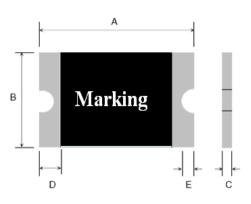


LP-MSM110/33

Positive Thermal Coefficent Diodes


Features:

- ♦ RoHS Compliant & Halogen Free
- ♦ faster tripping, 1812 Dimension, Surface mountable, Solid state
- ♦ Operation Current: 0.10A~3.50A
- ♦ Maximum Voltage: 6V~60Vdc
- ♦ Operating Temperature: -40°C TO 85°C

Product Dimensions

Pig.1

Terminal pad materials :Tin-Plated Nickle-copper Terminal pad solderability : Meets EIA specification RS 186-9E and ANSI/J-STD-002 Category 3.

Unit : mm

Madal Na	А		В		С		D	E
Model No.	Min	Max	Min	Max	Min	Max	Min	Min
LP-MSM110/33	4.37	4.73	3.07	3.41	0.70	1.70	0.30	0.15

Thermal Derating Chart -IH (A)

Part number	Maximum ambient operating temperatures ($^{\circ}$ C)								
	-40	-20	0	25	40	50	60	70	85
LP-MSM110/33	1.60	1.45	1.28	1.10	0.92	0.83	0.71	0.66	0.52

Electrical Characteristic

Model No. Umax (Vdc)	Linear		Ihold Itrip		Time to trip		R25	
	Imax (A)	@25°C	@25°C	Current	Time	Ri _{min}	$R1_{max}$	
	(vuc)	(A)	(A)	(A)	(A)	(Sec)	(Ω)	(Ω)
LP-MSM110/33	33.0	100	1.10	2.20	8.0	0.30	0.050	0.250

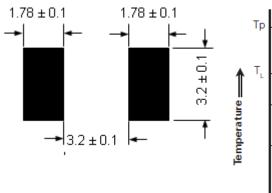
Test Procedures And Requirements

Test	Test Conditions	Accept/Reject Criteria	
Resistance	In still air @ 25°C	$R_{min} \leq R \leq R_{max}$	
Time to Trip	Specified current, V_{max} , 25°C	T≤maximum Time to Trip	
Hold Current	30min, at I _H	No trip	
Trip Cycle Life	Vmax, Imax, 100cycles	No arcing or burning	
Trip Endurance	Vmax, 1 hours	No arcing or burning	

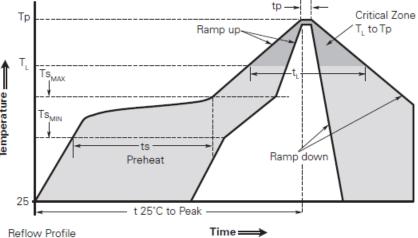
Physical Characteristics and Environmental Specifications

Physical Characteristics

Terminal materials :	Tin-Plated Nickle-copper			
Soldering zone	Meets EIA specification RS 186-9E and ANSI/J-STD-002 Category 3.			
Environmental Specifications				
Test	Conditions	Resistance Change		
Passive aging	85°C,1000hours	±10%		
Humidity aging	85°C/85%RH.1000 hours	±5%		
Thermal shock	MIL-STD-202, Method 107G	-30% typical resistance change		
	+85°C/-40°C,20times			
Solvent Resistance	MIL-STD-202, Method 215	no change		
Vibration	ML-STD-883C,Test Condition A	No chage		


Electrical Specifications:

- I_{hold} = Hold Current. Maximum current device will not trip in 25 °C still air.
- I_{trip} = Trip Current. Minimum current at which the device will always trip in 25 °C still air.
- V_{max} = Maximum operating voltage device can withstand without damage at rated current (Imax).
- I_{max} = Maximum fault current device can withstand without damage at rated voltage (Vmax).
- Pd=Maximum power dissipation when device is in the tripped state in 25 °C still air environment at rated voltage.
- $Ri_{min/max} = Minimum/Maximum$ device resistance prior to tripping at 25 °C.
- $R1_{max}$ = Maximum device resistance is measured one hour post reflow.



LP-MSM110/33

Recommended pad layout (mm)

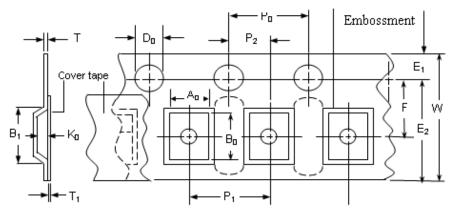
Solder reflow conditions

Profile Feature	Pb-Free Assembly			
Average ramp up rate (Ts _{MAX} to Tp)	3°C/second max.			
Preheat				
 Temperature min. (Ts_{MIN}) 	150°C			
 Temperature max. (Ts_{MAX}) 	200°C			
 Time (ts_{MIN} to ts_{MAX}) 	60-120 seconds			
Time maintained above:				
• Temperature (T _L)	217°C			
• Time (t _L)	60-150 seconds			
Peak/Classification temperature (Tp)	260°C			
Time within 5°C of actual peak temperature				
Time (tp)	30 seconds max.			
Ramp down rate	3°C/second max.			
Time 25°C to peak temperature	8 minutes max.			

