**Data Sheet** 



# SiI9187B HDMI Port Processor

Data Sheet

Document # SiI-DS-1071-A02

September 2010

#### **Copyright Notice**

Copyright © 2009-2010 Silicon Image, Inc. All rights reserved. These materials contain proprietary and confidential information (including trade secrets, copyright, and other interests) of Silicon Image, Inc. You may not use these materials except only for your bona fide non-commercial evaluation of your potential purchase of products and/or services from Silicon Image or its affiliates, and/or only in connection with your purchase of products and/or services from Silicon Image or its affiliates, and only in accordance with the terms and conditions herein. You have no right to copy, modify, transfer, sublicense, publicly display, create derivative works of or distribute these materials, or otherwise make these materials available, in whole or in part, to any third party.

#### Patents

The subject matter described herein contains one or more inventions claimed in patents and / or patents pending owned by Silicon Image, Inc., including but not limited to the inventions claimed in US patents #6,914,637, #6,151,334, #6,026,124, #5,974,464 and #5,825,824.

#### **Trademark Acknowledgment**

Silicon Image<sup>TM</sup>, VastLane<sup>TM</sup>, SteelVine<sup>TM</sup>, PinnaClear<sup>TM</sup>, Simplay<sup>TM</sup>, Simplay HD<sup>TM</sup>, Satalink<sup>TM</sup>, InstaPort<sup>TM</sup>, TMDS<sup>TM</sup>, and LiquidHD<sup>TM</sup> are trademarks or registered trademarks of Silicon Image, Inc. in the United States and other countries. HDMI<sup>®</sup>, the HDMI logo and High-Definition Multimedia Interface<sup>TM</sup> are trademarks or registered trademarks of, and are used under license from, HDMI Licensing, LLC. x.v.Color<sup>TM</sup> is a trademark of Sony Corporation.

#### **Export Controlled Document**

This document contains information subject to the Export Administration Regulations (EAR) and has a classification of EAR99 or is controlled for Anti-Terrorism (AT) purposes. Transfer of this information by any means to an EAR Country Group E:1 or foreign national thereof (whether in the U.S. or abroad) may require an export license or other approval from the U.S. Department of Commerce. For more information, contact the Silicon Image Director of Global Trade Compliance.

#### **Further Information**

To request other materials, documentation, and information, contact your local Silicon Image, Inc. sales office or visit the Silicon Image, Inc. web site at <u>www.siliconimage.com</u>.

| <b>Revision Histor</b> | У      |                                                                       |
|------------------------|--------|-----------------------------------------------------------------------|
| Revision               | Date   | Comment                                                               |
| А                      | 9/2009 | First Production release.                                             |
| A01                    | 8/2010 | Inserted Export Control statement, minor editing throughout.          |
| A02                    | 9/2010 | Roll revision number due to work on the Data Brief; no other changes. |

© 2009-2010 Silicon Image, Inc. All rights reserved.

## **Table of Contents**

| Introduction                                                       |   |
|--------------------------------------------------------------------|---|
| Features                                                           | 1 |
| HDMI Inputs and Output                                             | 1 |
| Control Capability                                                 |   |
| Power Management                                                   |   |
| Package                                                            | 1 |
| Pin Diagram                                                        |   |
| Functional Description                                             |   |
| Receiver Block                                                     |   |
| TMDS Transmitter Block                                             |   |
| CEC Interface Block                                                |   |
| NVRAM and EDID RAM Block                                           |   |
| Configuration, I <sup>2</sup> C Slave, and Interrupt Blocks        |   |
| Standby and HDMI Port Power Supplies                               |   |
| HDMI Port Power                                                    | 8 |
| HDCP, CEC Programming Interface (CPI), and Configuration Registers |   |
| Power-On Reset Timing                                              |   |
| Electrical Specifications                                          |   |
| DC Specifications                                                  |   |
| HPD Output Signal                                                  |   |
| Power Consumption                                                  |   |
| AC Specifications                                                  |   |
| Pin Descriptions                                                   |   |
| HDMI Receiver Port Pins                                            |   |
| HDMI Transmitter Port Pins                                         |   |
| Input Port Control Pins                                            |   |
| Configuration Pins                                                 |   |
| CEC Pins                                                           |   |
| Power and Ground Pins                                              |   |
| Design Guidelines                                                  |   |
| Downstream HDMI Receiver Equalizer Setting Recommendation          |   |
| Decoupling                                                         |   |
| MICOM_VCC33                                                        |   |
| RnPWR5V Signals from HDMI Connector +5 V Pin                       |   |
| R4PWR5V Signal                                                     |   |
| Layout Guidelines                                                  |   |
| EMI Considerations                                                 |   |
| Package Information                                                |   |
| ePad Requirements                                                  |   |
| Package Dimensions                                                 |   |
| Marking Specification                                              |   |
| Ordering Information                                               |   |
| References                                                         |   |
| Standards Documents                                                |   |
| Silicon Image Documents                                            |   |

# **List of Figures**

| Figure 1. Typical Application of SiI9187B HDMI Port Processor | 1  |
|---------------------------------------------------------------|----|
| Figure 2. Pin Diagram (Top View)                              | 2  |
| Figure 3. System Architecture                                 | 3  |
| Figure 4. Functional Block Diagram                            |    |
| Figure 5. EDID Block Diagram                                  | 5  |
| Figure 6. I <sup>2</sup> C Control Mode Configuration         | 6  |
| Figure 7. Standby Power Supply Diagram                        |    |
| Figure 8. POR Minimum Timings                                 | 8  |
| Figure 9. Test Point VCC for VCC33 Noise Tolerance Spec       | 9  |
| Figure 10. HPD Output Signal Driver                           |    |
| Figure 11. TMDS Channel-to-Channel Input Skew Timing          | 11 |
| Figure 12. Decoupling and Bypass Schematic                    | 16 |
| Figure 13. Decoupling and Bypass Capacitor Placement          |    |
| Figure 14. Schematic Showing Load on MICOM_VCC33 Pin          | 17 |
| Figure 15. HDMI Port Connection Schematic                     | 17 |
| Figure 16 Package Diagram                                     |    |
| Figure 17. Marking Diagram                                    | 21 |

## List of Tables

| Table 2. Description of Power Modes            | )<br>) |
|------------------------------------------------|--------|
| Table 3 Absolute Maximum Conditions            | )      |
| Table 5. Absolute Maximum Conditions           | )      |
| Table 4. Normal Operating Conditions           |        |
| Table 5. Digital I/O Specifications            | )      |
| Table 6. HPD Output Signal Specifications      | )      |
| Table 7. Power                                 |        |
| Table 8. TMDS Input Timing1                    |        |
| Table 9. Referenced Documents                  | 2      |
| Table 10. Standards Groups Contact Information | ,      |
| Table 11. Silicon Image Publications           | ,      |



# Introduction

The SiI9187B HDMI Port Processor is the second generation of HDMI<sup>®</sup> devices that support the HDMI Specification. With four HDMI inputs and a single output, the SiI9187B port processor enhances the functionality of digital TVs using single system on a chip (SoC) solutions with integrated HDMI receivers. The port processor provides a simple, low-cost method of retransmitting digital audio and video to give consumers a truly all-digital experience. Built-in backward compatibility with DVI 1.0 allows HDMI systems to connect to any DVI 1.0 source.

### Features

The SiI9187B device brings cutting edge innovations, such as:

- Enhanced cable equalization for long cable support, even at Deep Color resolutions that enables the SiI9187B device to work with noisy signals and many sources, making the sink devices highly interoperable
- Integrated EDID and CEC functions
- Improved ESD protection on all signals connected to the HDMI connector.

### **HDMI Inputs and Output**

- Four HDMI input ports and single output port
- HDMI, HDCP, and DVI compatibility
- TMDS<sup>TM</sup> cores run at 25–225 MHz
- Supports video resolutions up to 1080p, 60 Hz, 12bit or 720p/1080i, 120 Hz, 12-bit.

