Dwg. No.: A18-1979

承認字號

Issued Date: 2018/9/18

Customer:	深圳市瑞浦實業有限公司	
(客 户)		
Part No. :(青公司料號)		

SPECIFICATION FOR APPROVAL

承 認 書

Description (零件名稱)	:	ALUMINUM ELECTROLYTIC CAPACITORS
Lelon Series (立 隆 系 列)	:	REA Series
Lelon Part No (立 隆 料 號)	D.:	

LELON ELECTRONICS CORP.

立隆電子工業股份有限公司

Headquarters

147, Sec. 1, Guoguang Rd., Dali District, Taichung, Taiwan TEL: +886-4-2418-1856 FAX: +886-4-2418-1906

Manufacturing Sites

- Lelon Electronics Corp.

 147, Sec. 1, Guoguang Rd., Dali District, Taichung, Taiwan
 TEL: +886-4-2418-1856 FAX: +886-4-2418-1906
- Lelon Electronics (Huizhou) Co., Ltd.
 Taiyang Industrial Zone, Baihua Town, Huidong County, Huizhou City,
 Guangdong, China
 TEL: +86-752-8768222 FAX: +86-752-8768199
- Lelon Electronics (Suzhou) Co., Ltd.
 1220, Zhongshan North Rd., Songling Town, Wujiang City, Jiangsu, China TEL: +86-512-63457588 FAX: +86-512-63457791

Approval Signatures

貴公司承認印

Approval	Check	Design
核 准	確 認	作 成
研發部	研發部	研發部
SP 18 2018	SP 18 2018	SP 18 2018
蕭正浩	陳 筱	朱玉芳

Please Return One Copy with Your Approval 承 認 後 請 寄 回 本 圖 一 份 LELON ELECTRONICS CORP. Ver. 02

Part Numbering System

Product Code Guide - Radial Type

) [
RGA series	10μF	±20%	50V	Formed Lead Taping	Gas Type	5φ×11L	Pb-free wire + Black PET sleeve	
<u>RGA</u>	<u>100</u>	<u>M</u>	<u>1H</u>	<u>TA</u>	=	<u>0511</u>	<u>G</u>	
1	2	3	4	5	6	7	8	9
Series	Capacitance	Capacitance Tolerance	Rated Voltage	Lead Configuration & Package	Rubber Type	Case size	Lead Wire and Sleeve Type	Supplement Code

1 Series:

Series is represented by a three-letter code. When the series name only has two letters, use a hyphen, "-", to fill the third blank.

2 Capacitance:

Capacitance in μF is represented by a three-digit code. The first two digits are significant and the third digit indicates the number of zeros following the significant figure. "R" represents the decimal point for capacitance under 10 μF .

Capacitance	0.1	0.47	1	4.7	10	47	100	470	1,000	4,700	10,000
Part number	0R1	R47	010	4R7	100	470	101	471	102	472	103

3 Tolerance:

•	·······			
	J = -5% ~ +5%	K = -10% ~ +10%	M = -20% ~ +20%	V = -10% ~ +20%

4 Rated voltage:

Rated voltage in volts (V) is represented by a two-digit code

,,	itoa voitago iii vi	O(10)	o icpico	crited by	u two c	ngit oout	,						
	Voltage (WV)	2.5	4	6.3	10	16	20	25	35	50	63	80	100
	Code	0E	0G	OJ	1A	1C	1D	1E	1V	1H	1J	1K	2A
	Voltage (WV)	160	200	250	315	350	400	420	450	500	525		
	Code	2C	2D	2E	2F	2V	2G	2P	2W	2H	2Y		

⑤ Lead configuration and package:

BK = Bulk Package	TA = Formed Lead Taping
FC = Formed & Cut Lead	SA = Straight Lead Taping
CC = Cut Lead	SD = Bent Cathode Lead
SF = Snap-in & Formed Cut Lead	BC = Bent & Cut Lead (Leads in Right Direction)
SC/VC= Snap-in & Cut Lead	BU = Bent & Cut Lead (Leads in Left Direction)

6 Rubber type:

71.	
– = Gas escape type	F = Flat rubber bung

Note: For case size of 3φx5L, 12.5φx16L, 16φx16L, 16φx20L, 18φx16L, 18φx20L, 18φx25L of aluminum e-caps, flat rubber bung is the standard design, In these cases, use a hyphen, "-", in this digit.

7 Case size:

The first two digits indicate case diameter and the last two digits indicate case length in mm.

φD×L	3×5	4×5	4×7	5×5	5 × 9	5×11	6.3×5	6.3×9	6.3×11	6.3×15
Code	0305	0405	0407	0505	0509	0511	0605	0609	0611	0615
φD×L	8×5	8×7	8 × 9	8×11.5	8×15	8×20	10×9	10×12.5	10×16	10×20
Code	0805	0807	0809	0811	0815	0820	1009	1012	1016	1020
φD×L	10×25	10×30	10×35	10×40	10×45	12.5×12	12.5×16	12.5×20	12.5×25	12.5×30
Code	1025	1030	1035	1040	1045	1312	1316	1320	1325	1330
φD×L	12.5×35	12.5×40	12.5×45	12.5×50	16×16	16×20	16×25	16×31.5	16×35.5	16×40
Code	1335	1340	1345	1350	1616	1620	1625	1632	1636	1640
φD×L	16×45	16×50	18×16	18×20	18×25	18×31.5	18×35.5	18×40	18×45	18×50
Code	1645	1650	1816	1820	1825	1832	1836	1840	1845	1850
φD×L	20×30	20×35	22×35	22×40	22×45	25×40	25×45			
Code	2030	2035	2235	2240	2245	2540	2545			

Note: When a case size is required and not shown in the table, please contact with us for further discussion.

8 Lead Wire and Sleeve Type:

None = Standard design Pb-free wire + PET sleeve (aluminum e-cap) Pb-free wire + Coating case (OP-CAP)	T = Sn-Pb wire + PET sleeve
B = Sn-Bi wire + PET sleeve	G = Pb-free wire + Black PET sleeve (for RGA & SG series only)
K / L = Automotive control code	P = Pb-free wire + PET sleeve

^{*} When a supplement code following a blank digit code of lead wire and sleeve type (standard design), use a hyphen, "-", to fill the blank digit.

Supplement code (Optional):

For special control purposes

^{*} When the automotive control code is required, please contact with us for further discussion.

