LZC-00WWOR

Key Features

- High Luminous Flux Density 12-die Warm White LED

- More than 40 Watt power dissipation capability
- Ultra-small foot print $-9.0 \mathrm{~mm} \times 9.0 \mathrm{~mm}$
- Industry lowest thermal resistance per package size $\left(0.7^{\circ} \mathrm{C} / \mathrm{W}\right)$
- Surface mount ceramic package with integrated glass lens
- Spatial color uniformity across radiation pattern
- Excellent Color Rendering Index
- JEDEC Level 1 for Moisture Sensitivity Level
- Lead (Pb) free and RoHS compliant
- Reflow solderable (up to 6 cycles)
- Emitter available with several MCPCB options
- Full suite of TIR secondary optics family available

Typical Applications

- General lighting
- Down lighting
- Architectural lighting
- Street lighting
- Stage and Studio lighting
- Refrigeration lighting
- Portable lighting

Description

The LZC-series 12-die White LED emitter has an electrical input power dissipation capability of more than 40 Watt electrical power in an extremely small package. With a small $9.0 \mathrm{~mm} \times 9.0 \mathrm{~mm}$ ultra-small footprint, this package provides exceptional luminous flux density. The high quality materials used in the package are chosen to minimize stresses and optimize light output which results in superior reliability and lumen maintenance. The robust product design thrives in outdoor applications with high ambient temperatures and high humidity.

Part number options

Base part number

Part number	Description
LZC-00WWOR-xxxx	LZC emitter
LZC-70WWOR-xxxx	LZC emitter on 1 channel 1×12 Star MCPCB
LZC-COWWOR-xxxx	LZC emitter on 2 channel $2 x 6$ Star MCPCB

Bin kit option codes

WW, Warm-White (2700K - 3500K)			
Kit number suffix	Min flux Bin	Color Bin Ranges	Description
0027	Y	8A1, 8A2, 8B1, 8B2, 8A4, 8A3, 8B4, 8B3, 8D1, 8D2, 8C1, 8C2, 8D4, 8D3, 8C4, 8C3	full distribution flux; 2700K ANSI CCT bin
0227	Y	8A2, 8B1, 8A3, 8B4, 8D2, 8C1, 8D3, 8C4	full distribution flux; 2700K ANSI CCT half bin
0427	Y	8A3, 8B4, 8D2, 8C1	full distribution flux; 2700K ANSI CCT quarter bin
0030	Y	$\begin{aligned} & \text { 7A1, 7A2, 7B1, 7B2, 7A4, 7A3, 7B4, 7B3, 7D1, 7D2, } \\ & \text { 7C1, 7C2, 7D4, 7D3, 7C4, 7C3 } \end{aligned}$	full distribution flux; 3000K ANSI CCT bin
0230	Y	7A2, 7B1, 7A3, 7B4, 7D2, 7C1, 7D3, 7C4	full distribution flux; 3000K ANSI CCT half bin
0430	Y	7A3, 7B4, 7D2, 7C1	full distribution flux; 3000K ANSI CCT quarter bin
0035	Y	$\begin{aligned} & \text { 6A1, 6A2, 6B1, 6B2, 6A4, 6A3, 6B4, 6B3, 6D1, 6D2, } \\ & 6 C 1,6 C 2,6 D 4,6 D 3,6 C 4,6 C 3 \end{aligned}$	full distribution flux; 3500K ANSI CCT bin
0235	Y	6A2, 6B1, 6A3, 6B4, 6D2, 6C1, 6D3, 6C4	full distribution flux; 3500K ANSI CCT half bin
0435	Y	6A3, 6B4, 6D2, 6C1	full distribution flux; 3500K ANSI CCT quarter bin

LEロEMGIח

Warm White Chromaticity Groups

Standard Chromaticity Groups plotted on excerpt from the CIE 1931 (2°) x-y Chromaticity Diagram. Coordinates are listed below in the table.