### **Control Capability**

- Consumer Electronics Control (CEC) interface incorporates an HDMI-compliant CEC I/O and an integrated CEC Programming Interface (CPI); these simplify design and lower cost and software overhead
- Integrated EDID and DDC support for 4 HDMI/DVI ports and 1 VGA port with a 256-byte NVRAM shared between ports that loads into separate 256-byte SRAM for each of 5 ports
- Individual control of Hot Plug Detect (HPD) for each of the 4 HDMI/DVI ports
- TPWR (TMDS clock detect) output to help speed soft mute of audio while plugging and unplugging cables
- Controllable by the local I<sup>2</sup>C bus.

#### **Power Management**

- Flexible power management provides extremely low standby power consumption
- Standby power can be supplied from a separate +3.3 V or 5 V standby power pin
- Port power only can be used to read EDID
- Single power 3.3-V source
- Integrated 5 V to 3.3 V Voltage regulator.

### Package

• 72-pin, 10 mm x 10 mm, 0.5 mm pitch QFN package with enhanced ePad<sup>™</sup>.

DTV (LCD, Plasma, Projector)

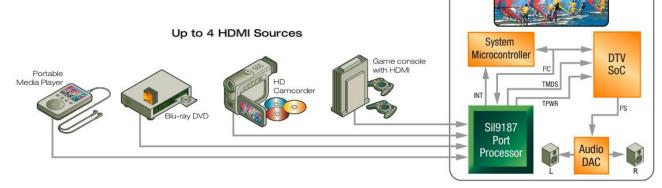



Figure 1. Typical Application of SiI9187B HDMI Port Processor

## **Pin Diagram**

Figure 2 shows the pin diagram for the SiI9187B port processor. A description of the pin functions is in the Pin Descriptions section beginning on page 13. The ePad *must* be soldered to ground.

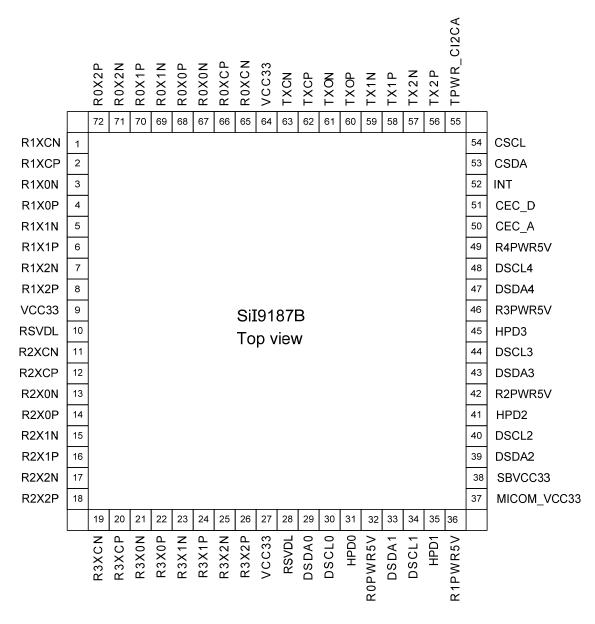
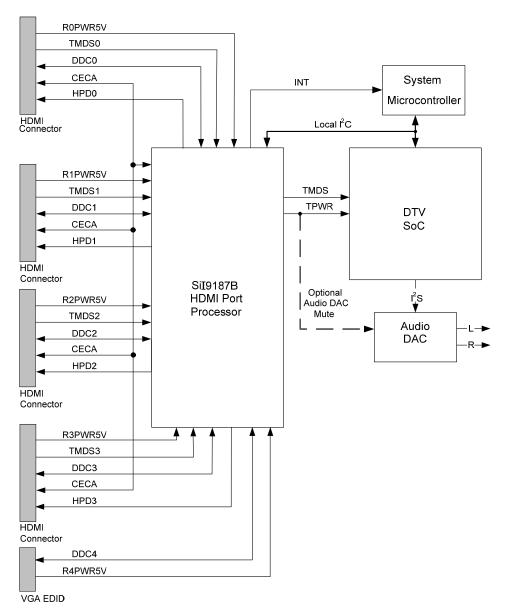




Figure 2. Pin Diagram (Top View)

# **Functional Description**

Figure 3 shows typical signal connections when the SiI9187B port processor is incorporated in a DTV. Figure 4 on the next page shows the functional block diagram of the device.



**Figure 3. System Architecture** 

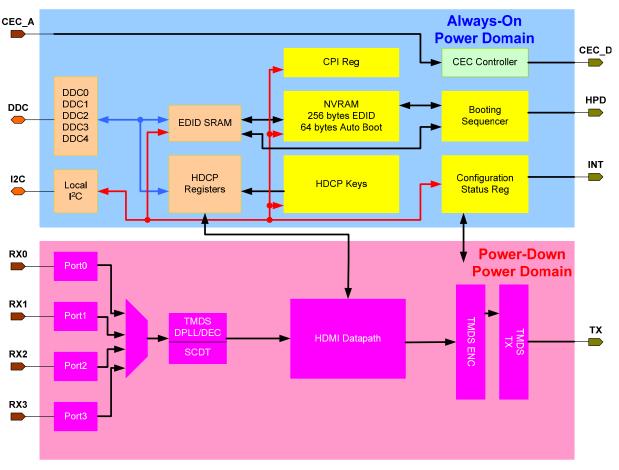



Figure 4. Functional Block Diagram

### **Receiver Block**

The four HDMI/DVI receiver ports are defined as Port 0, Port 1, Port 2, and Port 3. Each of the ports is terminated separately and equalized under the control of the receiver digital block and is controlled by the local I<sup>2</sup>C bus.

### **TMDS Transmitter Block**

The transmitter block sends an HDMI content stream based on the content delivered from the selected source. Internal source termination eliminates the need for external R-C components for signal shaping. The internal source termination can be disabled by using a register setting.

### **CEC Interface Block**

The Consumer Electronics Control (CEC) interface block provides CEC-compliant signals between CEC devices and a CEC master. It translates the LVTTL signals of an external microcontroller (CEC host-side or transmit-side) to CEC signal levels for CEC devices at the receive-side, and vice versa.

A CEC controller compatible with the Silicon Image CEC API is included on-chip. This controller has a high-level register interface accessible through the I<sup>2</sup>C interface, and can be used to send and receive CEC commands. This controller makes CEC transactions easy and straightforward, removing the burden of performing these low-level transactions on the CEC bus from the host processor.

### **NVRAM and EDID RAM Block**

The port processor has 256 bytes of NVRAM for storing common EDID data that can be used by each of the ports. An additional 64-byte block of NVRAM is used by the Auto-Boot feature, which initializes some of the registers used to enable the EDID for the respective port and asserts HOTPLUG after the EDID has loaded properly into the SRAM. For example, by changing the data in the NVRAM Auto-Boot portion, EDID loading and automatic HOTPLUG control can be enabled in 3 of the HDMI ports while disabling this feature in the fourth port. More detail about the format of the NVRAM Auto-Boot feature is described in the Programmer's Reference (refer to Table 11). The EDID block consists of 1280 bytes of SRAM. Each port has a block of 256 bytes of SRAM for EDID data, allowing all ports to be read simultaneously from five different sources connected to the SiI9187B device. Both the NVRAM EDID data and NVRAM Auto-Boot data should be initialized by software using the local I<sup>2</sup>C bus at least once during time of manufacture.

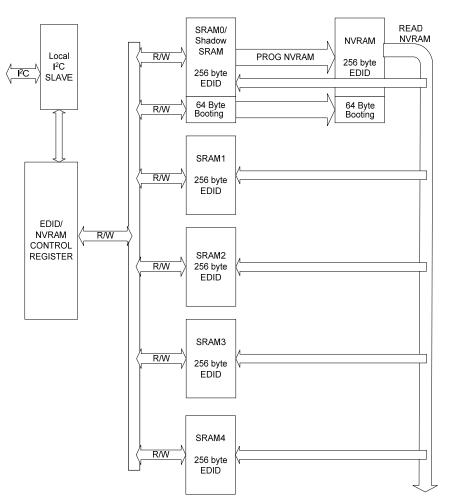



Figure 5. EDID Block Diagram

## Configuration, I<sup>2</sup>C Slave, and Interrupt Blocks

The configuration block is used to set up and control the operation of the port processor.