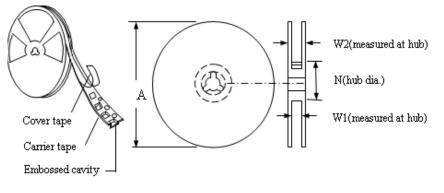
Note: All temperatures refer to topside of the package, measured on the package body surface.

- Recommended reflow methods: IR, vapor phase oven, hot air oven, N2 environment for lead-free.
- Devices are not designed to be wave soldered to the bottom side of the board.
- Recommended maximum paste thickness is 0.25mm (0.010inch).
- Devices can be cleaned using standard industry methods and solvents.
- Soldering temprature profile meets RoHs leadfree process.

Notes: If reflow temperatures exceed the recommended profile, devices may not meet the performance requirements



LP-MSM110/33


Tape Specification And Reel Dimensions

Coverning Specifications					
EIA 481-1(Unit:mm)					
W	12.00+0.30/-0				
P ₀	8.0 ± 0.10				
P ₁	4.0± 0.10				
P ₂	2.0 ± 0.10				
A ₀	3.50 ± 0.10				
B ₀	4.90 ± 0.10				
D ₀	1.50+0.10/-0				
F	5.50 ± 0.05				
E1	1.75 ± 0.10				
Т	0.30± 0.10				
Leader min.	390				
Trailer min.	160				
Reel D	Reel Dimensions				
А	178±1.0				
Ν	59±1				
W ₁	8.5+1.0/-0.2				
W ₂	12.0±1				

ELA Tape Component Dimentions

EIA Reel Dimentions

Storage

The maximum ambient temperature shall not exceed 38° C. Storage temperatures higher than 38° C could result in the deformation of packaging materials. The maximum relative humidity recommended for storage is 60° . High humidity with high temperature can accelerate the oxidation of the solder plating on the termination and reduce the solderability of the components. Sealed plastic bags with desiccant shall be used to reduce the oxidation of the termination and shall only be opened prior to use. The products shall not be stored in areas where harmful gases containing sulfur or chlorine are present Warning

• Use PPTC beyond the maximum ratings or improper use may result in device damage and possible electrical arcing and flame.

• PPTC are intended for protection against occasional over current or over temperature fault conditions and should not be used when repeated fault conditions or prolonged trip events are anticipated.

• Device performance can be impacted negatively if devices are handled in a manner inconsistent with recommended electronic, thermal, and mechanical procedures for electronic components.

• Use PPTC with a large inductance in circuit will generate a circuit voltage (L di/dt) above the rated voltage of the PPTC.

• Avoid impact PPTC device its thermal expansion like placed under pressure or installed in limited space.

• Contamination of the PPTC material with certain silicon based oils or some aggressive solvents can adversely impact the performance of the devices.PPTC SMD can be cleaned by standard methods.

• Requests that customers comply with our recommended solder pad layouts and recommended reflow profile. Improper board layouts or reflow profilecould negatively impact solderability performance of our devices.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Resettable Fuses - PPTC category:

Click to view products by Leiditech manufacturer:

Other Similar products are found below :

 RF0077-000
 RF2534-000
 RF3256-000
 RF3281-000
 RF3301-000
 RF3382-000
 SMD125-2
 RF2171-000
 RF2531-000
 RF2873

 000
 RF3060-000
 TR600-150Q-B-0.5-0.130
 RXE090
 5E4795/04-1502
 TRF250-080T-B-1.0-0.125
 SMD100-2
 NIS5452MT1TXG

 NIS5431MT1TXG
 SMD250-2
 0ZCM0001FF2G
 0ZCM0003FF2G
 0ZCM0004FF2G
 BK60-017-DZ-E0.6
 F95456-000
 LVR100S
 RS30-090

 RS30-600
 RS30-700
 RS30-800
 RS30-900
 RS60RB-005
 RS60RB-010
 RS60RB-025
 RS60RB-050
 RS60RB-075
 RS60RB

 160
 SMD1206-300C-12V
 SB250-145
 SB250-030
 SB250-040
 SB250-200
 SB250-600
 SMD0805-005-24V
 SMD0805-050-16V
 SMD1210

 005-60V
 SMD0805-005
 R60-375
 SMD0805K110SF6V
 SMD0805-005-24V
 SMD0805-050-16V
 SMD1210