligned}$	$\begin{aligned} & \text { I/O } \\ & 73 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 77 \end{aligned}$	$\begin{gathered} 1 / 0 \\ 81 \end{gathered}$	$\begin{gathered} \text { I/O } \\ 84 \end{gathered}$	$\begin{aligned} & 1 / 0 \\ & 88 \end{aligned}$	GND	A
B	VCC	$\begin{aligned} & 1 / 0 \\ & 56 \end{aligned}$	$\begin{aligned} & \text { I/O } \\ & 60 \end{aligned}$	$\begin{aligned} & \text { I/O } \\ & 63 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 66 \end{aligned}$	$\begin{aligned} & \text { I/O } \\ & 69 \end{aligned}$	IN 9	$\begin{aligned} & 1 / 0 \\ & 75 \end{aligned}$	$\begin{gathered} 1 / 0 \\ 80 \end{gathered}$	$1 / 0$	$\begin{gathered} 1 / 0 \\ 86 \end{gathered}$	VCC	B
C	$\begin{aligned} & 1 / 0 \\ & 53 \end{aligned}$	$\begin{aligned} & \text { I/O } \\ & 57 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 58 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 62 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 67 \end{aligned}$	$\begin{aligned} & \text { TDO/ } \\ & \text { IN } 6 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 72 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 76 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 79 \end{aligned}$	$\begin{gathered} 1 / 0 \\ 82 \end{gathered}$	$\begin{aligned} & 1 / 0 \\ & 85 \end{aligned}$	$\begin{gathered} 1 / 0 \\ 91 \end{gathered}$	C
D	$\begin{aligned} & 1 / 0 \\ & 49 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 55 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 54 \end{aligned}$	GND	$\begin{aligned} & 1 / 0 \\ & 65 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 71 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 74 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 78 \end{aligned}$	GND	$\begin{aligned} & 1 / 0 \\ & 89 \end{aligned}$	$\begin{aligned} & \text { I/O } \\ & 87 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 94 \end{aligned}$	D
E	IN 8	$\begin{aligned} & 1 / 0 \\ & 52 \end{aligned}$	$\begin{aligned} & \text { I/O } \\ & 51 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 50 \end{aligned}$	GND	VCC	VCC	GND	$\begin{aligned} & 1 / 0 \\ & 93 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 92 \end{aligned}$	$\begin{aligned} & \text { I/O } \\ & 90 \end{aligned}$	IN 11	E
F	$\underset{0}{\mathrm{GOE}}$	$\begin{aligned} & 1 / 0 \\ & 48 \end{aligned}$	Y1	IN 4	VCC	GND	GND	VCC	$\begin{aligned} & 1 / 0 \\ & 95 \end{aligned}$	Y0	IN 10	$\overline{\text { BSCAN }}$	F
G	TCK/	Y2	IN 5	$\begin{aligned} & 1 / 0 \\ & 47 \end{aligned}$	VCC	GND	GND	VCC	$\overline{\text { RESET }}$	$\begin{aligned} & \text { TDI/ } \\ & \text { IN } 0 \end{aligned}$	GOE 1	$\begin{gathered} \text { I/O } \\ 1 \end{gathered}$	G
H	$\begin{aligned} & \text { I/O } \\ & 45 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 44 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 46 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 43 \end{aligned}$	GND	VCC	VCC	GND	$\begin{gathered} 1 / 0 \\ 0 \end{gathered}$	1/0	$\begin{gathered} \text { I/O } \\ 2 \end{gathered}$	$\begin{gathered} 1 / 0 \\ 3 \end{gathered}$	H
J	$\begin{gathered} 1 / 0 \\ 41 \end{gathered}$	$\begin{aligned} & 1 / 0 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { l/O } \\ & 42 \end{aligned}$	GND	$\begin{aligned} & 1 / 0 \\ & 26 \end{aligned}$	IN 3	TMS/ IN 1	$\begin{aligned} & 1 / 0 \\ & 17 \end{aligned}$	GND	$\begin{gathered} 1 / 0 \\ 6 \end{gathered}$	$\begin{gathered} 1 / 0 \\ 8 \end{gathered}$	$\begin{gathered} 1 / 0 \\ 5 \end{gathered}$	J
K	$\begin{gathered} 1 / 0 \\ 39 \end{gathered}$	$\begin{aligned} & 1 / 0 \\ & 37 \end{aligned}$	$\begin{aligned} & \text { I/O } \\ & 36 \end{aligned}$	$\begin{array}{r} \text { I/O } \\ 32 \end{array}$	$\begin{gathered} 1 / 0 \\ 29 \end{gathered}$	$\begin{aligned} & 1 / 0 \\ & 25 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 23 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 19 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 15 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 12 \end{aligned}$	NC ${ }^{1}$	1/0	K
L	VCC	$\begin{aligned} & 1 / 0 \\ & 38 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 34 \end{aligned}$	$\begin{gathered} 1 / 0 \\ 31 \end{gathered}$	$\begin{aligned} & 1 / 0 \\ & 28 \end{aligned}$	$\begin{gathered} 1 / O \\ 24 \end{gathered}$	$\begin{gathered} 1 / 0 \\ 22 \end{gathered}$	$\begin{aligned} & 1 / 0 \\ & 20 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 14 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 11 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 10 \end{aligned}$	VCC	L
M	GND	$\begin{aligned} & 1 / 0 \\ & 35 \end{aligned}$	$\begin{aligned} & \text { I/O } \\ & 33 \end{aligned}$	$\begin{gathered} 1 / 0 \\ 30 \end{gathered}$	$\begin{aligned} & 1 / 0 \\ & 27 \end{aligned}$	IN 2	$\begin{gathered} 1 / 0 \\ 21 \end{gathered}$	$\begin{aligned} & 1 / 0 \\ & 18 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 16 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 13 \end{aligned}$	$\begin{gathered} \text { I/O } \\ 9 \end{gathered}$	GND	M
12		isplSI 2192VE 144-8GA2P29VE											