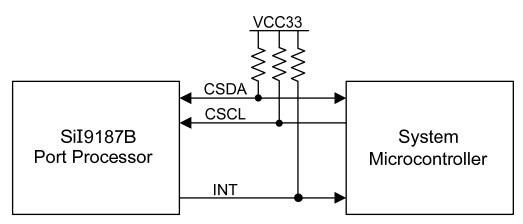



Figure 6. I<sup>2</sup>C Control Mode Configuration

The local slave I<sup>2</sup>C interface on SiI9187B pins CSCL and CSDA can run at up to 400 kHz. This bus configures the device by reading from and writing to necessary registers.

The power-on-reset (POR) circuit of the SiI9187B performs the following functions:

- Issue a reset to all internal logic after power up
- Read the level on the TPWR/CI2CA pin during reset time (this determines the primary slave I<sup>2</sup>C address).

Table 1 lists the local  $I^2C$  interface slave addresses. By setting the level of the CI2CA pin with the PCB strapping option, the user can select either 0xB0 or 0xB2 as the primary  $I^2C$  slave address for the port processor. The secondary  $I^2C$  slave addresses such 0xC0 and 0xE0 are not affected. For complete registers information, Refer to the Programmer's Reference.

#### Table 1. Control of the Default I<sup>2</sup>C Addresses with the CI2CA Pin

| CI2CA     | I <sup>2</sup> C Slave Address | Accessed Through       |
|-----------|--------------------------------|------------------------|
| CI2CA = 0 | 0xB0                           | Local I <sup>2</sup> C |
| CI2CA = 1 | 0xB2                           | Local I <sup>2</sup> C |

### **Standby and HDMI Port Power Supplies**

The port processor contains two separate power domains: the *always-on domain*, and the *power-down (VCC33) domain*. The always-on domain must always have power for the device to function. This is also the only power source needed to power the EDID and CEC functions. The power-down domain can be powered off at any time; however, when powered off, only the EDID and CEC functions are operational, along with the local I<sup>2</sup>C registers used to control these functions. The VCC33 power domain should never be powered on when the always-on domain is powered off.

The always-on domain incorporates a power multiplexer that selects power from one of six sources: pins SBVCC33, R0PWR5V, R1PWR5V, R2PWR5V, R3PWR5V or R4PWR5V. As long as 5 V is available at one of the R*n*PWR5V pins or 3.3V is available at pin SBVCC33, the always-on domain will have power and the EDID and CEC functions will operate correctly. Note that the SBVCC33 is supplied from a 3.3 V power supply. As long as one of these inputs has power, the other inputs can be left unpowered.

Standby power supply SBVCC33 pin can be supplied with 3.3 V from the display when the device is in power-down mode. Alternatively, one of the RnPWR5V pins can receive power from HDMI port *n* for standby power when the display device is off. The R4PWR5V has the highest priority and when in standby mode current is used from this port. Therefore, if there is a 5 V standby power supply from the display, it can be connected to R4PWR5V.

Table 2 summarizes the power modes available in the port processor. Figure 7 shows a block diagram of the standby power supply sources and the always-on power island.

| Power mode                                  | Description                                                                                                                                                                                                                                                                                         | SBVCC33          | R4PWR5V          | R[0-3]PWR5V         | VCC33 |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|---------------------|-------|
| Power-On<br>mode 3.3 V<br>Standby           | All power supplies to the SiI9187B chip are on. All functions are available. The standby power supply is 3.3 V. MICOM_VCC33 cannot be used in this mode. The TMDS transmitter must be connected to a terminated receiver.                                                                           | 3.3 V            | No<br>connection | Don't Care          | 3.3 V |
| Power-On<br>mode 5 V<br>Standby             | All power supplies to the SiI9187B chip are on. All functions are available. The standby power supply is 5 V. The TMDS transmitter must be connected to a terminated receiver.                                                                                                                      | No<br>connection | 5 V              | Don't Care          | 3.3 V |
| Standby<br>power mode.<br>3.3 V<br>Standby  | The always-on power domain is on, supplied from the internal power MUX; all other supplies are off. The standby power supply is 3.3 V. MICOM_VCC33 cannot be used in this mode. In this mode, EDID and CEC are functional, but video and audio processing is not performed and all outputs are off. | 3.3 V            | No<br>connection | Don't Care          | Off   |
| Standby<br>power mode.<br>5 V Standby       | The always-on power domain is on, supplied from the internal power MUX; all other supplies are off. The standby power supply is 5 V. In this mode, EDID and CEC are functional, but video and audio processing is not performed and all outputs are off.                                            | No<br>connection | 5 V              | Don't Care          | Off   |
| HDMI Port<br>Power only<br>3.3 V<br>Standby | Power is off to the device. HDMI +5 V from the HDMI cable is the only power source. For example, if the TV is unplugged from AC wall outlet, EDID and CEC are functional in this mode.                                                                                                              | Off              | No<br>connection | 5 V on any<br>input | Off   |
| HDMI Port<br>Power only<br>5 V Standby      | Power is off to the device. HDMI +5 V from the HDMI cable is the only power source. For example, if the TV is unplugged from AC wall outlet, EDID and CEC are functional in this mode.                                                                                                              | No<br>connection | Off              | 5 V on any<br>input | Off   |
| VGA Port<br>Power only<br>3.3 V<br>Standby  | Power is off to the device. VGA +5 V from the VGA cable is<br>the only power source. For example, if the TV is unplugged<br>from AC wall outlet, EDID is functional in this mode.                                                                                                                   | Off              | 5 V              | Off                 | Off   |

**Table 2. Description of Power Modes** 

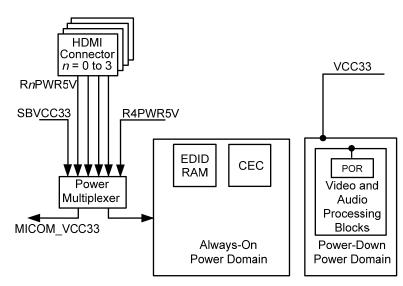



Figure 7. Standby Power Supply Diagram

### **HDMI Port Power**

If all power to the system is off, as when the TV is unplugged from the AC electrical outlet, the EDID can still be read from the source by using power from the HDMI connector +5 V signal. In this case, the internal power MUX automatically switches to the power from the HDMI connector for powering the EDID logic. In this mode, only the EDID and CEC blocks are functional; all other functions of the device are in power-off mode. Also, the EDID RAM block that is read from the DDC port of the HDMI connector is loaded from non-volatile memory (NVRAM) once the 5 V is applied from the HDMI connector. No damage will occur to the device in this mode.

### HDCP, CEC Programming Interface (CPI), and Configuration Registers

Refer to the Programmer's Reference (see Table 11) for register descriptions.

### **Power-On Reset Timing**

Figure 8 shows the SiI9187B power up sequence. As soon as either Port Power or the TV standby power is available, the power up sequence starts and takes about 100 ms. HPD for each port is asserted when the power up sequence is completed.

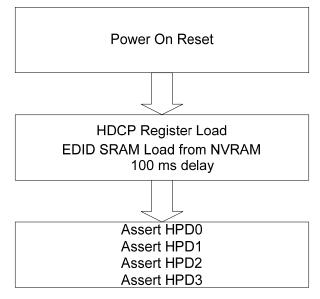



Figure 8. POR Minimum Timings

# **Electrical Specifications**

Specifications are for the Commercial Temperature range, 0 °C to +70 °C, unless otherwise specified.

| Symbol           | Parameter                                                  | Min  | Тур | Max | Units | Notes   |
|------------------|------------------------------------------------------------|------|-----|-----|-------|---------|
| VCC33            | Analog and digital core supply voltage                     | -0.3 | _   | 4.0 | V     | 1, 2    |
| SBVCC33          | 3.3 V standby power supply voltage                         | -0.3 | _   | 4.0 | V     | 1, 2    |
| R[0-3]PWR5V      | 5 V input from Power pin of HDMI connector                 | -0.3 | _   | 5.7 | V     | 1,2     |
| R4PWR5V          | 5 V standby power or input from Power pin of VGA connector | -0.3 |     | 5.7 | V     | 1,2     |
| VI               | Input voltage                                              | -0.3 |     | 6.0 | V     | 1, 2, 3 |
| Vo               | Output voltage                                             | -0.3 |     | 4.0 | V     | 1, 2    |
| T <sub>J</sub>   | Junction temperature                                       | 0    | _   | 125 | °C    | _       |
| T <sub>STG</sub> | Storage temperature                                        | -65  | _   | 150 | °C    | _       |

#### Table 3. Absolute Maximum Conditions

Notes:

- 1. Permanent device damage can occur if absolute maximum conditions are exceeded.
- 2. Functional operation should be restricted to the conditions described under Normal Operating Conditions.
- 3. All input signal pins except those for the TMDS signals.

