Dwg. No. : A21-2205

承認字號

Issued Date: 2021/11/09

Customer	: <u> </u>
(客 户)	
Part No.	: <u> </u>
(書公司料號)	

SPECIFICATION FOR APPROVAL

承 認 書

Description : (零 件 名 稱)	V-CHIP ALUMINUM ELECTROLYTIC CAPACITORS
Lelon Series : (立隆系列)	VSS Series
Lelon Part No.: (立 隆 料 號)	VSS330M1ETR-0604

LELON ELECTRONICS CORP.

立隆電子工業股份有限公司

Headquarters

147, Sec. 1, Guoguang Rd., Dali District, Taichung, Taiwan TEL: +886-4-2418-1856 FAX: +886-4-2418-1906

Manufacturing Sites

- Lelon Electronics Corp.

 147, Sec. 1, Guoguang Rd., Dali District, Taichung, Taiwan
 TEL: +886-4-2418-1856 FAX: +886-4-2418-1906
- Lelon Electronics (Huizhou) Co., Ltd.
 Taiyang Industrial Zone, Baihua Town, Huidong County, Huizhou City,
 Guangdong, China
 TEL: +86-752-8768222 FAX: +86-752-8768199
- Lelon Electronics (Suzhou) Co., Ltd.
 1220, Zhongshan North Rd., Songling Town, Wujiang City, Jiangsu, China TEL: +86-512-63457588 FAX: +86-512-63457791

Approval Signatures

貴公司承認印

Approval	Check	Design
核 准	確 認	作 成
研發部	研發部	研發部
NOV 09 2021	NOV 09 2021	NOV 09 2021
蕭正浩	张 陆	蔡麗華

Please Return One Copy with Your Approval 承 認 後 請 寄 回 本 圖 一 份 LELON ELECTRONICS CORP. Ver. 04

Part Numbering System

Product Code Guide - SMD Type

VE series	10μF	±20%	16V	Carrier Tape		4 φ ×5.3L	Pb-free and PET coating case	
VE-	<u>100</u>	<u>M</u>	<u>1C</u>	<u>TR</u>	-	<u>0405</u>		
1	2	3	4	⑤	6	7	8	9
Series	Capacitance	Capacitance Tolerance	Rated Voltage	Package Type	Terminal Type	Case size	Lead Wire and Coating Type	Supplement Code

1 Series:

Series is represented by a three-letter code. When the series name only has two letters, use a hyphen, "-", to fill the third blank.

2 Capacitance:

Capacitance in μF is represented by a three-digit code. The first two digits are significant and the third digit indicates the number of zeros following the significant figure. "R" represents the decimal point for capacitance under $10\mu F$.

Example:

Capacitance	0.1	0.47	1	4.7	10	47	100	470	1,000	4,700
Part number	0R1	R47	010	4R7	100	470	101	471	102	472

3 Tolerance:

J = -5% ~ +5%	K = -10% ~ +10%	M = -20% ~ +20%	V = -10% ~ +20%

4 Rated voltage:

Rated voltage in volts (V) is represented by a two-digit code

•	rated voltage in voits (v) is represented by a two-digit code												
	Rated Volt. (V)	4	6.3	10	16	20	25	35	40	50	63	80	100
	Code	0G	0J	1A	1C	1D	1E	1V	1G	1H	1J	1K	2A
	Rated Volt. (V)	160	200	250	350	400	450						
	Code	2C	2D	2E	2V	2G	2W						

(5) Package:

TR = Reel package	T- = Tray package for case diameter 12.5 ~ 18mm	TT = Reel package of plastic
	paskags is sass didition 12.0 follill	

6 Terminal:

- = Standard product	
V = Anti-vibration product	

7 Case size:

The first two digits indicate case diameter and the last two digits indicate case length in mm.

