

LED lighting Output Current Ripple Suppressor for Dimmable LED Constant Current System

REV. 00

General Description

The LD6802/J is an output current ripple suppressor for LED lighting. It supports easy use at output terminal with isolation or non-isolation active PFC architecture with constant current.

The LD6802/J is easy to achieve current ripple limitation with minimum output capacitance and built-in adjustable over voltage protection / multi-level over current protection and internal clamp zener diode can be used at wide range LED voltage application. The device is the SOT-26 package to minimize the PCB size well as component counts.

Features

- Controller for adaptive 100Hz/120Hz current ripple remover
- Built-in clamping circuit for input voltage clamping
- 6V drive voltage for MOSFET control
- Programmable amplitude of LED current ripple
- Programmable maximum cathode voltage of LED
- Programmable maximum LED current
- Support wide output current variation
- Lamp short or open circuit protection
- Built-in internal over temperature protection
- SOT-26 Package

Applications

- LED Driver Application for Non-Ripple Current
- Analog Dimming LED power (Include TRIAC dimming system)

Typical Application

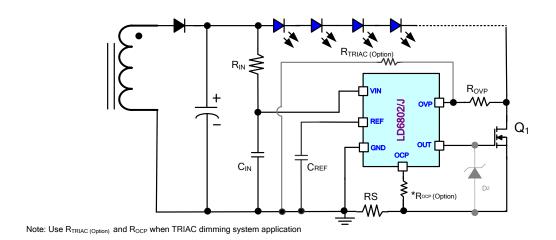
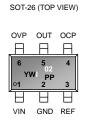
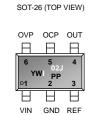



Figure.1 Reference Circuit Design



Pin Configuration

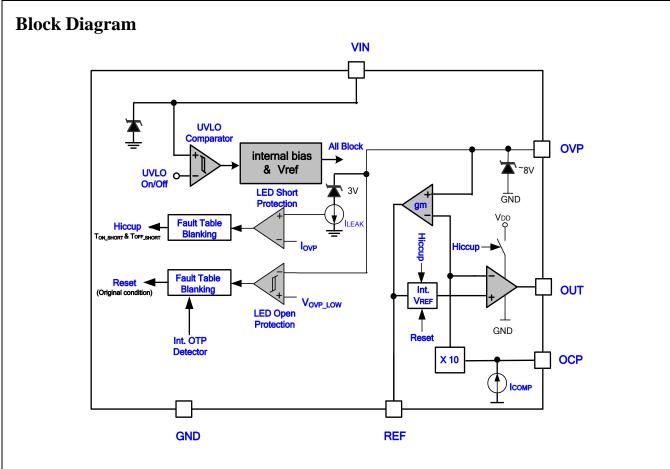
: Year code (D: 2004, E: 2005.....) : Week code : Production code

: Year code (D: 2004, E: 2005.....) : Week code : Production code : LD6802J

Ordering Information

Part number	Package	Top Mark	Shipping
LD6802 GL	SOT-26	YWI/02/PP	3000 /tape & reel
LD6802J GL	SOT-26	YWI/02J/PP	3000 /tape & reel

The LD6802/J is ROHS compliant/green packaged.


Protection Mode

Part number	Open LED Protection	Short LED Protection	Internal OTP	
LD6802/JGL	Auto-recovery OUT pin is High	Auto-recovery Hiccup 250µs/250ms	Auto-recovery OUT pin is High	

Pin Descriptions

LD6802 Pin No.	LD6802J Pin No.	NAME	FUNCTION	
1	1	VIN	Power Supply for the device. Internal Zener Clamp for wide range LED light bar voltage. Connecting a R_{IN} to supply voltage source for current limit and a capacitor to GND for filter out noise	
2	2	GND	Ground	
3	3	REF	LED Reference Voltage, It's essential to connect REF pin with a ceramic capacitor to filter the 100/120Hz ripple.	
4	5	OCP	LED current feedback and maximum LED current limit and source compensation current for low dimming operation.	
5	4	OUT	This pin connects the MOSFET gate to regulate LED current ripple.	
6	6	OVP	Over voltage Protection for Short LED protection	

Absolute Maximum Ratings

VIN	-0.3V ~ 33V
VIN Shunt Regulation Pull-down Current	3mA
OVP	-0.3V ~ 8V
VIN Shunt Regulation Pull-down Current	1.5mA
OCP, OUT	-0.3V ~ 16V
REF	-0.3V ~ 6V
Maximum Junction Temperature	150°C
Storage Temperature Range	-65°C ~ 150°C
Package Thermal Resistance (SOT-26, θJA)	200°C/W
Power Dissipation (SOT-26, Tj=125°C, Ta=85°C)	200mW
Lead temperature (Soldering, 10sec)	260°C
ESD Voltage Protection, Human Body Model	2.5KV
ESD Voltage Protection, Machine Model	250 V

Caution:

Stress exceeding maximum ratings may damage the device. Maximum ratings are stress ratings only. Functional operation above the recommended operating conditions is not implied. Extended exposure to stress above recommended operating conditions may affect device reliability.