#### Table 4. Normal Operating Conditions

| Symbol           | Parameter                                                  | Min   | Тур | Max   | Units             | Notes |
|------------------|------------------------------------------------------------|-------|-----|-------|-------------------|-------|
| VCC33            | Analog and digital core supply voltage                     | 3.135 | 3.3 | 3.465 | V                 | —     |
| SBVCC33          | 3.3 V standby power supply voltage                         | 3.0   | 3.3 | 3.6   | V                 | —     |
| R[0-3]PWR5V      | 5 V input from Power pin of HDMI connector                 | 4.5   | 5.0 | 5.5   | V                 | —     |
| R4PWR5V          | 5 V standby power or input from Power pin of VGA connector | 4.5   | 5.0 | 5.5   | V                 | —     |
| V <sub>CCN</sub> | Supply voltage noise                                       |       |     | 100   | mV <sub>P-P</sub> | 1     |
| MICOM_VCC33      | Voltage                                                    | 3.0   | 3.3 | 3.6   | V                 | 2     |
| MICOM_VCC33      | Output current                                             |       |     | 30    | mA                | 2     |
| T <sub>A</sub>   | Ambient temperature (with power applied)                   | 0     | +25 | +70   | °C                | —     |
| $\Theta_{ja}$    | Ambient thermal resistance (Theta JA)                      | _     | _   | 27    | °C/W              | 3     |
| $\Theta_{ m jc}$ | Junction to case resistance (Theta JC)                     |       | _   | 13    | °C/W              | 3     |

Notes:

1. The supply voltage noise is measured at test point VCC. See Figure 9. The ferrite bead provides filtering of power supply noise. The figure is representative and applies to other VCC33 pins as well.

- 2. MICOM\_VCC33 can only be used in 5 V Standby.
- 3. The ePad *must* be soldered to ground.

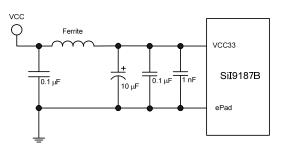



Figure 9. Test Point VCC for VCC33 Noise Tolerance Spec

### **DC Specifications**

#### Table 5. Digital I/O Specifications

| Symbol               | Parameter                                            | Pin     | Conditions       | Min | Тур | Max  | Units |
|----------------------|------------------------------------------------------|---------|------------------|-----|-----|------|-------|
|                      |                                                      | Туре    |                  |     |     |      |       |
| V <sub>IH</sub>      | HIGH-level input voltage                             | LVTTL   | _                | 2.0 | _   |      | V     |
| V <sub>IL</sub>      | LOW-level input voltage                              | LVTTL   | _                |     | _   | 0.8  | V     |
| V <sub>TH+I2CD</sub> | LOW to HIGH threshold,<br>DDC I <sup>2</sup> C Bus   | Schmitt |                  | 3.0 |     | —    | V     |
| V <sub>TH-I2CD</sub> | HIGH to LOW threshold,<br>DDC I <sup>2</sup> C Bus   | Schmitt |                  |     |     | 1.5  | V     |
| V <sub>TH+I2CL</sub> | LOW to HIGH threshold,<br>Local I <sup>2</sup> C Bus | Schmitt |                  | 2.0 |     |      | V     |
| V <sub>TH-I2CL</sub> | HIGH to LOW threshold,<br>Local I <sup>2</sup> C Bus | Schmitt |                  |     |     | 0.8  | V     |
| V <sub>OH</sub>      | HIGH-level output voltage                            | LVTTL   | —                | 2.4 | _   | _    | V     |
| V <sub>OL</sub>      | LOW-level output voltage                             | LVTTL   | —                | _   | _   | 0.4  | V     |
| I <sub>OL</sub>      | Output leakage current                               | —       | High Impedance   | -10 | _   | 10   | μΑ    |
| V <sub>ID</sub>      | Differential input voltage                           | TMDS    | —                | 150 | _   | 1200 | mV    |
| I <sub>OD8</sub>     | 8 mA Digital Output Drive                            | LVTTL   | $V_{OUT} = 2.4V$ | 8   | _   |      | mA    |
|                      |                                                      |         | $V_{OUT} = 0.4V$ | 8   | _   |      | mA    |

### **HPD Output Signal**

When a source is connected to a port using an HDMI cable, the SiI9187B device detects the presence of the +5 V supply on the cable and uses it to generate the HPD output signal. The HPD output signal driver circuit is shown in Figure 10 and the output signal specifications are shown in Table 6.

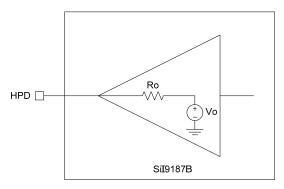



Figure 10. HPD Output Signal Driver

| Table 6. HPD | Output Signal | Specifications |
|--------------|---------------|----------------|
|--------------|---------------|----------------|

| Symbol          | Parameter                 | Pin<br>Type | Conditions | Min | Тур  | Max  | Units | Notes |
|-----------------|---------------------------|-------------|------------|-----|------|------|-------|-------|
| V <sub>OH</sub> | HIGH-level output voltage | HPD         | _          | 2.4 | _    | 5.3  | V     | 1     |
| V <sub>OL</sub> | LOW-level output voltage  | HPD         | _          | 0.0 | _    | 0.4  | V     | _     |
| Ro              | Output Resistance         |             |            | 800 | 1000 | 1200 | Ω     | 2     |

Notes:

1.  $V_{OH}$  is specified with R[0-3]PWR5V from the +5V pin of the HDMI connector between 4.8 V and 5.3 V.

2. Ro is the output resistance of the HPD output driver and is included in the chip.

## **Power Consumption**

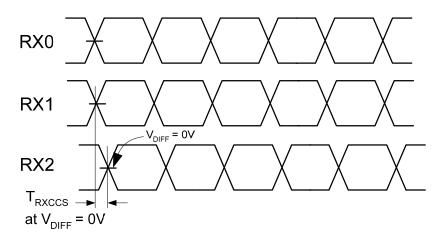
#### Table 7. Power

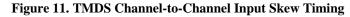
| Symbol          | Parameter                                                   | Min | Тур | Max | Units | Notes |
|-----------------|-------------------------------------------------------------|-----|-----|-----|-------|-------|
| VCC33 Icc       | VCC33 Supply Current                                        | _   | 251 | 330 | mA    | 1, 2  |
| SBVCC33 Icc     | SBVCC33 Supply Current                                      | _   | _   | 5   | mA    | _     |
| R4PWR5V Icc     | R4PWR5V Supply Current with 30 mA supply<br>for MICOM_VCC33 | _   | —   | 35  | mA    | _     |
| R4PWR5V Icc     | R4PWR5V Supply Current with MICOM_VCC33 not used            | _   | —   | 7   | mA    | _     |
| R[0-3]PWR5V Icc | R[0-3]PWR5V Supply Current                                  |     | —   | 7   | mA    |       |

Notes:

1. Typical VCC33 Icc with one 1080p 8-bit input source and one 720p 8-bit input source with VCC33 at 3.3 V, with the 1080p 8-bit input source selected, and temperature at 25 °C.

2. Maximum VCC33 Icc with four 1080p 12-bit sources with VCC33 at 3.465 V, with one of the four input ports selected, and temperature at 70 °C.