Warm White Bin Coordinates

Bin code	CIEx	CIEy									
6A1	0.3889	0.369	6 A2	0.3915	0.3768	6B1	0.3941	0.3848	6B2	0.3968	0.393
	0.3915	0.3768		0.3941	0.3848		0.3968	0.393		0.3996	0.4015
	0.3981	0.38		0.401	0.3882		0.404	0.3966		0.4071	0.4052
	0.3953	0.372		0.3981	0.38		0.401	0.3882		0.404	0.3966
	0.3889	0.369		0.3915	0.3768		0.3941	0.3848		0.3968	0.393
6A4	0.3953	0.372	6A3	0.3981	0.38	6B4	0.401	0.3882	6B3	0.404	0.3966
	0.3981	0.38		0.401	0.3882		0.404	0.3966		0.4071	0.4052
	0.4048	0.3832		0.408	0.3916		0.4113	0.4001		0.4146	0.4089
	0.4017	0.3751		0.4048	0.3832		0.408	0.3916		0.4113	0.4001
	0.3953	0.372		0.3981	0.38		0.401	0.3882		0.404	0.3966
6D1	0.4017	0.3751	6D2	0.4048	0.3832	6C1	0.408	0.3916	6C2	0.4113	0.4001
	0.4048	0.3832		0.408	0.3916		0.4113	0.4001		0.4146	0.4089
	0.4116	0.3865		0.415	0.395		0.4186	0.4037		0.4222	0.4127
	0.4082	0.3782		0.4116	0.3865		0.415	0.395		0.4186	0.4037
	0.4017	0.3751		0.4048	0.3832		0.408	0.3916		0.4113	0.4001
6D4	0.4082	0.3782	6D3	0.4116	0.3865	6C4	0.415	0.395	6C3	0.4186	0.4037
	0.4116	0.3865		0.415	0.395		0.4186	0.4037		0.4222	0.4127
	0.4183	0.3898		0.4221	0.3984		0.4259	0.4073		0.4299	0.4165
	0.4147	0.3814		0.4183	0.3898		0.4221	0.3984		0.4259	0.4073
	0.4082	0.3782		0.4116	0.3865		0.415	0.395		0.4186	0.4037
7A1	0.4147	0.3814	7A2	0.4183	0.3898	7B1	0.4221	0.3984	7B2	0.4259	0.4073
	0.4183	0.3898		0.4221	0.3984		0.4259	0.4073		0.4299	0.4165
	0.4242	0.3919		0.4281	0.4006		0.4322	0.4096		0.4364	0.4188
	0.4203	0.3833		0.4242	0.3919		0.4281	0.4006		0.4322	0.4096
	0.4147	0.3814		0.4183	0.3898		0.4221	0.3984		0.4259	0.4073
7A4	0.4203	0.3833	7A3	0.4242	0.3919	7B4	0.4281	0.4006	7B3	0.4322	0.4096
	0.4242	0.3919		0.4281	0.4006		0.4322	0.4096		0.4364	0.4188
	0.43	0.3939		0.4342	0.4028		0.4385	0.4119		0.443	0.4212
	0.4259	0.3853		0.43	0.3939		0.4342	0.4028		0.4385	0.4119
	0.4203	0.3833		0.4242	0.3919		0.4281	0.4006		0.4322	0.4096
7D1	0.4259	0.3853	7D2	0.43	0.3939	7C1	0.4342	0.4028	7C2	0.4385	0.4119
	0.43	0.3939		0.4342	0.4028		0.4385	0.4119		0.443	0.4212
	0.4359	0.396		0.4403	0.4049		0.4449	0.4141		0.4496	0.4236
	0.4316	0.3873		0.4359	0.396		0.4403	0.4049		0.4449	0.4141
	0.4259	0.3853		0.43	0.3939		0.4342	0.4028		0.4385	0.4119
7D4	0.4316	0.3873	7D3	0.4359	0.396	7C4	0.4403	0.4049	7C3	0.4449	0.4141
	0.4359	0.396		0.4403	0.4049		0.4449	0.4141		0.4496	0.4236
	0.4418	0.3981		0.4465	0.4071		0.4513	0.4164		0.4562	0.426
	0.4373	0.3893		0.4418	0.3981		0.4465	0.4071		0.4513	0.4164
	0.4316	0.3873		0.4359	0.396		0.4403	0.4049		0.4449	0.4141
8A1	0.4373	0.3893	8A2	0.4418	0.3981	8B1	0.4465	0.4071	8B2	0.4513	0.4164
	0.4418	0.3981		0.4465	0.4071		0.4513	0.4164		0.4562	0.426
	0.4475	0.3994		0.4523	0.4085		0.4573	0.4178		0.4624	0.4274
	0.4428	0.3906		0.4475	0.3994		0.4523	0.4085		0.4573	0.4178
	0.4373	0.3893		0.4418	0.3981		0.4465	0.4071		0.4513	0.4164
8A4	0.4428	0.3906	8A3	0.4475	0.3994	8B4	0.4523	0.4085	8B3	0.4573	0.4178
	0.4475	0.3994		0.4523	0.4085		0.4573	0.4178		0.4624	0.4274
	0.4532	0.4008		0.4582	0.4099		0.4634	0.4193		0.4687	0.4289
	0.4483	0.3919		0.4532	0.4008		0.4582	0.4099		0.4634	0.4193
	0.4428	0.3906		0.4475	0.3994		0.4523	0.4085		0.4573	0.4178
8D1	0.4483	0.3919	8D2	0.4532	0.4008	8C1	0.4582	0.4099	8C2	0.4634	0.4193
	0.4532	0.4008		0.4582	0.4099		0.4634	0.4193		0.4687	0.4289
	0.4589	0.4021		0.4641	0.4112		0.4695	0.4207		0.475	0.4304
	0.4538	0.3931		0.4589	0.4021		0.4641	0.4112		0.4695	0.4207
	0.4483	0.3919		0.4532	0.4008		0.4582	0.4099		0.4634	0.4193
8D4	0.4538	0.3931	8D3	0.4589	0.4021	8C4	0.4641	0.4112	8C3	0.4695	0.4207
	0.4589	0.4021		0.4641	0.4112		0.4695	0.4207		0.475	0.4304
	0.4646	0.4034		0.47	0.4126		0.4756	0.4221		0.4813	0.4319
	0.4593	0.3944		0.4646	0.4034		0.47	0.4126		0.4756	0.4221
	0.4538	0.3931		0.4589	0.4021		0.4641	0.4112		0.4695	0.4207