Recommended Operating Conditions

Item	Min.	Max.	Unit
Operating Junction Temperature Note3,Note5	-40	125	°C
VIN Operation Range	9	30	V
VIN Operation Current	0.5	2.5	mA
VIN pin Filter Capacitor to GND	1	4.7	μF
REF pin Capacitor to GND	0.47	1.5	μF
OCP pin Filter Resistance (*Rocp)	-	1	kΩ
OVP pin Resistance to GND(*RTRIAC)	750	1500	kΩ
Zener Diode Voltage (Dz) between gate and source of NMOS	5.6	7.5	٧

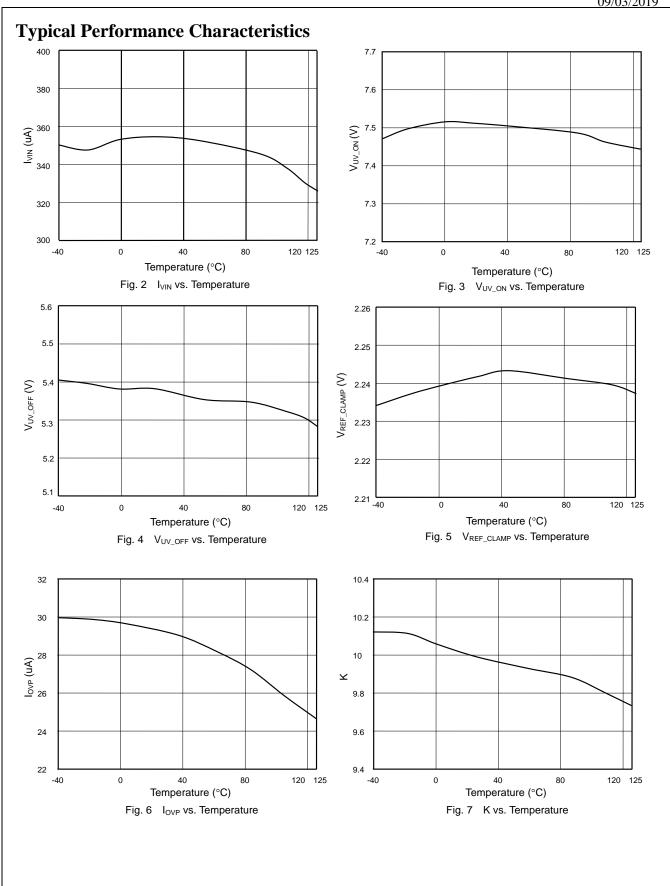
Note:

- 1) Exceeding these ratings may damage the device.
- 2) This product guarantees robust performance from -20°C to 105°C ambit temperature. The junction temperature range specification is assured by design, characterization and correlation with statistical process controls.
- 3) When operation at harsh environment condition, as temperature and humidity or climate change ...etc . Please pay attention to impedance variation between pin to pin or ground to avoid ripple remover closing loop and being failure.
- 4) When use dimmable power system by 0-10V or TRIAC dimmer, please consider *RREF, *CREF, *ROCP design parameters.
- 5) When operation temperature is lower than -25°C, please pay attention to the temperature coefficient of capacitance and ESR diversification of output aluminum electrolytic capacitors.

Electrical Characteristics

($V_{IN}=15V$, $T_A=25^{\circ}C$ unless otherwise specified.)