## **AC Specifications**


#### **Table 8. TMDS Input Timing**

| Symbol             | Parameter                                           | Conditions | Min  | Тур | Max                   | Units            | Figure    | Notes   |
|--------------------|-----------------------------------------------------|------------|------|-----|-----------------------|------------------|-----------|---------|
| T <sub>RXDPS</sub> | Intra-Pair Differential Input Skew                  | —          |      |     | 0.4                   | T <sub>BIT</sub> | _         | 2, 4    |
| T <sub>RXCCS</sub> | Channel to Channel Differential<br>Input Skew       | —          |      | _   | $0.2T_{PIXEL} + 1.78$ | ns               | Figure 11 | 2, 3    |
| F <sub>RXC</sub>   | Differential Input Clock Frequency                  | —          | 25   | _   | 225                   | MHz              | _         |         |
| T <sub>RXC</sub>   | Differential Input Clock Period                     | —          | 4.44 | _   | 40                    | ns               | _         |         |
| T <sub>IJIT</sub>  | Differential Input Clock Jitter tolerance (0.3Tbit) | 74.25 MHz  |      |     | 400                   | ps               |           | 2, 5, 6 |

Notes:

- 1. Under normal operating conditions unless otherwise specified, including output pin loading of  $C_L = 10 \text{ pF}$ .
- 2. Guaranteed by design.
- 3. T<sub>PIXEL</sub> is one IDCK Period (refer to the applicable Silicon Image HDMI Transmitter Data Sheet).
- 4. T<sub>BIT</sub> is 1/10 of IDCK Period (refer to the applicable Silicon Image HDMI Transmitter Data Sheet).
- 5. Jitter as defined by the HDMI Specification.
- 6. Jitter is measured with the Clock Recovery Unit defined by the HDMI Specification. Actual jitter tolerance can be higher depending on the frequency of the jitter.





#### **Table 9. TMDS Output Timing**

| Symbol             | Parameter                            | Conditions | Min  | Тур | Max  | Units            | Notes |
|--------------------|--------------------------------------|------------|------|-----|------|------------------|-------|
| T <sub>TXDPS</sub> | Intra-Pair Differential Output Skew  | —          | _    |     | 0.15 | T <sub>BIT</sub> | 1     |
| T <sub>TXRT</sub>  | Data/Clock Rise Time (20%–80%)       | —          | 75   | _   | _    | ps               | _     |
| T <sub>TXFT</sub>  | Data/Clock Fall Time (20%–80%)       | —          | 75   |     |      | ps               |       |
| F <sub>TXC</sub>   | Differential Output Clock Frequency  | —          | 25   |     | 225  | MHz              |       |
| T <sub>TXC</sub>   | Differential Output Clock Period     | —          | 4.44 |     | 40   | ns               | _     |
| T <sub>DUTY</sub>  | Differential Output Clock Duty Cycle | —          | 40%  | _   | 60%  | T <sub>TXC</sub> | _     |
| T <sub>OJIT</sub>  | Differential Output Clock Jitter     |            |      |     | 0.25 | T <sub>BIT</sub> | 1, 2  |

Notes:

1. T<sub>BIT</sub> is 1/10 of Output Clock Period (refer to the applicable Silicon Image HDMI Transmitter Data Sheet).

2. Jitter is defined by the HDMI Specification.

#### Table 10. DDC and Local I<sup>2</sup>C Bus Timing

| Symbol              | Parameter                                          | Conditions             | Min | Тур | Max | Units | Notes |
|---------------------|----------------------------------------------------|------------------------|-----|-----|-----|-------|-------|
| T <sub>I2CDVD</sub> | SDA Data Valid delay from SCL falling edge         | C <sub>L</sub> =400 pF | _   | _   | 700 | ns    | —     |
| F <sub>DDC</sub>    | Operating frequency of TMDS DDC Ports              | C <sub>L</sub> =400 pF | _   | _   | 400 | KHz   | 1     |
| F <sub>I2C</sub>    | Operating frequency of Local I <sup>2</sup> C Port | C <sub>L</sub> =400 pF |     |     | 400 | KHz   | 2     |

Notes:

1. DDC (DSDAn/DSCLn) I<sup>2</sup>C ports meet Standard-mode I<sup>2</sup>C timing requirements to 400 KHz.

2. Local (CSDA/CSCL) I<sup>2</sup>C port meets Standard-mode I<sup>2</sup>C timing requirements to 400 KHz.

# **Pin Descriptions**

## **HDMI Receiver Port Pins**

| Name  | Pin | Туре | Dir   | Description                   |
|-------|-----|------|-------|-------------------------------|
| R0X0P | 68  | TMDS | Input | TMDS input Port 0 data pair.  |
| R0X0N | 67  |      |       |                               |
| R0X1P | 70  |      |       |                               |
| R0X1N | 69  |      |       |                               |
| R0X2P | 72  |      |       |                               |
| R0X2N | 71  |      |       |                               |
| R0XCP | 66  | TMDS | Input | TMDS input Port 0 clock pair. |
| R0XCN | 65  |      |       |                               |
| R1X0P | 4   | TMDS | Input | TMDS input Port 1 data pairs. |
| R1X0N | 3   |      |       |                               |
| R1X1P | 6   |      |       |                               |
| R1X1N | 5   |      |       |                               |
| R1X2P | 8   |      |       |                               |
| R1X2N | 7   |      |       |                               |
| R1XCP | 2   | TMDS | Input | TMDS input Port 1 clock pair. |
| R1XCN | 1   |      |       |                               |
| R2X0P | 14  | TMDS | Input | TMDS input Port 2 data pairs. |
| R2X0N | 13  |      |       |                               |
| R2X1P | 16  |      |       |                               |
| R2X1N | 15  |      |       |                               |
| R2X2P | 18  |      |       |                               |
| R2X2N | 17  |      |       |                               |
| R2XCP | 12  | TMDS | Input | TMDS input Port 2 clock pair. |
| R2XCN | 11  |      |       |                               |
| R3X0P | 22  | TMDS | Input | TMDS input Port 3 data pairs. |
| R3X0N | 21  |      | _     |                               |
| R3X1P | 24  |      |       |                               |
| R3X1N | 23  |      |       |                               |
| R3X2P | 26  |      |       |                               |
| R3X2N | 25  |      |       |                               |
| R3XCP | 20  | TMDS | Input | TMDS input Port 3 clock pair. |
| R3XCN | 19  |      | _     |                               |

### **HDMI Transmitter Port Pins**

| Name | Pin | Туре | Dir    | Description                                             |
|------|-----|------|--------|---------------------------------------------------------|
| TX0P | 60  | TMDS | Output | HDMI Output Port Data.                                  |
| TX0N | 61  |      |        | TMDS Low Voltage Differential Signal output data pairs. |
| TX1P | 58  |      |        |                                                         |
| TX1N | 59  |      |        |                                                         |
| TX2P | 56  |      |        |                                                         |
| TX2N | 57  |      |        |                                                         |
| ТХСР | 62  | TMDS | Output | HDMI Output Port Clock.                                 |
| TXCN | 63  |      |        | TMDS Low Voltage Differential Signal output clock pair. |