LELON ELECTRONICS CORP. ER-REA-10

REA Series Type

Specifications

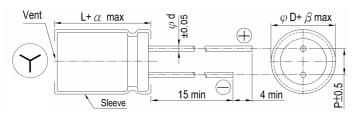

Capacitance Tolerance							± 20%	6 at 1	20H	Hz, 20	$^{\circ}\mathbb{C}$						
Category Temperature Range							-4	0°C -	~ +8	35 ℃							
Data I Walion William			Rate			6.3 7.3	10 11.5	16 18.4		25 28.8	35 40.3	50 57.5	6: 72		100 115		
Rated Working Voltage and Surge Voltage			Surge			160	200	250	_	350	400	450	12		113	1	
	Surge Vo			e Vol	tage	184	230	288	3	385	440	495					
	then to	ermina / 5 m	al volta	Voltage is applied to capac I voltage may reach the ra nutes shall be below the v d voltage ≤100V			rated v value	vorkir	ng vo	oltage	e .The l	_eakaç	де си				
Leakage Current (at20°C)			Time		a	fter 2 mi	nutes				afte	er 5 mi	nutes	s			
	I	_eaka	age Cui	rent		0.01CV c				CV≦ .03C\		ıA) I		CV> 02C\			
	Wh	ere, I	= leak	age c		t; C = ra											n V.
				Rated Voltage		6.3	10	16		25	35	50	6		100		
Tan δ (at 120 Hz, 20°ℂ)		Tanδ Rated			-	0.23	200	0.16 250	_	0.14 350	0.12 400	0.10 450	0.0	09 (80.0		
	Tano			ιδ(ma	ax)	0.12	0.14	0.17	7 (0.20	0.25	0.25	ony 1	οοοι	ıE inc	rooca	
	When the capacitance exceeds 1000µF, 0.02 shall be added every 1000µF increas Impedance ratio shall not exceed the values given in the table below									lease							
			Rated Voltage			6.3	10		16	25	35	50		63	100		
				Z(-25	5℃)/	φD<16	6	4		3	3	2	2		2	2	
		Imp	edance	Z(+2	0℃)	φD≧16	8	6	i	4	4	3	3		3	3	
Low Temperature			Ratio	Z(-40)°C)/	φD<16	10	8	,	6	6	4	3		3	3	
Characteristics (at 120Hz)				Z(+2	0℃)	φD≧16	18	16	3	12	10	8	8		6	6	
			Ra	ted V	oltage	e	160	20	0	250	350	400	450	0			•
		Imp	edance	Z(-25	5°C)/ Z	′(+20 °ℂ)	3	6	i	8	12	14	16	;			
		F	Ratio	Z(-25	5°C)/ Z	((+20°ℂ)	4	8	,	10	16	18	20	١			
				_		Freq.(Hz	60 (E0)	40	20	F00	41		101:			
Ripple Current & Frequency Multipliers			Ca	p.(μF)		00 (12		500	11		10k	•		
					nder 1	1,000	0.7		1.0		1.30	1.4		1.5			
						above	0.7	_	1.0		1.20	1.3	-	1.3 1.1			

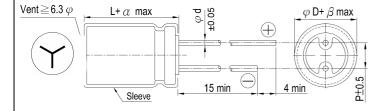
Diagram of Dimensions

Lead	Lead Spacing and Diameter Unit: mm									
φD	5	6.3	8	10	12.5	16	18	22	25	
Р	2.0	2.5	3.5	3.5 5.0 5.0 7.5 7.5 10						
φd	0	.5		0.6	1.0					
α		$L < 20$: 1.5, $L \ge 20$: 2.0								
β		0.5								

The case size of 12.5×16, 16×16, 16×20, 18×16, 18×20 and 18×25 are suitable for below diagram:

Dimension & Permissible Ripple Current

Dimension: $\phi D \times L(mm)$ Ripple Current: mA/rms at 120 Hz, 85°C


Dilliens	SIOIT G	Cillio	SIDIC I	rippic v	Julici							тарра	, Ouric	ent. ma/	iiio at	120112	, 00 0
	V. DC	6.3V	(OJ)	10V (1A)	16V (1C)	25V ((1E)	35V ((1V)	50V (1H)		63V ((1J)	100V	(2A)
μF	Contents	φDxL	mA	φD×L	mA	φD×L	mA	φD×L	mA	φD×L	mA	φD×L	mA	φD×L	mA	φD×L	mA
0.22	R22											5×11	15				
0.47	R47											5×11	15				
1	010											5×11	15				
2.2	2R2											5×11	29			5×11	33
3.3	3R3											5×11	35			5×11	40
4.7	4R7							5×11	31			5×11	42			5×11	48
10	100					5×11	50			5×11	58	5×11	65	5×11	70	5×11	59
22	220							5×11	80			5×11	95	6.3×11	115	6.3×11 8×11.5	115 135
33	330									5×11	108	6.3×11 5×11	136 125	6.3×11	140	8×11.5	145
47	470					5×11	110	5×11	115	5×11	130	6.3×11	165	6.3×11	170	10×12.5	235
100	101	5×11	130	5×9 5×11	135 145	5×11	160	6.3×9 6.3×11	170 190	6.3×11	210	8×11.5	260	8×11.5 10×12.5	245 320	10×16	325
220	221			5×11 6.3×9 6.3×11	220 230 250	6.3×11	260	6.3×11 8×11.5	260 320	8×11.5	385	10×12.5	455	10×16	490	12.5×20 16×16	640 625
330	331			6.3×11	290	6.3×11	290	8×11.5	440	10×12.5	490	10×16	585	10×20 12.5×16	710 675	16×20 18×16	695 685
470	471			6.3×11	350	8×11.5	440	10×12.5	545	10×16	740	10×20 12.5×16	755 610	16×16 12.5×20	910 900	16×25	910
1,000	102	8×11.5	540	10×12.5 8×11.5	650 550	10×12.5 10×16	635 785	10×20 12.5×16	955 830	12.5×20 16×16	1,145 1,010	12.5×25 16×20	1,340 1,160	16×20	1,260	18×40	1,820
2,200	222	10×16	845	10×20 12.5×16	1,070 970	12.5×16 12.5×20 16×16	930 1,295 1,160	12.5×25 16×16	1,540 1,150	16×20	1,390		1,960	18×31.5	2,040		
3,300	332	10×20 12.5×16	1,185 960	12.5×20	1,420	12.5×20 16×16 18×16	1,240 1,500	16×20	1,490	16×31.5 18×25	2,070 1,970	18×35.5	2,500	18×40	2,575		
4,700	472	12.5×20	1,545	12.5×25 16×16	1,780 1,420	16×20 16×25 18×16 18×20	1,600 2,090 1,820 1,770	16×25 18×25	2,100 2,170	18×35.5	2,700	22×40	3,040				
6,800	682	12.5×25	1,880	16×20 18×20	1,700 1,870	16×25 18×20	2,280 1,890	16×35.5 18×31.5		22×40	2,900	22×45	3,185				
10,000	103	16×20 18×20	2,000 2,020	16×25 18×25	2,150 2,370	18×31.5 16×35.5	2,590	18×40	3,080	22×45	3,400						
15,000	153	16×31.5 18×25	2,460 2,375	16×40 18×31.5	2,730 2,620	18×40	3,100	22×45 25×40	3,780 3,850								
22,000	223	18×31.5		18×40	3,370	22×40	3,900	25×45	4,290								
33,000	333	22×40	3,700														