PARAMETER	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNITS
Supply Voltage (VIN Pin)						
Shunt Regulator Voltage	*; When shunt regulation pull-down current is ~2mA	VIN_CLAMP	29.0	30.5	32.0	٧
Shunt Regulator Pull-Down Current	V_{IN} = 33V, RIN=1K Ω	I _{IN_SINK}		2	3	mA
Operating Current	10V≦VIN≦27V; C _{OUT} =3000pF	I _{VIN}		350		μА
UVLO(OFF)		V _{UV_OFF}	4.5	5.5	6.5	V
UVLO(ON)		Vuv_on	6.5	7.5	8.5	V
Gate Drive Output (OUT Pin)						
Maximum Output voltage		Vouт	5.0	6.0	7.5	V
GM	*; V _{OVP} =0~3V	G.M		6		μ A /V
CURRENT SENSE (OCP Pin)						
Over Current Limited Threshold Voltage	$After V_{CC} \ge V_{UV_ON}$	V _{OCP_LIM}	0.27	0.32	0.37	V
Blanking time	*	T _{OCP_LIM}		100		ns
Recover Delay time	*; V _{OUT} is Low Level	Tocp		250		μS
LED Reference Voltage to LED Current rate	Ratio is V _{REF} / V _{OCP}	К	9.5	10	10.5	-
Maximum Output Current	When $V_{REF} \leq 0.1V$	ICOMP_MAX		15		μΑ
Enable Output Current by REF Voltage	Increase source current beginning level ; ICOMP ≥ 0.1uA	Vcomp_l	1.40	1.55	1.70	٧
REFERENCE FILTER (REF Pir	n)					
REF Regulation Operation Voltage	Normal operation mode	VREF_CLAMP	2.10	2.25	2.40	V
REF Max. Clamp Voltage	*	V _{REF_MAX}	2.40		3.2	V
Internal REF Voltage before IC start up (Pre-charging)	*; When VCC < V _{UV_ON} -1.5V	V _{REF_INT}		1.40		V
Internal REF Voltage when Open LED Protection is trigged	When OVP pin is pull to GND	V _{REF_OPEN}	0.85	1.00	1.15	V
Internal REF Voltage when Short LED Protection is trigged	Here is de-bounce ~8μs	V _{REF_SHORT}	1.8	2.0	2.3	V



($V_{IN}=15V$, $T_A=25^{\circ}C$ unless otherwise specified.)

PARAMETER	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNITS	
Over Voltage Protection (OVP	Over Voltage Protection (OVP pin)						
Drain voltage of NMOSFET Threshold	When R _{OVP} =100Kohm	Vovp_drain	5.0	6.0	7.0	V	
Short LED Protection Sink Current		lovp	25	30	35	μА	
Short LED Protection Delay Time	*	T _{ON_SHORT}	120	280	480	μS	
Short LED Protection Reset Time	*	T _{OFF_SHORT}	120	280	480	ms	
LED Open Protection Threshold Voltage		V _{OVP_LOW}	2	8	15	mV	
LED Open Protection Recovery Voltage	*	V _{OVP_HIGH}		2		mV	
LED Open Protection Trigger De-bounce	*	T _{OVP_LOW}		40		ms	
Internal Over Temperature Pro	Internal Over Temperature Protection						
OTP Trip level	*	OTP		140		°C	
OTP Hysteresis	*	Δ OTP		30		°C	

^{*:} Guaranteed by Design.

Application Information Basic Description

LD6802/J is an external MOSFET controller for LED lighting current ripple eliminated. The REF pin connection a filter capacitor to GND to suppressor the 100/120Hz LED current ripple. In the start-up process, the LD6802/J charges the REF capacitor quickly to avoid LED voltage overshoot this time. And the device provide adjustable short LED string protection, LED string open protection and programmable over current limiting.

Theory of Operation

The LED light bar and LD6802/J are both supplied by an AC/DC current source. The drain of external MOSFET is connected to the cathode of LED light bar. A sensing resistor R_{OCP} is connected between the source of MOSFET and GND. The gate is connected to the OUT pin of LD6802/J.

The LD6802/J detects the OVP pin and OCP pin voltage to adjust C_{REF} Voltage and control the external MOSFET operate in linear/saturation region. When external MOSFET working in the saturation region, the LED current ripple transfer to LED voltage on MOSFET. If the drain Voltage of external MOSFET break away saturation region, the LED current ripple suppressor will invalid naturally.

Reference Voltage to LED Current Ratio and LED Current Limit

The V_{REF} is regulation the LED current to limit threshold. The V_{REF} operation voltage is limited to 2.25V around on REF pin. So that the LED limit current threshold voltage is

$$V_{REF} \cong K \times (I_{LED} \times R_S)$$

The suggestion for normal LED operation current is $50\%\sim60\%$ of LED limit current threshold (Normally, V_{REF} is $1.0\sim1.5V$). It avoids the larger LED peak current to

trigger over current limit protection on OCP pin (VocP_LIM $\cong 0.30$ V) or produce MOSFET over current issue as short output circuit. Then setting REF pin voltage must be higher than output ripple voltage for real LED lamp. The equation is

 $V_{REF_CLAMP} > V_{REF} \ge (V_{LED,P-P} \div 2) + (R_{ON_MOS} \times I_{LED,MEAN})$

Where V_{LED,P-P} is a ripple voltage of LED lamp between output terminal to ground, R_{ON_MOS} is turn on resistance of MOSFET, I_{LED,MEAN} is an average current of LED lamp.