Luminous Flux Bins

Table 1:

	Minimum Luminous Flux $\left(\Phi_{\mathrm{V}}\right)$ $@ \mathrm{I}_{\mathrm{F}}=700 \mathrm{~mA}^{[1,2]}$ (Im)	Maximum Luminous Flux $\left(\Phi_{\mathrm{V}}\right)$ $@ \mathrm{I}_{\mathrm{F}}=700 \mathrm{~mA}^{[1,2]}$ (Im)
Y	1.357	1.696
Z	1,696	2,120
$C 2$	2,120	2,350

Notes for Table 1:

1. Luminous flux performance guaranteed within published operating conditions. LED Engin maintains a tolerance of $\pm 10 \%$ on flux measurements
2. Luminous Flux typical value is for all 12 LED dice operating concurrently at rated current.

Forward Voltage Bins

Table 2:

	Minimum	Maximum
Bin	Forward Voltage $\left(V_{F}\right)$	Forward Voltage $\left(V_{F}\right)$
Code	$@ I_{F}=700 \mathrm{~mA}^{[1,2]}$	$@_{\mathrm{F}}=700 \mathrm{~mA}^{[1,2]}$
	(V)	(V)
0	36.0	43.2

Notes for Table 2:

1. LED Engin maintains a tolerance of $\pm 0.48 \mathrm{~V}$ for forward voltage measurements.
2. Forward Voltage is binned with 12 LED dice connected in series. The actual LED is configured with two strings of 6 dice in series.