Bottom View

${ }^{1}$ NCs are not to be connected to any active signals, VCC or GND.
Note: Ball A1 indicator dot on top side of package.

Part Number Description

ispLSI 2192VE Ordering Information

Conventional Packaging

COMMERCIAL

FAMILY	fmax (MHz)	tpd (ns)	ORDERING NUMBER	PACKAGE
ispLSI	225	4.0	ispLSI 2192VE-225LT128	128-Pin TQFP
	225	4.0	ispLSI 2192VE-225LB144	144-Ball fpBGA
	180	5.0	ispLSI 2192VE-180LT128*	128-Pin TQFP
	180	5.0	ispLSI 2192VE-180LB144*	144-Ball fpBGA
	135	7.5	ispLSI 2192VE-135LT128	128-Pin TQFP
	135	7.5	ispLSI 2192VE-135LB144	144-Ball fpBGA
	100	10	ispLSI 2192VE-100LT128	128-Pin TQFP
	100	10	ispLSI 2192VE-100LB144	144-Ball fpBGA

*ispLSI 2192VE-225 recommended for new designs.
INDUSTRIAL

FAMILY	fmax (MHz)	tpd (ns)	ORDERING NUMBER	PACKAGE
ispLSI	180	5.0	ispLSI 2192VE-180LT128I	128-Pin TQFP

Lead-Free Packaging

COMMERCIAL

FAMILY	fmax (MHz)	tpd (ns)	ORDERING NUMBER	PACKAGE
ispLSI	225	4.0	ispLSI 2192VE-225LTN128	Lead-Free 128-Pin TQFP
	135	7.5	ispLSI 2192VE-135LTN128	Lead-Free 128-Pin TQFP
	100	10	ispLSI 2192VE-100LTN128	Lead-Free 128-Pin TQFP

INDUSTRIAL

FAMILY	fmax (MHz)	tpd (ns)	ORDERING NUMBER	PACKAGE
ispLSI	180	7.5	ispLSI 2192VE-180LTN128I	Lead-Free 128-Pin TQFP

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for CPLD - Complex Programmable Logic Devices category:
Click to view products by Lattice manufacturer:
Other Similar products are found below :
5962-9952001QYA 5M1270ZT144I5 M4A5-12864-10YNI M4A5-12864-12YNI M4A5-3232-5VNC M4A5-6432-7VNC M4A5-6432-7VNI CY3LV002-10JC CY7C344B-15JI EPM7064LC68-10 ISPLSI 1032-90LJ ISPLSI 1048-70LQ LA4064V-75TN44E LC4064ZC-5MN56C M4A3-3232-10VC M4A5-256128-12YNI MACH435Q-20JC ISPLSI 1032-60LJ ISPLSI 1032-80LJ ISPLSI 1048-50LQ LA4032V-75TN44E LC4032ZC-5MN56I 5962-9759901QZC XC95288XL-10CS280I LC4032ZC-75MN56I LC5512MV-45F256C M4A5-6432-10VNI ISPLSI2096A-80LT128I M4A3-256192-10FAI LA4128V-75TN128E ISPLSI5256VA-100LB208 M4A3-3232-5VC48 M4A3-64/3212VNI48 CP4878DM M4A3-256/160-7YC M4A3-256/192-7FAC M4A3-32/32-10VNC48 M4A3-384/192-10FANC M4A3-512/160-14YI M4A3-512/192-7FAC M4A3-64/32-10VNC M4A5-128/64-7YI M4A5-192/96-10VC M4A5-192/96-10VI M4A5-256/128-10YNC M4A5-256/128-7YC M4A5-32/32-10VC M4A5-64/32-10VNC M5-192/120-10YI/1 M5-320/160-10YI