| Name    | Pin | Туре                   | Dir    | Description                                                                                      |
|---------|-----|------------------------|--------|--------------------------------------------------------------------------------------------------|
| DSDA0   | 29  | Schmitt                | Input  | DDC I <sup>2</sup> C Data for respective port.                                                   |
| DSDA1   | 33  | 5-V tolerant           |        | These pins are true open drain, and do not pull down to ground when                              |
| DSDA2   | 39  | Open drain             | Output | power is not applied.                                                                            |
| DSDA3   | 43  | <u>^</u>               |        |                                                                                                  |
| DSCL0   | 30  | Schmitt                | Input  | DDC I <sup>2</sup> C Clock for respective port.                                                  |
| DSCL1   | 34  | 5-V tolerant           |        |                                                                                                  |
| DSCL2   | 40  |                        |        |                                                                                                  |
| DSCL3   | 44  |                        |        |                                                                                                  |
| R0PWR5V | 32  | Power                  | Input  | 5 V Port detection input for respective port.                                                    |
| R1PWR5V | 36  |                        |        | Connect to 5 V signal from HDMI input connector. These pins require a                            |
| R2PWR5V | 42  |                        |        | 10 $\Omega$ series resistor and at least a 1 $\mu$ F capacitor to ground. A 100 k $\Omega$ pull- |
| R3PWR5V | 46  |                        |        | down resistor is also required for these pins.                                                   |
| HPD0    | 31  | $\operatorname{HPD}^*$ | Output | Hot Plug Detect Output for respective port.                                                      |
| HPD1    | 35  |                        | -      | The nominal 1 k $\Omega$ output resistance is included in the chip.                              |
| HPD2    | 41  |                        |        | Connect to the HOTPLUG pin of the HDMI input connector.                                          |
| HPD3    | 45  |                        |        |                                                                                                  |
|         |     |                        |        |                                                                                                  |
| DSDA4   | 47  | Schmitt                | Input  | DDC I <sup>2</sup> C Data for VGA port.                                                          |
|         |     | 5-V tolerant           | r      | This pin is a true open drain, and does not pull down to ground when                             |
|         |     | Open drain             | Output | power is not applied.                                                                            |
| DSCL4   | 48  | Schmitt                | Input  | DDC I <sup>2</sup> C Clock for VGA port.                                                         |
| DUCET   | 10  | 5-V tolerant           | input  | bber e clock for y on port.                                                                      |
| R4PWR5V | 49  | Power                  | Input  | 5 V Standby power or 5 V power from VGA port (Port 4).                                           |
|         |     |                        | 1      | If this signal is connected to the VGA cable then it requires a 10 $\Omega$ series               |
|         |     |                        |        | resistor and at least a 1 $\mu$ F capacitor to ground. If connected to a local                   |
|         |     |                        |        | power supply, the resistor is not needed but a capacitor of at least 1 $\mu$ F is                |
|         |     |                        |        | recommended. If not used, this pin should be left unconnected.                                   |

\*Note: See the HPD Output Signal section.

### **Configuration Pins**

| Name       | Pin | Туре         | Dir    | Description                                                                                |
|------------|-----|--------------|--------|--------------------------------------------------------------------------------------------|
|            |     |              |        |                                                                                            |
| TPWR_CI2CA | 55  | LVTTL        | Input  | I <sup>2</sup> C Slave Address input / Transmit Power Sense Output.                        |
|            |     | 5-V tolerant |        | At the end of power-on-reset (POR), this pin is used as an input to latch                  |
|            |     |              |        | the I <sup>2</sup> C sub-address. The level on this pin is latched when the POR            |
|            |     |              |        | transitions from the asserted state to the de-asserted state. After completion             |
|            |     | LVTTL        | Output | of POR, this pin is used as the TPWR output, indicating that the selected                  |
|            |     | 8 mA         |        | HDMI input port is receiving an active TMDS clock. This pin has an                         |
|            |     |              |        | internal pull-up to the MICOMVCC33 power supply. If this signal is                         |
|            |     |              |        | pulled-down, a 4.7 k $\Omega$ resistor should be used.                                     |
| CSDA       | 53  | Schmitt      | Input  | Local Configuration/Status I <sup>2</sup> C Data.                                          |
|            |     | 5-V tolerant | •      | Chip configuration/status is accessed using this I <sup>2</sup> C port. This pin is a true |
|            |     | Open drain   | Output | open drain, and does not pull down to ground when power is not applied.                    |
| CSCL       | 54  | Schmitt      | Input  | Local Configuration/Status I <sup>2</sup> C Clock.                                         |
| CSCL       | 54  | 5-V tolerant | mput   | Local Configuration/Status I C Clock.                                                      |
| DIT        | 52  |              | 0.45.4 |                                                                                            |
| INT        | 52  | LVTTL        | Output | Interrupt Output.                                                                          |
|            |     | 8 mA         |        | Configurable as either an LVTTL push-pull output or an open drain                          |
|            |     | or           |        | output. This pin has an internal pull-up resistor.                                         |
|            |     | Open drain   |        |                                                                                            |
| RSVDL      | 10  | Reserved pin | —      | These pins must be tied to ground with a 10 k $\Omega$ or less resistor during             |
| RSVDL      | 28  |              |        | normal operation. Silicon Image recommends that these pins be connected                    |
|            |     |              |        | directly to ground.                                                                        |

## **CEC** Pins

| Name  | Pin | Туре          | Dir    | Description                                                             |
|-------|-----|---------------|--------|-------------------------------------------------------------------------|
| CEC_A | 50  | CEC Compliant | Input  | HDMI compliant CEC I/O used for interfacing to CEC devices.             |
|       |     | 5-V tolerant  |        | This signal complies with the CEC specification. It connects to the CEC |
|       |     | CEC Compliant | Output | pins of all HDMI connectors in the system.                              |
|       |     |               |        | This pin has an internal pull-up resistor.                              |
| CEC_D | 51  | LVTTL         | Input  | CEC interface to local system.                                          |
|       |     | Schmitt       |        | This signal typically connects to a local CPU if the CEC functions are  |
|       |     | 5-V tolerant  |        | performed by the CPU directly, and not by the CEC controller inside the |
|       |     | Open drain    | Output | device. This pin has an internal pull-up resistor.                      |

### **Power and Ground Pins**

| Name            | Pin       | Туре   | Description                                                                                                                                                                  |
|-----------------|-----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VCC33           | 9, 27, 64 | Power  | Analog and digital core VCC. Must be supplied at 3.3 V.                                                                                                                      |
| MICOM_<br>VCC33 | 37        | Output | During normal mode, this pin provides 3.3 V<br>power to an external microcontroller. The<br>maximum output current is 30 mA. This pin<br>requires a 1µF capacitor to ground. |
| SBVCC33         | 38        | Power  | 3.3 V standby power. If 3.3 V standby mode is not used, this pin should be left unconnected.                                                                                 |
| ePad            | ePad      | Ground | <b>Must be connected to ground</b> .<br>All analog and digital ground planes are tied together to the ePad, which <i>must</i> be soldered to ground.                         |

## **Design Guidelines**

### **Downstream HDMI Receiver Equalizer Setting Recommendation**

HDMI is normally sent using a standard HDMI cable connected from an HDMI transmitter to an HDMI receiver. Many HDMI receivers contain active cable equalizer circuitry to improve the quality of the HDMI signal that may have been degraded by the cable. However, the HDMI output of the SiI9187B port processor usually interfaces over a relatively short PCB trace with a downstream HDMI receiver that is integrated into the video processor of the display. A cable equalizer circuit when used in this case may actually amplify noise and prevent the receiver from sampling the TMDS data correctly. Therefore, Silicon Image recommends turning off the equalizer in the receiver connected to the output of the SiI9187B port processor, or if the equalizer cannot be disabled, setting it to the minimum value.

### Decoupling

Silicon Image recommends that designers include decoupling and bypass capacitors at each power pin in the layout. An example is shown schematically in Figure 12. Place these components as close as possible to the SiI9187B device pins and avoid routing the traces through vias, if possible. Figure 13 shows an example of this layout configuration.

The recommended impedance of the ferrite is 10  $\Omega$  or more in the frequency range of 1–2 MHz.

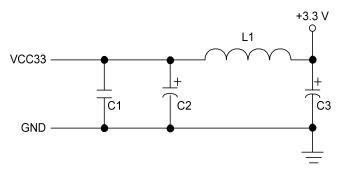



Figure 12. Decoupling and Bypass Schematic

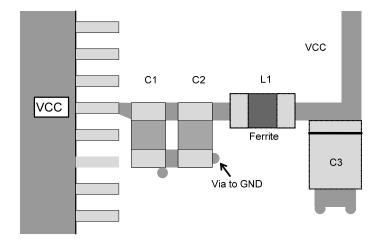



Figure 13. Decoupling and Bypass Capacitor Placement

## MICOM\_VCC33

MICOM\_VCC33 can only be used in 5 V Standby. In this case, the MICOM\_VCC33 pin is connected to the output of the internal 5 V to 3.3 V voltage regulator. A 1  $\mu$ F or greater capacitor connected from this pin to ground is required for all applications, even if MICOM\_VCC33 is not used by an external device. Figure 14 shows the loading of this pin.