Absolute Maximum Ratings

Table 3:

Parameter	Symbol	Value	Unit
DC Forward Current at $\mathrm{T}_{\text {jmax }}=130 \mathrm{C}^{[1]}$	I_{F}	1200	mA
DC Forward Current at $\mathrm{T}_{\text {jmax }}=150 \mathrm{C}^{[1]}$	I_{F}	1000	mA
Peak Pulsed Forward Current ${ }^{[2]}$	I_{FP}	1500	mA
Reverse Voltage	V_{R}	See Note 3	V
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-40 \sim+150$	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
Soldering Temperature ${ }^{[4]}$	$\mathrm{T}_{\text {sol }}$	260	${ }^{\circ} \mathrm{C}$
Allowable Reflow Cycles		6	
ESD Sensitivity ${ }^{[5]}$	$>8,000$ V HBM		

Notes for Table 3:

1. Maximum DC forward current (per die) is determined by the overall thermal resistance and ambient temperature.

Follow the curves in Figure 10 for current derating.
2: Pulse forward current conditions: Pulse Width $\leq 10 \mathrm{msec}$ and Duty cycle $\leq 10 \%$.
3. LEDs are not designed to be reverse biased.
4. Solder conditions per JEDEC O20D. See Reflow Soldering Profile Figure 5.
5. LED Engin recommends taking reasonable precautions towards possible ESD damages and handling the LZC-OOWWOR in an electrostatic protected area (EPA). An EPA may be adequately protected by ESD controls as outlined in ANSI/ESD S6.1.

Optical Characteristics @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$

Table 4:

Parameter	Symbol	Typical	Unit
Luminous Flux $\left(@ I_{\mathrm{F}}=700 \mathrm{~mA}\right)^{[1]}$	Φ_{V}	1900	Im
Luminous Flux $\left(@ \mathrm{I}_{\mathrm{F}}=1000 \mathrm{~mA}\right)^{[1]}$	Φ_{V}	2450	Im
Luminous Efficacy $\left(@ I_{\mathrm{F}}=350 \mathrm{~mA}\right)$		91	Im / W
Correlated Color Temperature ${ }^{[2]}$	CCT	3000	K
Color Rendering Index $($ CRI $/ \mathrm{R9})$	R_{a}	85	
Viewing Angle ${ }^{[3]}$	$2 \Theta_{1 / 2}$	110	Degrees

Notes for Table 4:

1. Luminous flux typical value is for all 12 LED dice operating concurrently at rated current.
2. Viewing Angle is the off-axis angle from emitter centerline where the luminous intensity is $1 / 2$ of the peak value.

Electrical Characteristics @ $\mathrm{T}_{\mathrm{C}}=\mathbf{2 5 ^ { \circ }} \mathbf{C}$
Table 5:

Parameter	Symbol	Typical	Unit
Forward Voltage $\left(@ \mathrm{I}_{\mathrm{F}}=700 \mathrm{~mA}\right)^{[1]}$	V_{F}	37.8	V
Forward Voltage $\left(@ \mathrm{I}_{\mathrm{F}}=1000 \mathrm{~mA}\right)^{[1]}$	V_{F}	39.0	V
Temperature Coefficient of Forward Voltage ${ }^{[1]}$	$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}_{\mathrm{J}}$	-33.6	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance (Junction to Case)	$\mathrm{RO}_{\mathrm{J}-\mathrm{C}}$	0.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes for Table 5:

1. Forward Voltage is binned with 12 LED dice connected in series. The actual LED is configured with two strings of 6 dice in series.