LED String Open Protection

When OVP pin voltage is under about VovP_Low and TovP_Low de-bounce time, the LD6802/J will go to LED open protection stage. This time OUT pin and VREF voltage keep 1.0V until the LED string replies connection. If OVP pin voltage is higher than 30mV around, the LD6802/J will be into saturation region and enable ripple remover function.

LED String Short Protection

If OVP pin voltage is larger than 3V in the condition of IOVP \geq 30µA and continuous T_{ON_SHORT}, the LD6802/J will change REF limit voltage to 1.0V and turn off MOSFET until T_{OFF_SHORT}. Then, the overvoltage protection state is reset. The programmed overvoltage protection is calculated as below:

 $V_{OVP_TH} = 3V \times [(R_{TRIAC} + R_{OVP})/R_{TRIAC}] + (R_{OVP} \times 30 \mu A)$ Where V_{OVP_TH} is drain voltage of MOSFET. If LED short abnormal test result is fail, it probably damages RS or MOS. The suggested solution is to add a 6.8V zener diode between gate and source pin of MOSFET.

LED Current Limit

The voltage of OCP pin is limited to 0.3V internally. So the current of MOSFET limitation is 0.30V/R_{OCP}. Current limit can protect the FET and current resistor when LED is short connected or HOT-PLUG. The function of current limit is higher priority than drain voltage limit. It

means that the voltage on drain of MOSFET is not limited when LED current exceed current limit threshold.

Shunt Regulation Voltage and Current on VIN Pin

The LD6802/J support wide range LED light bar application that integrated zener diode ($V_{IN_CLAMP} \sim 30V$) which is about 2.5 mA sink current and V_{UV_ON} is to 7.5V.

So the value of R_{IN} that is connected between V_{LED} and V_{IN} of LD6802/J, we can be calculated as below:

$$R_{IN} \leq (V_{LED_MIN} - V_{UV_ON}) \div 0.5mA$$

and
$$R_{IN} \ge (V_{LED_OPEN} - V_{IN_CLAMP}) \div 3.0 mA$$

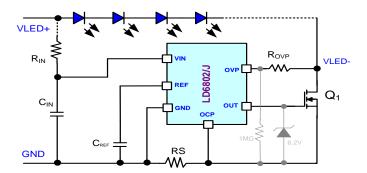
Where V_{LED} is a terminal voltage of LED lamp or auxiliary wire

Internal Thermal protection

Thermal protection limits total power dissipation in this device. When the junction temperature reaches ~140°C approximately, the LD6802/J will turn on the MOSFET completely until the IC's junction temperature cools down approximately ~40°C.

PCB Design Guideline

- 1. The bypass capacitor of V_{IN} should be placed as close as possible to the V_{IN} and GND pin of LD6802/J.
- The filter capacitor of C_{REF} should be placed as close as possible to the REF and GND pin of
- LD6802/J Controller should be placed near to the external MOSFET.
- To consider temperature requirement, we need add PCB pad or heat sink be to fit system specification.
- The area of LED current loop should be as small as possible.


 When LED has a short circuit condition, please check MOS's stress (ID, BVDSS, VGS ..ect) are enough.

LD6802/J design guide

Example:

System Parameter	Specification	System Parameter	Specification
V _{LED+}	30~60Vdc	I _{LED}	700mA+/-5%
V _{LED+_OVP}	72Vdc	I _{LED_RIPPLE}	< 10%
V _{LED+_P-P}	~2.0V	Rds,on	50m Ω

1. Base on the 30V zener integrated and the 7.5V VIN start threshold, the value of RVIN may satisfy the following conditions:

$$\frac{72V - 30V}{3.0 \text{mA}} < R_{IN} \le \frac{30V - 7.5V}{0.5 \text{mA}}$$

So, R_{IN} is recommend to $15k\Omega{\sim}40K\Omega.$ And C_{IN} value is recommend $0.1\mu F{\sim}1\mu F$

2. The maximum voltage of REF pin is ~2.25V in order to limit the maximum output current especially in the short circuit condition. The value of Rocp can be calculated as below:

(2.25V x 0.8)
$$\,\geq\,\,$$
 V $_{REF} \,\geq\,$ (2.0V $\,\div\,\,$ 2)+ [(R $_{ON_MOS}$ X I $_{LED}$) x K] =1.35

So, R_{OCP} is recommend to $0.14\Omega \sim 0.21\Omega$.