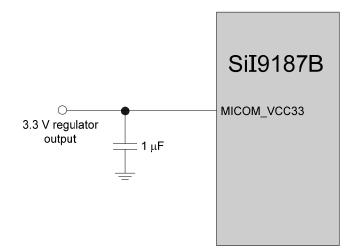
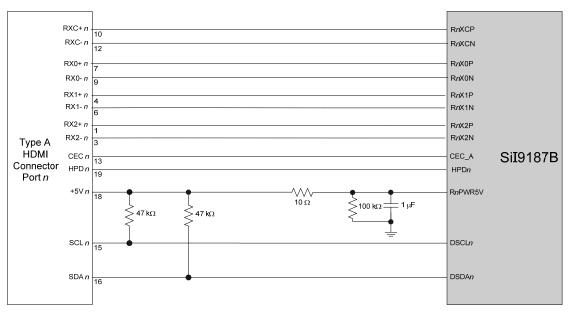




Figure 14. Schematic Showing Load on MICOM\_VCC33 Pin

### **R***n***PWR5V** Signals from HDMI Connector +5 V Pin

The R[0–3]PWR5V signals connect to the +5 V signals of the HDMI connectors. These signals carry +5 V from the HDMI source over the HDMI cable.

Whenever the R[0–3]PWR5V signals connect to the HDMI connector, a 1  $\mu$ F capacitor and a 100 k $\Omega$  resistor to ground and 10  $\Omega \pm 5\%$  series resistor is required. If a port is not used, then only the 100 k $\Omega$  pull-down resistor is required. The schematic for this circuit is shown in the lower part of Figure 15; this connection should be repeated for all HDMI ports.





### **R4PWR5V** Signal

The R4PWR5V signal can be used for two purposes:

- to supply standby 5 V power from the local system
- to connect to the +5 V of the analog VGA connector.

Whenever the R4PWR5V signal connects to the VGA connector +5 V power, a 1  $\mu$ F capacitor and 10  $\Omega \pm 5\%$  series resistor is required on this signal. If connected to a local power supply the resistor is not needed but a capacitor of at least 1  $\mu$ F is recommended. If the R4PWR5V is not used, this pin should be left unconnected.

### **Layout Guidelines**

The following layout guidelines help ensure signal integrity, and Silicon Image encourages the board designer to follow them whenever possible.

- Place the input connectors that carry the TMDS signals as close as possible to the chip
- Route the differential lines as directly as possible from the connector to the device when using industry-standard HDMI connectors
- Route the two traces of each differential pair together
- Minimize the number of vias through which the signal lines are routed
- Lay out the two traces of each differential pair with a controlled differential impedance of  $100 \Omega$ .

Because Silicon Image devices are tolerant of skews between differential pairs, spiral skew compensation for path length differences is not required.

### **EMI Considerations**

Electromagnetic interference is a function of board layout, shielding, receiver component operating voltage, frequency of operation, and other factors. When attempting to control emissions, it is important not to place any passive components on the differential signal lines, except common-mode chokes and ESD protection devices as required. The differential signaling used in HDMI is inherently low in EMI if the routing recommendations noted in the Layout Guidelines section are followed.

The PCB ground plane should extend unbroken under as much of the port processor chip and associated circuitry as possible.

# **Package Information**

### ePad Requirements

The SiI9187B HDMI Port Processor is packaged in a 72-pin 10 mm x 10 mm QFN package with an ExposedPad<sup>TM</sup> (ePad) that is used for the electrical ground of the chip and for improved thermal transfer characteristics. The ePad dimensions are 4.7 mm x 4.7 mm with a tolerance of  $\pm 0.15$  mm. Soldering the ePad to the ground plane of the PCB is *required* to meet package power dissipation requirements at full speed operation and to connect the chip circuitry to electrical ground. A clearance of at least 0.25 mm should be designed on the PCB between the edge of the ePad and the inner edges of the lead pads to avoid electrical shorts.

The thermal land area on the PCB can use thermal vias to improve heat removal from the package. These thermal vias can double as ground connections, attaching internally in the PCB to the ground plane. An array of vias can be designed into the PCB beneath the package. For optimum thermal performance, Silicon Image recommends that the via diameter be 12 to 13 mils (0.30 to 0.33 mm) and the via barrel be plated with 1-ounce copper to plug the via. This plating helps avoid solder wicking inside the via during the soldering process, which can result in voids in solder between the exposed pad and the thermal land. If the copper plating does not plug the vias, the thermal vias can be tented with solder mask on the top surface of the PCB to avoid solder wicking inside the via during assembly. The solder mask diameter should be at least 4 mils (0.1 mm) larger than the via diameter.

Package stand-off is also a consideration. For a nominal stand-off of approximately 0.1 mm the stencil thickness of 5 to 8 mils should provide a good solder joint between the ePad and the thermal land.

Figure 16 on the next page shows the package dimensions of the SiI9187B package.

### **Package Dimensions**

These drawings are not to scale.

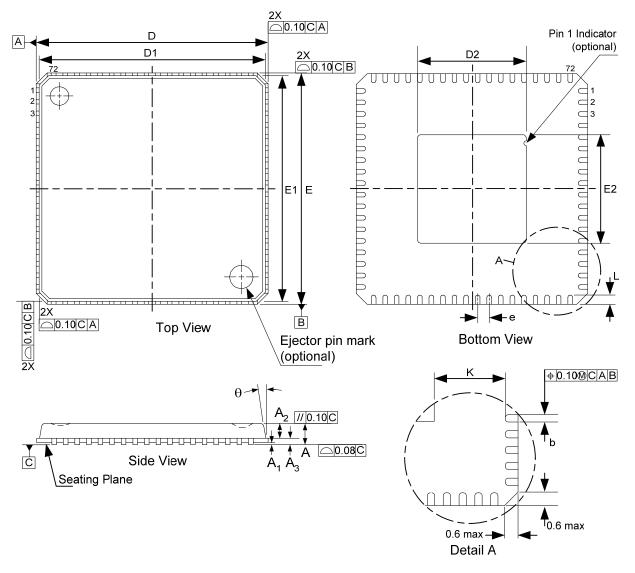



Figure 16. Package Diagram JEDEC Package Code MO-220

| Item | Description    | Min  | Тур       | Max  |
|------|----------------|------|-----------|------|
| Α    | Thickness      |      | 0.85      | 0.90 |
| A1   | Stand-off      | 0.00 | 0.01      | 0.05 |
| A2   | Body thickness | _    | 0.65      | 0.70 |
| A3   | Base thickness |      | 0.20 REF  |      |
| D    | Footprint      |      | 10.00 BSC | 2    |
| Е    | Footprint      |      | 10.00 BSC | 2    |
| D1   | Body size      |      | 9.75 BSC  |      |
| E1   | Body size      |      | 9.75 BSC  |      |

| Item | Description           | Min  | Тур      | Max  |
|------|-----------------------|------|----------|------|
| D2   | ePad size             | 4.55 | 4.70     | 4.85 |
| E2   | ePad size             | 4.55 | 4.70     | 4.85 |
| b    | Plated lead width     | 0.18 | 0.23     | 0.30 |
| e    | Lead pitch            |      | 0.50 BSC |      |
| K    | ePad-to-pin clearance | 0.20 | _        | _    |
| L    | Lead foot length      | 0.30 | 0.40     | 0.50 |
| θ    | Lead foot angle       |      | _        | 14°  |

### **Marking Specification**

This drawing is not to scale.

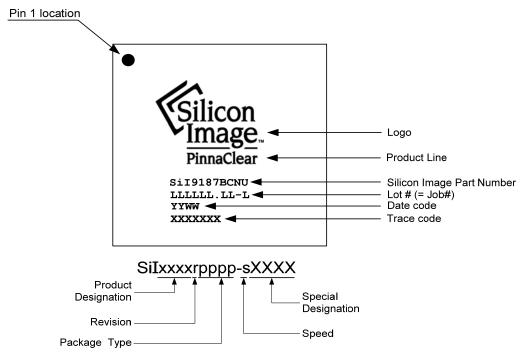



Figure 17. Marking Diagram

## **Ordering Information**

**Production Part Numbers:** 

| Device   | Part Number |
|----------|-------------|
| Standard | SiI9187BCNU |

The universal package may be used in lead-free and ordinary process lines.