IPC/JEDEC Moisture Sensitivity Level

			Soak Requirements			
	Floor Life		Standard		Accelerated	
Level	Time	Conditions	Time (hrs)	Conditions	Time (hrs)	Conditions
1	unlimited	$\begin{aligned} & \leq 30^{\circ} \mathrm{C} / \\ & 85 \% \mathrm{RH} \end{aligned}$	$\begin{gathered} 168 \\ +5 /-0 \end{gathered}$	$\begin{gathered} 85^{\circ} \mathrm{C} / \\ 85 \% \mathrm{RH} \end{gathered}$	n/a	n/a

Notes for Table 6:

1. The standard soak time includes a default value of 24 hours for semiconductor manufacturer's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility.

Average Lumen Maintenance Projections

Lumen maintenance generally describes the ability of a lamp to retain its output over time. The useful lifetime for solid state lighting devices (Power LEDs) is also defined as Lumen Maintenance, with the percentage of the original light output remaining at a defined time period.

Based on long-term LM80 testing, LED Engin projects that the LZC Series will deliver, on average, 70% Lumen Maintenance at 70,000 hours of operation at a forward current of 700 mA per die. This projection is based on constant current operation with junction temperature maintained at or below $110^{\circ} \mathrm{C}$.

Mechanical Dimensions (mm)

Notes for Figure 1:

1. LZC-OOWWOR is compatible with MCPCB designed for LZC-OOWWOO, LZC-OONWOO, and LZC-00CWOO when emitter is rotated 180 degree with respect to the LZC-00xWOO position on the MCPCB.
2. Index mark, Tc indicates case temperature measurement point.
3. Unless otherwise noted, the tolerance $= \pm 0.20 \mathrm{~mm}$.
4. Thermal contact pad is electrically neutral.

Recommended Solder Pad Layout (mm)

Figure 2a: Recommended solder pad layout for anode, cathode, and thermal pad.
Note for Figure 2a:

1. Unless otherwise noted, the tolerance $= \pm 0.20 \mathrm{~mm}$.

Recommended 8mil Stencil Apertures Layout (mm)

Figure 2b: Recommended solder mask opening for anode, cathode, and thermal pad.
Note for Figure 2b

1. Unless otherwise noted, the tolerance $= \pm 0.20 \mathrm{~mm}$.

Reflow Soldering Profile

Figure 3: Reflow soldering profile for lead free soldering.

LEDEMGIM

Typical Radiation Pattern

Figure 4: Typical representative spatial radiation pattern.

Typical Relative Spectral Power Distribution

Figure 5: Typical relative spectral power vs. wavelength @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$.

Typical Relative Light Output over Forward Current

Figure 6: Typical relative light output vs. forward current $@ T_{C}=25^{\circ} \mathrm{C}$.

Notes for Figure 6:

1. Luminous Flux typical value is for all 12 LED dice operating concurrently at rated current.

Typical Relative Light Output over Temperature

Figure 7: Typical relative light output vs. case temperature.
Notes for Figure 7:

1. Luminous Flux typical value is for all 12 LED dice operating concurrently at rated current.

LEロEMGIח

Typical Chromaticity Coordinate Shift over Current

Figure 8: Typical dominant wavelength shift vs. Case temperature.
Typical Chromaticity Coordinate Shift over Temperature

Figure 9: Typical dominant wavelength shift vs. Case temperature.

Typical Forward Current Characteristics

Figure 10: Typical forward current vs. forward voltage @ $\mathrm{T}_{\mathrm{C}}=$ at $25^{\circ} \mathrm{C}$.
Note for Figure 8:

1. Forward Voltage assumes 12 LED dice connected in series. The actual LED is configured with two strings of 6 dice in series.

Current De-rating

Figure 11: Maximum forward current vs. ambient temperature based on $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}=150^{\circ} \mathrm{C}$.
Notes for Figure 11:

1. Maximum current assumes that all LED dice are operating concurrently at the same current.
2. $\quad R \Theta_{J-c}$ [Junction to Case Thermal Resistance] for the LZC-00xx00 is typically $0.7^{\circ} \mathrm{C} / \mathrm{W}$.
3. $R \Theta_{J-A}$ [Junction to Ambient Thermal Resistance] $=R \Theta_{J-C}+R \Theta_{C-A}$ [Case to Ambient Thermal Resistance]

Emitter Tape and Reel Specifications (mm)

Figure 12: Emitter carrier tape specifications (mm).