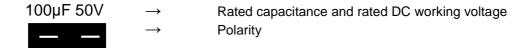
LELON ELECTRONICS CORP. ER-REA-07

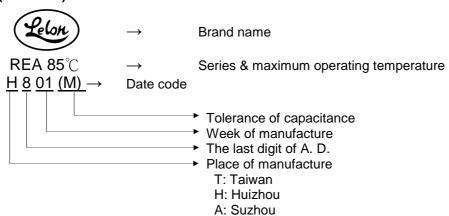
	V. DC	160V	(2C)	200V	(2D)	250V	(2E)	350V	(2V)	400V ((2G)	450V	(2W)
μF(Contents	φD×L	mΑ	φD×L	mA	φD×L	mA	φD×L	mΑ	φD×L	mΑ	φD×L	mΑ
1	010					5×11	18	5×11	18	5×11	22	6.3×11	25
2.2	2R2			5×11	29	6.3×11	33	6.3×11	33	6.3×11	33	8×11.5	45
3.3	3R3			6.3×11	46	6.3×11	46	8×11.5	50	8×11.5	50	10×12.5	65
4.7	4R7			6.3×11	50	8×11.5	55	8×11.5	60	8×11.5 10×12.5	55 80	8×11.5 10×12.5	55 80
10	100	8×11.5	75	8×11.5	81	10×12.5	100	10×16	110	10×16	110	10×20	140
22	220	10×12.5	130	10×12.5	135	10×16	150	12.5×16	185	12.5×20	200	12.5×25	300
33	330	10×16	175	10×16	180	10×20 12.5×16	215 220	12.5×20 16×16	245 260	16×16	260	16×20	270
47	470	10×20 12.5×16	230 250	10×20 12.5×16	240 250	12.5×20	290	16×20 18×16	340 310	16×20	340	16×31.5	390
68	680	12.5×20	330	12.5×20 16×16	330 370	12.5×25	370	16×25 18×20	420 410	16×31.5	435	16×35.5	460
100	101	12.5×25	440	16×20 18×16	460 450	16×25	510	16×31.5 18×25	540 520	16×40 18×35.5	560 570	18×35.5	570
150	151	16×25	620	16×25 18×20	620 605	16×31.5 18×25	625 630	18×35.5	640	18×40	670	22×45	800
220	221	16×31.5 18×25	790 760	16×35.5	830	16×40 18×35.5	840 890	22×40	920	22×45 25×40	960 980	25×45	1,030
330	331	18×35.5	985	18×40	1,150	22×40	1,200	25×45	1,270				
470	471	18×40	1,150	22×40	1,400	22×45	1,470						

LELON ELECTRONICS CORP. REA-MK-06

Diagram of Dimensions:

Lead	Lead Spacing & Diameter									
φD	5	6.3	8	10	12.5	16	18	22	25	
Р	2.0	2.5	3.5	5.0	10	12.5				
φd	0	.5		0.6 0.8					.0	
α		L<20: 1.5, L≧20: 2.0 2.0								
β		0.5								


The case size of 12.5×16, 16×16, 16×20, 18×16, 18×20 and 18×25 are suitable for below diagram:


Marking:

Each capacitor shall be marked with the following information.

(The Front)

(The Back)

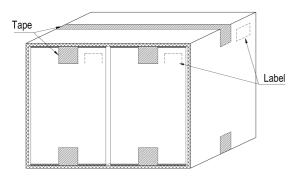
Appearance:

Marking color: Black

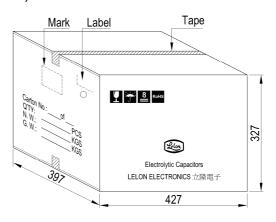
Sleeve color: Blue ----- REA Series

Sleeve material: PET

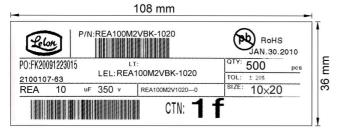
Packaging Quantity:

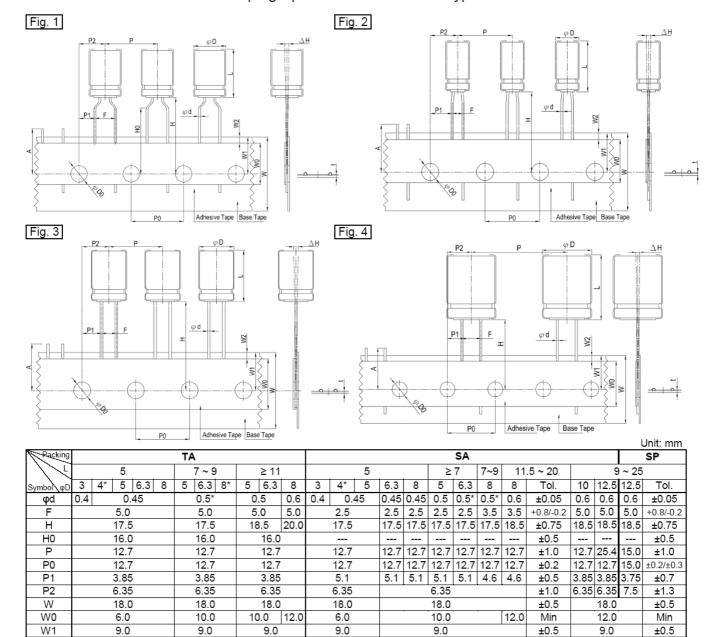

1. Radial Type in Bulk Pack (Long Lead):

Case Size	Pcs / Bag	Inner Box		Case Size	Pcs / Bag	Inner Box	Pcs /
		/ Carton	Carton			/ Carton	Carton
3φ × 5	1,000	2	60,000	10φ × 16L	500	2	7,000
4φ × 5 ~ 7L	1,000	2	50,000	10φ × 20 ~ 25L	500	2	6,000
$5\phi \times 5 \sim 7L$	1,000	2	40,000	10φ × 30 ~ 40L	400	2	4,000
*5φ × 8	*1000	2	*20,000	10φ × 45 ~ 50L	200	2	3,000
5φ × 11L	1,000	2	30,000	12.5φ × 16 ~ 25L	250	2	3,000
6.3φ × 5 ~ 7L	1,000	2	30,000	12.5φ × 30 ~ 35L	250	2	2,500
*6.3φ × 5.5 ~ 8L	*1000	2	*20,000	12.5φ × 40L	250	2	2,000
C 20 441	1,000	2	20,000	12.5φ × 45 ~ 50L	100	2	2,000
6.3φ × 11L	*1000	2	*20,000	16φ × 16 ~ 25L	150	2	1,800
6.3φ × 15L	1,000	2	15,000	16φ × 31.5L	100	2	1,200
8φ × 5 ~ 9L	1,000	2	15,000	16φ × 35.5L	100	2	1,200
8φ × 11.5L	1,000	2	12,000	16φ × 40 ~ 50L	100	2	1,000
*8φ × 8 ~12L	*1000	2	*12,000	18φ × 16L	150	2	1,800
8φ × 15L	1,000	2	10,000	18φ × 20 ~ 31.5L	100	2	1,200
8φ × 20L	1,000	2	8,000	18φ × 35.5 ~ 40L	100	2	800
8φ × 25 ~ 30L	500	2	6,000	18φ × 45 ~ 50L	50	2	600
8φ × 35 ~ 50L	250	2	3,000	20φ × 40L	50	2	600
*10φ × 7.7 ~10L	*500	2	*10,000	22φ	50	2	500
10φ × 9L	1,000	2	12,000	25φ × 40L	25	2	300
10φ × 12.5 ~13L	500	2	8,000	25φ × 45 ~ 50L	25	2	250


Remark: "*" Suitable for CA04 type (OP-CAP).

Packing Figure:


a) Inner Box


b) Outer Box Unit: mm

C) Label

Taping Specification for Radial Type

2 Fig. No. 3 Remark: 1. 4ϕ in mark of "*" is $4\phi \times 7L$ the same spec. "SA" packing: $5 \sim 6.3\phi \times 11 \sim 15L$ in H is 18.5mm.

1.5

11.0

4.0

0

0.7

1

1.5

11.0

4.0

0

0.7

1

- 2. For 3 \sim 8 ϕ ×5L, W0 = 10.0 is available. 3. ϕ in mark of " * " is 0.6mm for OP-CAP's 6.3 ϕ and 8 ϕ 4. The " Tol." of " TA " is the same " SA ".

Packaging

W2

Α

φD0

ΔΗ

Fig. 5 Ammo pack box

1.5

11.0

4.0

0

0.7

1

1.5

11.0

4.0

0

0.7

1.5

11.0

4.0

0

0.7

3

Packagir	ng Qua		Uı	nit: pc	s/box					
φD	3	4	5	6.3	8	8 10 12.				
TA. SA	3.000	2.000	2.000	2.000	1.000	500	300			

Max

Max

±0.2

±1.0

±0.2

1.5

11.0

4.0

0

0.7

4

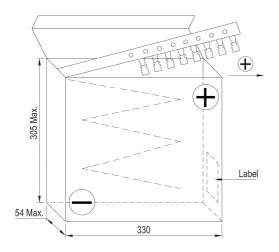
Max

Max

±0.2

±1.0

±0.2

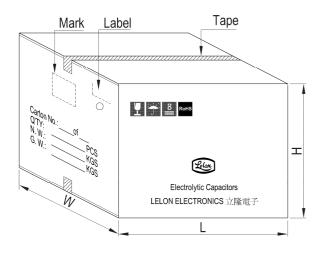

Note: The component shall be oriented on the tape as such that the positive lead is leading or the negative lead is leading with customer's request.

LELON ELECTRONICS CORP. Radial-PAC

Packing Quantity:

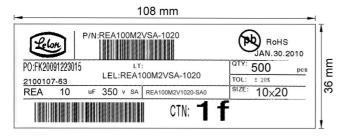
2. Radial Type in Taping Pack:

Inner Box of Ammo Pack:


	Unit: mm
φD	TA, SA
3	3,000
4	2,500
5	2,000
6.3	2,000
8	1,000
10φ × 8 ~ 30L	500
10φ × 35 ~ 50L	250
12.5	300
16	200

NOTE: (1) Above quantities are principle. Some difference may be provided.

(2) The component shall be orient on the tape as such that the positive lead is leading or the negative lead is leading with customer's request.


Packing Figure:

a) Outer Box

Case Size	L	W	Н
3 ~ 4φ	427	345	230
5φ	491	345	275
6.3φ	597	349	294
8φ	491	345	275
10φ× 8 ~ 30L	412	358	303
10φ× 35 ~ 50L	210	358	405
12.5φ× 16 ~ 40L	597	349	294
16φ× 16 ~ 25L	430	330	325