# References

### **Standards Documents**

Table 9 lists the abbreviations of the standards mentioned in this document. Contact the responsible standards groups listed in Table 10 for more information on these specifications.

#### **Table 9. Referenced Documents**

| Abbreviation | Standards publication, organization, and date                                                            |
|--------------|----------------------------------------------------------------------------------------------------------|
| HDMI         | High Definition Multimedia Interface, Revision 1.3a, HDMI Consortium; November 2006                      |
| HCTS         | HDMI Compliance Test Specification, Revision 1.3c, HDMI Consortium; July 2008.                           |
| HDCP         | High-bandwidth Digital Content Protection, Revision 1.3, Digital-Content Protection, LLC; December 2006. |
| E-EDID       | Enhanced Extended Display Identification Data Standard, Release A Revision 1, VESA; Feb. 2000.           |
| E-DID IG     | VESA EDID Implementation Guide, VESA; June 2001.                                                         |
| EDDC         | Enhanced Display Data Channel Standard, Version 1, VESA; September 1999.                                 |

#### **Table 10. Standards Groups Contact Information**

| Standards Group | Web URL                   | e-mail              | phone        |
|-----------------|---------------------------|---------------------|--------------|
| ANSI/EIA/CEA    | http://global.ihs.com     | global@ihs.com      | 800-854-7179 |
| VESA            | http://www.vesa.org       |                     | 408-957-9270 |
| DVI             | http://www.ddwg.org       | ddwg.if@intel.com   | —            |
| HDCP            | http://www.digital-cp.com | info@digital-cp.com | —            |
| HDMI            | http://www.hdmi.org       | admin@hdmi.org      | —            |

### **Silicon Image Documents**

Table 11 lists Silicon Image documents that are available from your Silicon Image sales representative.

## Table 11. Silicon Image Publications

| Document    | Title                                                        |
|-------------|--------------------------------------------------------------|
| SiI-PR-1038 | SiI9287B and SiI9187B Port Processors Programmer's Reference |
| SiI-PR-0041 | CEC Programming Interface (CPI) Programmer's Reference       |

#### Disclaimers

These materials are provided on an "AS IS" basis. Silicon Image, Inc. and its affiliates disclaim all representations and warranties (express, implied, statutory or otherwise), including but not limited to: (i) all implied warranties of merchantability, fitness for a particular purpose, and/or non-infringement of third party rights; (ii) all warranties arising out of course-of-dealing, usage, and/or trade; and (iii) all warranties that the information or results provided in, or that may be obtained from use of, the materials are accurate, reliable, complete, up-to-date, or produce specific outcomes. Silicon Image, Inc. and its affiliates assume no liability or responsibility for any errors or omissions in these materials, makes no commitment or warranty to correct any such errors or omissions or update or keep current the information contained in these materials, and expressly disclaims all direct, indirect, special, incidental, consequential, reliance and punitive damages, including WITHOUT LIMITATION any loss of profits arising out of your access to, use or interpretation of, or actions taken or not taken based on the content of these materials.

Silicon Image, Inc. and its affiliates reserve the right, without notice, to periodically modify the information in these materials, and to add to, delete, and/or change any of this information.

Notwithstanding the foregoing, these materials shall not, in the absence of authorization under U.S. and local law and regulations, as required, be used by or exported or re-exported to (i) any U.S. sanctioned or embargoed country, or to nationals or residents of such countries; or (ii) any person, entity, organization or other party identified on the U.S. Department of Commerce's Denied Persons or Entity List, the U.S. Department of Treasury's Specially Designated Nationals or Blocked Persons List, or the Department of State's Debarred Parties List, as published and revised from time to time; (iii) any party engaged in nuclear, chemical/biological weapons or missile proliferation activities; or (iv) any party for use in the design, development, or production of rocket systems or unmanned air vehicles.

#### **Products and Services**

The products and services described in these materials, and any other information, services, designs, know-how and/or products provided by Silicon Image, Inc. and/or its affiliates are provided on as "AS IS" basis, except to the extent that Silicon Image, Inc. and/or its affiliates provides an applicable written limited warranty in its standard form license agreements, standard Terms and Conditions of Sale and Service or its other applicable standard form agreements, in which case such limited warranty shall apply and shall govern in lieu of all other warranties (express, statutory, or implied). EXCEPT FOR SUCH LIMITED WARRANTY, SILICON IMAGE, INC. AND ITS AFFILIATES DISCLAIM ALL REPRESENTATIONS AND WARRANTIES (EXPRESS, IMPLIED, STATUTORY OR OTHERWISE), REGARDING THE INFORMATION, SERVICES, DESIGNS, KNOW-HOW AND PRODUCTS PROVIDED BY SILICON IMAGE, INC. AND/OR ITS AFFILIATES, INCLUDING BUT NOT LIMITED TO, ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND/OR NON-INFRINGEMENT OF THIRD PARTY RIGHTS. YOU ACKNOWLEDGE AND AGREE THAT SUCH INFORMATION, SERVICES, DESIGNS, KNOW-HOW AND PRODUCTS HAVE NOT BEEN DESIGNED, TESTED, OR MANUFACTURED FOR USE OR RESALE IN SYSTEMS WHERE THE FAILURE, MALFUNCTION, OR ANY INACCURACY OF THESE ITEMS CARRIES A RISK OF DEATH OR SERIOUS BODILY INJURY, INCLUDING, BUT NOT LIMITED TO, USE IN NUCLEAR FACILITIES, AIRCRAFT NAVIGATION OR COMMUNICATION, EMERGENCY SYSTEMS, OR OTHER SYSTEMS WITH A SIMILAR DEGREE OF POTENTIAL HAZARD. NO PERSON IS AUTHORIZED TO MAKE ANY OTHER WARRANTY OR REPRESENTATION CONCERNING THE PERFORMANCE OF THE INFORMATION, PRODUCTS, KNOW-HOW, DESIGNS OR SERVICES OTHER THAN AS PROVIDED IN THESE TERMS AND CONDITIONS.



1060 E. Arques Avenue Sunnyvale, CA 94085 T 408.616.4000 F 408.830.9530 www.siliconimage.com



1060 E. Arques Avenue Sunnyvale, CA 94085 T 408.616.4000 F 408.830.9530 <u>www.siliconimage.com</u>

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Video ICs category:

Click to view products by Lattice manufacturer:

Other Similar products are found below :

M21328G-12 TW2964-LA2-CR TW9903-FB TW9919-PE1-GR TW9910-NA2-GR TW9900-TA1-GR PI3HDX511DZLEX PI7VD9008ABHFDE M21324G-13 PI3VDP411LSAZBEX PI3VDP411LSTZBEX PI3VDP411LSRZBEX PI3HDX511EZLSEX TW8836AT-LB2-GET ADV7535BCBZ-RL7 TW8846-LA1-CE PI3HDX511FZLCIEX BH76912GU-E2 TW9910-NB2-GR TVP5160PNP TVP5151PBSR BA7603F-E2 BA7606FS-E2 BA7626F-E2 BA7653AF-E2 BH76112HFV-TR BH76361FV-E2 BH76362FV-E2 GS2970AIBTE3 ADV7280AWBCPZ-RL GS12281-INE3 LMH1228RTVT TVP51511ZQC CYV15G0203TB-BGXC LMH1208RTVT MU82645DES S LM6B BH76106HFV-TR BH76206HFV-TR ADV7611BSWZ-P-RL ADV7280BCPZ-M ADV7280KCPZ ADV7281WBCPZ-MA ADV7283WBCPZ ADV7283BCPZ ADV7180BCP32Z-RL ADV7611BSWZ ADA4430-1YKSZ-R7 ADV7393BCPZ-REEL ADV7179KCPZ-REEL AD8074ARUZ