Figure 13: Emitter Reel specifications (mm).

LZC MCPCB Family

Part number	Type of MCPCB	Diameter $(\mathbf{m m})$	Emitter + MCPCB Thermal Resistance $\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)$	Typical $\mathbf{V}_{\mathbf{f}}$ (\mathbf{V})	Typical $\mathbf{I}_{\mathbf{f}}$ $(\mathbf{m A)}$
LZC-7xxxxx	1-channel	28.3	$0.7+0.6=1.3$	37.8	700
LZC-Cxxxxx	2-channel	28.3	$0.7+0.6=1.3$	18.9	2×700

Mechanical Mounting of MCPCB

- MCPCB bending should be avoided as it will cause mechanical stress on the emitter, which could lead to substrate cracking and subsequently LED dies cracking.
- To avoid MCPCB bending:
- Special attention needs to be paid to the flatness of the heat sink surface and the torque on the screws.
- Care must be taken when securing the board to the heat sink. This can be done by tightening three M3 screws (or \#4-40) in steps and not all the way through at once. Using fewer than three screws will increase the likelihood of board bending.
- It is recommended to always use plastics washers in combinations with the three screws.
- If non-taped holes are used with self-tapping screws, it is advised to back out the screws slightly after tightening (with controlled torque) and then re-tighten the screws again.

Thermal interface material

- To properly transfer heat from LED emitter to heat sink, a thermally conductive material is required when mounting the MCPCB on to the heat sink.
- There are several varieties of such material: thermal paste, thermal pads, phase change materials and thermal epoxies. An example of such material is Electrolube EHTC.
- It is critical to verify the material's thermal resistance to be sufficient for the selected emitter and its operating conditions.

Wire soldering

- To ease soldering wire to MCPCB process, it is advised to preheat the MCPCB on a hot plate of $125-150^{\circ} \mathrm{C}$. Subsequently, apply the solder and additional heat from the solder iron will initiate a good solder reflow. It is recommended to use a solder iron of more than 60W.
- It is advised to use lead-free, no-clean solder. For example: SN-96.5 AG-3.0 CU 0.5 \#58/275 from Kester (pn: 24-7068-7601)

LZC-7xxxxx

1-Channel MCPCB Mechanical Dimensions (mm)

Notes:

- Unless otherwise noted, the tolerance $= \pm 0.2 \mathrm{~mm}$.
- Slots in MCPCB are for M3 or \#4-40 mounting screws.
- LED Engin recommends plastic washers to electrically insulate screws from solder pads and electrical traces.
- Electrical connection pads on MCPCB are labeled "+" for Anode and "-" for Cathode.
- LED Engin recommends using thermal interface material when attaching the MCPCB to a heatsink.
- The thermal resistance of the MCPCB is: ROC-B $0.6^{\circ} \mathrm{C} / \mathrm{W}$

Components used

MCPCB:	HT04503	(Bergquist)
ESD chips:	BZX585-C51	(NPX, for 12 LED dies in series)

Pad layout			
Ch.	MCPCB Pad	String/die	Function
1	+	1/BCEFGHJ	Anode +
	-	KLMPQ	Cathode -

LZC-Cxxxxx

2 channel, Star MCPCB ($2 x 6$) Dimensions (mm)

Notes:

- Unless otherwise noted, the tolerance $= \pm 0.2 \mathrm{~mm}$.
- Slots in MCPCB are for M3 or \#4-40 mounting screws.
- LED Engin recommends plastic washers to electrically insulate screws from solder pads and electrical traces.
- Electrical connection pads on MCPCB are labeled " + " for Anode and " - " for Cathode.
- LED Engin recommends thermal interface material when attaching the MCPCB to a heatsink.
- The thermal resistance of the MCPCB is: ROC-B $0.6^{\circ} \mathrm{C} / \mathrm{W}$