b) Label

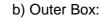
Lead Forming & Cutting Specification

Radial Type Unit: mm

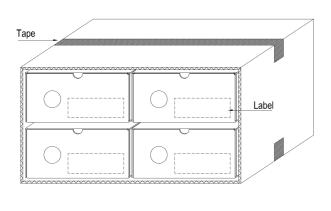
Forming Method	Code	Shape	Dimensions
		5.0±0.5	φD×L φd F F' H
			3 × 5 0.4 1.0 5.0 5.0
			4 × 5 0.45 1.5 5.0 5.0
Forming Cut	FC	φ D Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ	5 × 5 0.45 2.0 5.0 5.0
(4φ ~ 8φ)	FC	41	6.3~8 × 5 0.45 2.5 5.0 5.0
			4 × 7 0.45 1.5 5.0 5.0
		2.5 Max	5 x 7~11 0.5 2.0 5.0 5.0
			6.3 × 7~15 0.5 2.5 5.0 5.0
		- L	8 × 7~9 0.5 3.5 5.0 5.0 8 × 11.5~50 0.6 3.5 5.0 5.0
		φ d φ d	10 0.6 5.0 4.5
0.1			12.5 0.6 5.0 4.5
Cut	СС	9	16 0.8 7.5 4.5
(3φ ~ 25φ)			18 0.8 7.5 4.5
			22 1.0 10.0 4.5
		H±0.5	25 1.0 12.5 4.5
		- L - 5	
		H2+1.0	
Snap-in		H1±0.5 + H	
Forming			
Cut	SF	H3 Max	φD×L φd H1 H2 H3 F P E
			4 ~ 8 × 5
(4φ ~ 8φ)			4 × 7 0.45 5.0 2.8 2.5 5.0 1.1 1.1 5 × 7~11 0.5 5.0 2.8 2.5 5.0 1.1 1.1
			6.3 × 7~15
		P Max	8 × 7~9 0.5 5.0 2.8 2.5 5.0 1.1 1.1
		N d	8 × 11.5~50 0.6 5.0 2.8 2.5 5.0 1.1 1.1
		- L - 5	10 0.6 4.5 2.5 5.0 1.2 1.1
		H2+1.0	12.5 0.6 4.5 2.5 5.0 1.2 1.1
			16 0.8 4.5 2.5 7.5 1.2 1.1
		φ D	18 0.8 4.5 2.5 7.5 1.2 1.1
Coop in Cut			22 1.0 4.5 2.5 10.0 1.2 1.3
Snap-in Cut	SC	H1±0.5	25 1.0 4.5 2.5 12.5 1.2 1.3
(10φ ~ 25φ)			
		lax lax	
		Ь Мах	
		1.5±0.5	
Bending Cut	вс	2 10 0 0 0 1	φD × L φd F ± 0.5 *E Max 5 × 11 0.5 2.0
(5φ ~ 25φ)	50		5 × 11 0.5 2.0 6.3 × 11 ~ 15 0.5 2.5
		- L	8 × 11.5 ~ 50 0.6 3.5
		₩_ , ⊖ ₩ _{F±0.5} ₩	10 0.6 5.0 2.3
			12.5 0.6 5.0 2.3
		3.7±0.5 N 1.3 Max	16 0.8 7.5 2.7
		1.3 Max w	18 0.8 7.5 2.7
Cathode Lead			22 1.0 10.0 2.7
Bending	SD	Q \$ (+) (25 1.0 12.5 2.7
(10φ ~ 25φ)			"*E" is only suitable for SD cutting "*BU": Leads bending cut are different
			direction from BC.
		- L 3	

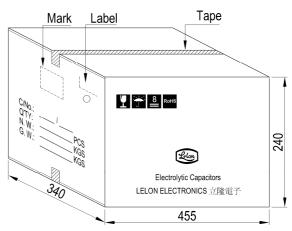
LELON ELECTRONICS CORP. Radial-PAC

Packaging Quantity:

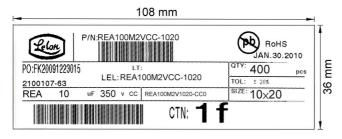

3. Radial Type in Cutting Pack:

Case Size	pcs / Bag	Inner Box / Carton	Pcs / Carton	Case Size	pcs / Bag	Inner Box / Carton	Pcs / Carton
3φ × 5	1,000	8	80,000	*10φ × 8 ~ 10L	*500	8	*12,000
4φ × 5 ~ 7L	1,000	8	80,000	10φ × 12.5 ~ 16L	500	8	8,000
5φ × 5 ~ 7L	1,000	8	56,000	10φ × 20L	400	8	6,400
*5φ × 8L	*1000	8	*24,000	10φ × 25L	300	8	4,800
5φ × 11L	1,000	8	40,000	10φ × 30 ~ 40L	250	8	4,000
$6.3\phi \times 5 \sim 7L$	1,000	8	40,000	10φ × 45 ~ 50L	200	8	3,200
*6.3φ × 5.5 ~ 8L	*1000	8	*20,000	12.5φ × 16 ~ 25L	200	8	3,200
6.3φ × 11L	1,000	8	24,000	12.5φ × 30 ~ 40L	150	8	2,400
0.5ψ Χ ΤΤΕ	*1000	8	*20,000	12.5φ × 45 ~ 50L	100	8	1,600
$6.3\phi \times 15L$	500	8	12,000	16φ × 16 ~ 31.5L	100	8	1,600
8φ × 5 ~ 9L	1,000	8	16,000	16φ × 35.5 ~ 40L	75	8	1,200
8φ × 11.5L	1,000	8	16,000	16φ × 45 ~ 50L	50	8	800
*8φ × 8 ~ 12L	*1000	8	*16,000	18φ × 16 ~ 25L	100	8	1,600
8φ × 15L	800	8	12,800	18φ × 31.5 ~ 35.5L	75	8	1,200
8φ × 20L	500	8	8,000	18φ × 40L	50	8	800
8φ × 25 ~ 30L	500	8	8,000	18φ × 45 ~ 50L	50	8	400
8φ × 35 ~ 50L	250	8	4,000	20 ~ 25φ			400
10φ × 9L	500	8	12,000				


Remark: "*" Suitable for CA04 type (OP-CAP).


Packing Figure:

a) Inner Box



Unit: mm

c) Label:

Endurance Characteristic:

	urance Charact	ioriotio.		
No.	Item	Conditions		Specification
1	Rotational Temperature Test	Capacitor is placed in an oven whose temperature follow specific regulation to " +25°C (3 min.) →	Capacitance change	Within ± 10% of initial value.
		-40°C (30 min.) → +25°C (3 min.) → +85°C	Tanδ	Within specified value
		$(30 \text{ min.}) \rightarrow +25^{\circ}\mathbb{C}$ (3 min.)", and it is called a cycle. The test totals 10 cycles. And then the capacitor	Leakage Current	Within specified value
		shall be subjected to standard atmospheric	Physical	No broken and undamaged
		conditions for 4 hours, after which measurements shall be made.	,	3
2	High Temperature Endurance Life	Capacitors shall be placed in oven with application of ripple current and rated voltage	Capacitance change	Within ± 20% of initial value.
	Test	2000 +72 / -0 hours for $\phi D \leq 8$ mm,	Tanδ	Less than 200% of specified value
		$3000 + 72 / -0$ hours for $\varphi D \ge 10$ mm at 85° C	Leakage	-
		2. The capacitor should be used within specified	Current	Within specified value
		 permissible ripple current in each standard products table (the sum of DC voltage and AC peak voltage shall be equal to the rated DC working voltage). 3. The specified maximum permissible ripple current in defined at 85°C and 120Hz (unless otherwise specified). 4. Then the capacitor shall be subjected to standard 	Physical	No broken and undamaged
		atmospheric conditions for 4 hours, after which measurements shall be made.		
3	High Temperature Unload Life Test	After 1000 +48 / -0 hours test at 85°C without rated working voltage. And then the capacitor shall be	Capacitance change	Within ± 20% of initial value.
		subjected to standard atmospheric conditions for	Tanδ	Less than 200% of specified value
		4 hours, after which measurements shall be made. The rated voltage shall be applied to the capacitors	Leakage Current	Within specified value
		before the measurenments for 160 ~ 450V. (Refer to JIS C 5101-4 4.1)	Physical	No broken and undamaged
4	Humidity Test	Capacitors shall be exposed for 1000 +48 / -0 hours in an atmosphere of $90\% \sim 95\%$ R. H. at $60 \pm 3^{\circ}$ C	Capacitance change	Within ± 10% of initial value.
		And then the capacitor shall be subjected to	Tanδ	Less than 120% of specified value
		standard atmospheric conditions for 4 hours, after which measurements shall be made.	Leakage Current	Within specified value
		which measurements shall be made.	Physical	No broken and undamaged
5	Low Temperature Test	Capacitors are placed at -40 \pm 3 $^{\circ}$ C for 96 \pm 4 hours. And then the capacitor shall be subjected to	Capacitance change	Within ± 10% of initial value.
		atmospheric conditions for 4 hours, after which	Tanδ	Within specified value
		measurements shall be made.	Leakage Current	Within specified value
			Physical	No broken and undamaged
6	Vibration Test	Fix it at the point 4mm or less form body. For ones of 12.5mm or more in diameter or	Capacitance change	Within ± 10% of initial value.
		25mm or more length, use separate fixture.	Tanδ	Within specified value
		Direction and during of vibration: 3 orthogonal directions mutually each for	Leakage Current	Within specified value
		2 hours (total of 6 hours).	Physical	No broken and undamaged
		Frequency: 10 to 55 Hz reciprocation for 1min. Total amplitude: 1.5mm		
7	Solder Heat-	The section of lead below 4mm form the body of	Capacitance	Within ± 10% of initial value.
	Resistance Test	capacitor must be immersed in 260 ± 5°C liquid tin	change	
		10 ± 1 seconds, than, after removing the following specifications shall be satisfied when capacitor	Tanδ Leakage	Within specified value
		terminal is restored to 20°C over 4 hours.	Current	Within specified value
			Physical	No broken and undamaged

LELON ELECTRONICS CORP. REA-APR-10

NI-	14		0-	1:4:							0-	::::::
No.	Item	The consciter		ndition		000 6	rolos s		Consoits	nac	Sp	ecification
8	Surge Voltage Test	The capacitor s 15 ~ 35℃. Pro							Capacita change			± 20% of initial value.
		consisting of a	• .									nan 175% of specified value
		followed by dis minutes.	charge p	eriod (of appr	oximat	ely 5.5		Leakage Current With			specified value
									Physical		No bro	ken and undamaged
		Applying voltage	ge:									
		Rated Vo	ltage(V)	6.3	10	16	25	3	5 50	63	100	
		Surge Vo	ltage(V)	7.3	11.5	18.4	28.8	40.	3 57.5	72.5	115	
		Rated Vo	ltage(V)	160	200	250	350	40	0 450			
		Surge Vo	ltage(V)	184	230	288	385	44	0 495			
9	Mechanical Characteristics Test	2. Tension Tes The lead tak	1. The test is about lead tabs strength. 2. Tension Test: The lead tabs shall not be broken or any malformed condition after fixing capacitor vertically and pressing the following weight on the lead tabs of capacitor for 10 ± 1 secs. Lead tabs diameter (mm) Weight (Kg)									
				Lea			ter (mi	11)	vve		(9)	
						≤ 0.5				0.5		
		0.6 ~ 0.8 1.0										
		3. Bending Tes	-4.			>0.8				2.0		
		The capacitor is held in vertical position. Attach a weight to the lead tabs, slov 90° to a same way in the opposite direction. Repeat it again (5 secs / cycle). The broken or cracked.										
				Lea	ad tabs	diame	ter (mr	n)	We	ight (k	(g)	
						≦ 0.5				0.25		
					0.	6 ~ 0.8	3			0.50		
						> 0.8				1.00		
10	Solderability Test	After the lead v				the sol	der for	2 ±	0.5 secs	at a te	empera	ture of 245 ± 5°C, the solder
11	Venting Test	voltage of (2) DC test: Applying Where of Note:	on: acitor sha or 250Vrr g inverse ase diam	all be ons AC DC raneter: o	connect which ted vol $\phi D \leq 2$	ted acı ever is tage w 22.4mn 22.4mr	ross an the lov ith curr n: 1 A I m: 10 A	apporent	olying 50 of to the cap max C max	or 60 l	Hz AC v	which is 0.7 times of rated
		of cap (2) When	oacitor el	ement sure r	(termi elief de	nal and evice d	d metal	foil	etc.) or co	over.		olied over 30 minutes, the

LELON ELECTRONICS CORP. REA-APR-10

Precautions and Guidelines for Aluminum Electrolytic Capacitors

Guidelines for Circuit Design (General / Application guidelines for using electrolytic capacitors)

Selecting of a right capacitor is a key to a good circuit design.

(1) Polarity

Most of the aluminum electrolytic capacitors are polarized. Therefore, they must be installed with the correct polarity. Usage in the reverse polarity results into a short-circuit condition that may damage or even explode the capacitor. In addition, it may influence circuit functionality. A bi-polar electrolytic capacitor should be installed when polarity across a capacitor is unstable / reversible. It should be, however, noted that usage of both polar and bi-polar capacitors are limited to DC applications. They must NOT be used for AC application.

(2) Operating Voltage

Applied DC voltage must not exceed rated voltage of the capacitor. Applying higher voltage than its rated voltage across a capacitor terminals cause overheating due to higher leakage currents and capacitor dielectric/insulation deterioration that will ultimately affect a capacitor's performance. The device, however, is capable of working under short-time transient voltages such as DC transients and peak AC ripples. Reverse voltages higher than 1 Volt within a specified temperature limit or AC voltages are not permissible. Overall, using capacitors at recommended operating voltages can prolong its lifespan. Note that the result of DC voltage overlapped with peak ripple voltage should not exceed rated voltage.