3. When the voltage of LED- reaches V_{OVP} which is set by the R_{OVP}, LD6802/J pulls down the VIN then turns off the MOSFET. In order to ensure nothing will be damaged in the short circuit condition, the value of R_{OVP} must satisfy the following conditions:

$$(V_{\text{LED MAX}} - V_{\text{UV ON}})/3 < V_{\text{OVPTH}} < (V_{\text{LED MIN}} - V_{\text{UV ON}})/2$$

$$V_{OVP\ TH} = 3V + (30\mu A \times R_{OVP})$$

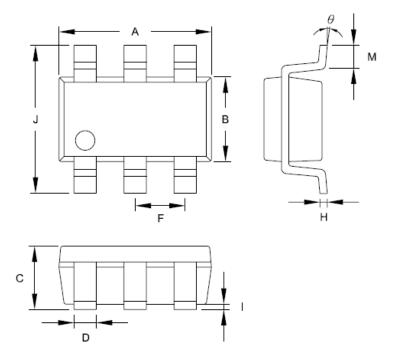
As this example, R_{OVP} is recommend to $250k\sim470k\Omega$.

4. The value of the capacitor between V_{REF} and GND can determine the final amplitude of the current ripple. It should be large enough in order to remove the current ripple of the LED string. However, too large capacitor may slow down the dynamic response. In normal condition, 0.47μF to 1.5μF on REF pin is relatively reasonable.

LD6802/J

09/03/2019

5. To ensure LD6802/J work properly, the R_{DS_ON} of MOSFET must be less than $250m\Omega$ at V_{GS} = 5V. The MOSFET will endure a large power shorting the output on the moment, so the appropriate package and R_{DS_ON} of the MOSFET is necessary. Our suggestion is the below table.


I _{LED} (mA)	Vth(V) of MOSFET	R _{DS_ON} (mΩ) of MOSFET at Vth=7.5V	BVDSS(V) of MOSFET
≧ 350		< 250	
$350 < I_{LED} \leq 500$	0.4	< 200	1.2 x Open Circuit Clamp
500 < I _{LED} ≤ 1000	2~4	< 100	Voltage (V _{LED_OPEN})
1000 < I _{LED} ≤ 1500		< 50	

6. When short the LED lamp, there is an overshoot on the drain of the MOSFET. The breakdown voltage of the MOSFET must be higher than V_{OVP}. A diode connected to LED+&LED- can reduce the overshoot when short.

Package Information

SOT-26

Symbol	Dimension in Millimeters		Dimensi	ons in Inches
Syllibol	Min	Max	Min	Max
А	2.692	3.099	0.106	0.122
В	1.397	1.803	0.055	0.071
С		1.450		0.057
D	0.300	0.500	0.012	0.020
F	0.95 TYP		0.037 TYP	
Н	0.080	0.254	0.003	0.010
1	0.050	0.150	0.002	0.006
J	2.600	3.000	0.102	0.118
М	0.300	0.600	0.012	0.024
Θ	0°	10°	0°	10°

Revision History

REV.	Date	Change Notice
00	09/03/2019	Original specification

Important Notice

Leadtrend Technology Corp. reserves the right to make changes or corrections to its products at any time without notice. Customers should verify the datasheets are current and complete before placing order.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LED Display Drivers category:

Click to view products by Leadtrend manufacturer:

Other Similar products are found below:

STP16CPP05XTTR SCT2027CSSG KP22306WGA WS9088AS7P GN1628T BCT3236EGH-TR HT1628BRWZ KP1192SPA KP1182SPA KP1262FSPA KP1072LSPA KP1191SPA KP18001WPA KP1221SPA GN1640T MBI5253GP-A MBI5124GM-B WS90561T S7P WS9821B S7P WS9032GS7P 74HC595D PJL4115SR SY8718A1ADC TM1651(TA2007) TM1616(TA1323C) TM1617(TA1323C) TM1628A TM1834 TM512AC TM512ADH TM1923 TM1805 TM1914A TM1829 TM1668(TA1323C) AW9963CSR WS2811M SY8703BABC SY7311AADC HT8402ARTZ MT7860 OB3638CPA JW1965BSOPA#TRPBF JW1680OSOPB#TRPBF TM3100 MT7938 SM2255E MT7712SH STI9287CA U6113