Components used

MCPCB:	HT04503	(Bergquist)
ESD chips:	BZT52C36LP	(NPX, for 6 LED dies in series)

Pad layout			
Ch.	MCPCB Pad	String/die	Function
1	$1+$ $1-$	1/JKLMPQ	Anode +
	$2+$	Cathode -	
	$2-$	$2 /$ BCEFGH	Anode +
	Cathode -		

Company Information

LED Engin, based in California's Silicon Valley, develops, manufactures, and sells advanced LED emitters, optics and light engines to create uncompromised lighting experiences for a wide range of entertainment, architectural, general lighting and specialty applications. LuxiGen ${ }^{\text {TM }}$ multi-die emitter and secondary lens combinations reliably deliver industry-leading flux density, upwards of 5000 quality lumens to a target, in a wide spectrum of colors including whites, tunable whites, multi-color and UV LEDs in a unique patented compact ceramic package. Our LuxiTune ${ }^{\text {TM }}$ series of tunable white lighting modules leverage our LuxiGen emitters and lenses to deliver quality, control, freedom and high density tunable white light solutions for a broad range of new recessed and downlighting applications. The small size, yet remarkably powerful beam output and superior in-source color mixing, allows for a previously unobtainable freedom of design wherever high-flux density, directional light is required.

LED Engin is committed to providing products that conserve natural resources and reduce greenhouse emissions.

LED Engin reserves the right to make changes to improve performance without notice.

Please contact sales@ledengin.com or (408) 922-7200 for more information.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Power LEDs - White category:
Click to view products by LED Engin manufacturer:

Other Similar products are found below :
LTW-K140SZR40 B42180-08 STW8Q2PA-R5-HA LTPL-P00DWS57 LTW-K140SZR30 LZP-D0WW00-0000 SAW8WA2A-L35M40-CA SZ5-M1-WW-C8-V1/V3-FA LTW-K140SZR57 LTW-K140SZR27 BXRE-50C2001-C-74 LTW-5630AQL57 MP-5050-8100-27-80 MP-5050-6100-65-80 MP-5050-6100-50-80 MP-5050-6100-40-80 MP-5050-6100-30-80 KW DPLS32.SB-6H6J-E5P7-EG-Z264 L1V1507003V500000 KW CULPM1.TG-Z6RF7-ebvFfcbB46-65G5 KW DMLS33.SG-Z6M7-EBVFFCBB46-8E8G-700-S GW PSLT33.PM-LYL3-XX56-1-G3 ASMT-MW05-NMNS1 KW DPLS33.KD-HIJG-D30D144-HN-22C2-120-S KW DDLM31.EH-5J6K-A737-W4A4-140-R18 GW JTLRS1.CM-K1LW-XX57-1-100-Q-R33 KW DDLM31.EH-5J6K-A636-W4A4-140-R18 KW DDLM31.EH-5J6K-A131-W4A4-140-R18 GW PSLT33.PM-LYL3-XX57-1-G3 SML-LXL8047MWCTR/3 L2C5-40HG1203E0900 JB3030AWT-P-U27EA0000-N0000001 JK3030AWT-P-U30EA0000-N0000001 JK3030AWT-P-B40EB0000-N0000001 JK3030AWT-P-H30EB0000-N0000001 JK3030AWT-P-H40EB0000-N0000001 JK3030AWT-P-U27EB0000-N0000001 JK3030AWT-P-U30EB0000-N0000001 XPGBWT-HE-0000-00JE5 CMU2239-0000-000N0Z0A30H CMU2239-0000-000N0Z0A40H GW CSSRM2.PM-N3N5-XX53-1 GW P9LMS1.EM-NRNU-30S7-0-200R18 GW PSLPS1.EC-KSKU-5R8T-1 LTPL-M03614ZS50-F1 LTW-2835SZK65 LTW-3030AQL40 LTW-3030AZL40-EU LTW3030BSL42 LTW-3030DZL30