(3) Ripple Current

One of the key functions of any capacitor is removal of the ripple current i.e. the RMS value of AC flowing through a capacitor. But, a ripple current higher than rated ripple current will drop resultant capacitance, cause undue internal heating and thus reduces life span of the capacitor. In extreme cases, internal high temperature will cause the pressure relief vent to operate while destroying the device. Overall, it is important to note that an electrolytic capacitor must be used within a permissible range of ripple current. Indicators like temperature coefficient of allowable ripple current are generally used to determine life expectancy of the capacitor, but to avoid related complex calculations and for the sake of simplicity, we haven't provided temperature coefficient in the catalogue. But it offers key indicators like maximum operating temperature for calculation of life expectancy at a given temperature.

(4) Operating Temperature

Capacitors should be used within a permissible range of operating temperatures. Using capacitor at a higher temperature than maximum rated temperature will considerably shorten its life. In the worst-case scenario, high temperature can cause pressure relief vent to operate and the device will get destroyed. Using capacitors at an ambient room temperature assure their longer life.

(5) Leakage Current

Leakage current flows through a capacitor when DC voltage is applied across it. Leakage current varies with changes in ambient temperature and applied DC voltage level and its time of application. Overvoltage situation, presence of moisture, and thermal stresses, especially occurring during the soldering process can enhance leakage current. Initial leakage current is usually higher and does not decrease until voltage is applied for a certain period of time. It is recommended to keep initial leakage current within specified levels.

(6) Charge and Discharge

Regular electrolytic capacitors are not suitable for rapid charging/discharging circuits. Such usage may either cause reduction in overall capacitance or damage due to overheating. Lelon provides special assistance for selecting appropriate capacitors for rapid charging/discharging circuits.

(7) Surge Voltage

The Surge voltage rating is referred as the maximum DC overvoltage that may be applied to an electrolytic capacitor for a short time interval of 30 seconds at infrequent time intervals not exceeding 5.5minutes with a limiting resistance of $1k\Omega$. Unless otherwise described on the catalogue or product specifications, please do not apply a voltage exceeding the capacitor's voltage rating. The rated surge voltages corresponding to rated voltages of electrolytic capacitors are presented as follows:

Rated Voltage(V)	4	6.3	10	16	25	35	50
Surge Voltage(V)	4.6	7.3	11.5	18.4	28.8	40.3	57.5
	I						
Rated Voltage(V)	63	80	100	160	200	250	315
Surge Voltage(V)	72.5	92	115	184	230	288	347
							1
Rated Voltage(V)	350	400	420	450	500	525	
Surge Voltage(V)	385	440	462	495	550	578	

(8) Condition of Use

The capacitors shall NOT be exposed to:

- (a) Fluids including water, saltwater spray, oil, fumes, highly humid or condensed climates, etc.
- (b) Ambient conditions containing hazardous gases/fumes like hydrogen sulfide, sulfurous acid, nitrous acid, chlorine or bromine gas, ammonia, etc.
- (c) Exposed to ozone, ultraviolet rays and radiation.
- (d) Severe vibrations or physical shocks that exceeds the specifications mentioned in this catalogue.

(9) Circuit Design Consideration

- (a) Please ensure whether application, operating and mounting conditions satisfy the conditions specified in the catalog before installation of a capacitor. Please consult Lelon, if any of the conditions are beyond the conditions specified in the catalog.
- (b) Heat-generating components or heat sinks should not be placed closer to Aluminum electrolytic capacitors on the PCB to avoid their premature failure. A cooling system is recommended to improve their reliable working.
- (c) Electrical characteristics and performance of aluminum electrolytic capacitors are affected by variation of applied voltage, ripple current, ripple frequency and operating temperature. Therefore, these parameters shall not exceed specified values in the catalog.
- (d) Aluminum capacitors may be connected in the parallel fashion for increasing total capacitance and/or for achieving higher ripple current capability. But, such design may cause unequal current flow through each of the capacitors due to differences in their impedances.
- (e) When two or more capacitors are connected in series, voltage across each capacitor may differ and fall below the applied voltage. A resistor should be placed across each capacitor so as to match applied voltage with voltage across a capacitor.
- (f) Please consult Lelon while selecting a capacitor for highfrequency switching circuit or a circuit that undergoes rapid charging/ discharging
- (g) Standard outer sleeve of the capacitor is not a perfect electrical insulator therefore is unsuitable for the applications that requires perfect electrical insulation. Please consult Lelon, if your application requires perfect electrical insulation.
- (h) Tilting or twisting capacitor body is not recommended once it is soldered to the PCB.

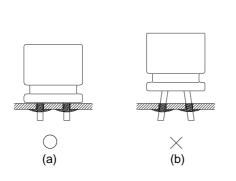
2. Caution for Assembling Capacitors

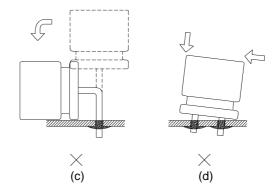
(1) Mounting

(a) Aluminum electrolytic capacitors are not recommended to reuse in other circuits once they are mounted and powered in a circuit.

- (b) Aluminum electrolytic capacitors may hold static charge between its anode and cathode, which is recommended to be discharged through a 1kΩ resistor before re-use.
- (c) A long storage of capacitors may result into its insulation deterioration. This can lead to a high leakage current when voltage is applied that may damage the capacitor. Capacitors following a long storage period must undergo voltage treatment/re-forming.
 - Capacitors are charged by applying rated DC voltage through a resistor of $1k\Omega$ in series at least for an hour. It is recommended to increase applied voltage gradually using a voltage regulator unit once capacitors are assembled on the board. The charging should be followed by discharging through a $1K\Omega$ resistor.
- (d) Please check capacitor rated voltage before mounting.
- (e) Please check capacitor polarity before mounting.
- (f) Please don't drop capacitor on the floor / hard object.
- (g) Please don't deform the capacitor during installation.
- (h) Please confirm whether the lead spacing of the capacitors match with its pad spacing / footprint on PCB prior to installation.
- Please avoid excessive mechanical shocks to capacitor during the auto-insertion process, inspection or centering operations.
- (j) Please don't place any wiring or circuit over the capacitor's pressure relief vent. The pressure relief vent may fail to open if adequate clearance space is not provided. Following table shows minimum clearance space required for different case diameters.

Case Diameter	φ6.3 ~ φ16	φ18 ~ φ35	ϕ 40 or above
Clearance (min)	2 mm	3 mm	5 mm


(2) Soldering


- (a) Please confirm that soldering conditions, especially temperature and contact time are within our specifications. Dip or flow soldering temperature should be limited at 260 ± 5°C for 10 ± 1 sec while manual soldering using soldering iron should be limited at 350 ± 5°C for 3 +1/-0 seconds. Please do not dip capacitor body into molten solder. A capacitor's life will be negatively affected if these conditions are violated.
- (b) Storage of capacitors in high humidity conditions is likely to affect the solder-ability of lead wires and terminals.

- (c) Reflow soldering should NOLY be used for SMD type capacitors. The temperature and duration shall not exceed the specified temperature and duration in the specification. If the temperature or duration is higher than the value specified, please consult Lelon before usage.
- (d) Standard aluminum electrolytic capacitors are not designed to withstand multiple reflow processes. Please consult Lelon if repeated reflowing is unavoidable.
- (e) Incorrect mounting on PCB with improper external strength applied on its lead wires or capacitor body after soldering may damage a capacitor's internal structure, cause short circuit, or lead to high leakage current issues. Do not bend or twist the capacitor body after soldering. Referring to the drawings below only case (i) is recommended.
 - (i) Correct soldering
 - (ii) Hole-to-hole spacing on PCB differs from the lead space of lead wires.
 - (iii) Lead wires are bent after soldering.
 - (iv) Capacitor body doesn't stand vertical on PCB after soldering.

(3) Cleaning Circuit Boards after Soldering

- (a) Following chemicals are not recommended for cleaning: Solvent containing halogen ions, Alkaline solvent, Xylene, Acetone, Terpene, petro-based solvent.
- (b) Recommended cleaning conditions: Fatty-alcohol - Pine Alpha ST-100S, Clean Through-750H and IPA (isopropyl alcohol) are examples of the most acceptable cleaning agents. Temperature of the cleaning agent must not exceed 60°C. Flux content in the cleaning agents should be limited to 2 Wt. %. Overall length of cleaning process (e.g., immersion, ultrasonic or other) shall be within 5 minutes (5 7mm height within 3 minutes). CFC substitute cleaning agents such as AK225AES can also be used for cleaning. In this case, its temperature shall not exceed 40 C and cleaning process (e.g., immersion, ultrasonic or other) shall be completed within 2 ~ 3 minutes. After cleaning capacitors should be dried with hot air for at least 10 minutes along with the PCB. Temperature of hot air shall not exceed maximum category temperature of the capacitor. Insufficient drying may cause appearance defects, sleeve shrinkage, and bottom-plate bulging. However, usage of this CFC substitute must completely regulated for protection of environment.

3. Maintenance Inspection

Periodical inspection of aluminum capacitors is absolutely necessary, especially when they are used with industrial equipment. The following items should be checked:

- (1) Appearance: Bloated, vent operated, leaked, etc.
- (2) Electrical characteristic: Capacitance, Tanδ, leakage current, and other specified items listed in specification.

Lelon recommend replacing the capacitors if any of the abovementioned items fail to meet specifications.

4. Storage

- (1) The most suitable conditions for aluminum capacitor storage are 5 °C ~ 35°C and indoor relative humidity less than 75%. High temperature and/or humidity storage is detrimental to the capacitors.
- (2) Capacitors shall not be stored in wet or damp atmospheres containing water, brine, fumes or oil.
- (3) Capacitors storage area shall neither be exposed to hazardous gases such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine, ammonium, etc. nor to acidic or alkaline solutions.
- (4) Capacitors shall not be exposed to ozone, ultraviolet rays or radiation.

LELON ELECTRONICS CORP. REA-APR-10

5. Disposal

Please consult with a local industrial waste disposal specialist when disposing of aluminum electrolytic capacitors

6. Environmental Consideration

Lelon already have received ISO 14000 certificate. Cadmium (Cd), Lead (Pb), Mercury (Hg), Hexavalent Chromium (Cr⁺⁶), PBB, PBDE, DEHP, BBP, DBP and DIBP have never been using in capacitor. If you need "Halogen-free" products, please consult with us.

7. AEC-Q200 Compliance

Automotive Electronics Counsel (AEC) has established various electronic component qualification/reliability standards in order to serve automotive electronics industry. AEC-Q200 standard is dedicated for passive components like capacitors, inductors, etc. and is widely adopted domestically as well as internationally. Lelon offers compliant product designs and support services to satisfy customers' product requirements, including the ACE-Q200 required criteria of the reliability tests. Lelon's capacitors are professionally designed to outperform all requirements of ACE-Q200.

For further details, please refer to

IEC 60384-4- Fixed capacitors for use in electronic equipment – Part 4: Sectional specification – Aluminium electrolytic capacitors with solid (MnO₂) and non-solid electrolyte (Established in January 1995, Revised in March 2007), and

EIAJ RCR-2367B- Guideline of notabilia for fixed aluminium electrolytic capacitors for use in electronic equipment [Technical Standardization Committee on Passive Components (Established in March 1995, Revised in March 2002)].

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Electrolytic Capacitors - Radial Leaded category:

Click to view products by Lelon manufacturer:

Other Similar products are found below:

LXY50VB4.7M-5X11 RFO-100V471MJ7P# ECE-A1EGE220 NCD681K10KVY5PF NEV1000M25EF-BULK NEV100M35DC

NEV100M63DE NEV220M25DD-BULK NEV.33M100AA NEV4700M50HB NEV.47M100AA NEVH1.0M250AB NEVH3.3M250BB

NEVH3.3M450CC KME50VB100M-8X11.5 ES5107M016AE1DA ESX472M16B 476CKH100MSA 477RZS050M UVX1V101KPA1FA

UVX1V222MHA1CA KME25VB100M-6.3X11 VTL100S10 VTL470S10 511D336M250EK5D 052687X ECE-A1CF471

EKXG451ELL820MM30S 686CKR050M NRE-S560M16V6.3X7TBSTF ERZA630VHN182UP54N UPL1A331MPH NEV1000M6.3DE

NEV100M16CB NEV100M50DD-BULK NEV2200M16FF NEV220M50EE NEV2.2M50AA NEV330M63EF NEV4700M35HI

NEV4.7M100BA NEV47M16BA NEV47M50CB-BULK NEVH1.0M350AB NEVH2.2M160AB NEVH3.3M350BC TER330M50GM

477KXM035MGBWSA B43827A1106M8 EKMA160EC3101MF07D