THE IIIST IM	The first two digits indicate case diarrieter and the last two digits indicate case length in film.									
φD×L	3×5.3	4×4.5	4×5.3	4×5.7 4×5.8 ^{*1}	5×4.5	5×5.3	5×5.7 5×5.8 ^{*1}	5×7 ^{*2}	6.3×4.5	6.3×5.3
Code	0305	0404	0405	0406	0504	0505	0506	0507	0604	0605
φ D×L	6.3×5.7 6.3×5.8 ^{*1}	6.3×7.0 ^{*2}	6.3×7.7	6.3×8.7 ^{*2}	8×6.5	8×10	10×7.7	10×10	10×12.5	12.5×13.5
Code	0606	0607	0607	0608	0806	0810	1008	1010	1013	1313
φD×L	12.5×16	16×16.5	16×21.5	18×16.5	18×21.5	•	•	•		•
Code	1316	1616	1621	1816	1821					

Note: *1.The case size "4x5.8, 5x5.8, 6.3x5.8" is for VZL, VZS, VZT series only.

8 Lead Wire and Coating Type:

None = Pb free wire (Standard design)	E = Sn-Bi wire
K / L = Automotive control code	

^{*}When a supplement code following a blank digit code of lead wire and case coating type (standard design), use a hyphen, "-", to fill the blank digit

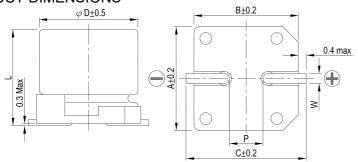
Supplement code (Optional):

For special control purpose

^{*2.} The case size ard for VZR series only.

^{3.} When a case size is required and not shown in the table, please contact with us for further discussion.

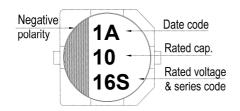
^{*} When the automotive control code is required, please contact with us for further discussion.


Lelon P/N: VSS330M1ETR-0604

LELON ELECTRONICS CORP.

VSS $33 \mu F / 25V - 6.3 \phi \times 4.5L$

Page: 1 / 1


PRODUCT DIMENSIONS

	Unit: mm
φD	6.3
L	4.5 ± 0.2
Α	6.6
В	6.6
С	7.2
W	0.5 ~ 0.8
Р	2.0 ± 0.2

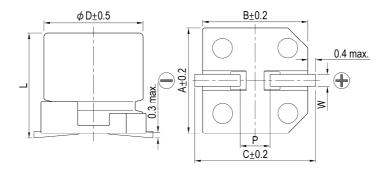
Items					Perf	ormance				
Rated Voltage V _R					2	25 V				
Capacitance C _R					3	3µF			(120	Hz, 20°€)
Category Temperature Range				-	40 ℃	~ +85°C				
Capacitance Tolerance				-	20 %	~ +20 %			(120	Hz, 20°ℂ)
Surge Voltage Vs		28.8 Vpc								
Leakage Current (20°ℂ)		lleak ≤ 8.25 μA After 2 minu							2 minutes	
Tan δ		≤ 0.16 (120 Hz, 20						 Hz, 20℃)		
Ripple Current (IAC, R / rms)		52mA (120 Hz, 85						Hz, 85°ℂ)		
Low Temperature Characteristics at 120 Hz		lmį	pedance r	atio		Z(-25°C)/Z(+2 Z(-40°C)/Z(+2			2]
Ripple Current (mA) and Frequency Multipliers			ncy (Hz)	50 0.7		120 1.00	1k 1.30	1	10k up 1.40	
Endurance and Shelf Life Test	Items Test Time Cap. Change Tan δ		Endurance 2,000 Hrs at 85°C; VR Within ±25% of initial value Less than 300% of specified value				Shelf Life Test 1,000 Hrs at 85°C Within ±25 % of initial value Less than 300% of specified value			
	Leakage Current Within specified value Within specified value						value			
Standards				JIS C	5101	-4, IEC 603	84-4			
Remarks			Ro	oHS Co	mplia	ince , Halog	en-free			

Marking: Each capacitor shall be marked with the following information.

1 A → 2021 , January

Month of manufacture
The last digit of A. D.

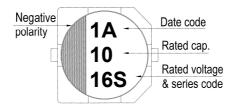
Month	1	2	3	4	5	6						
Code	Α	В	С	D	Е	F						
Month	7	8	9	10	11	12						
Code	G	Н	ı	J	K	L						


Marking color: Black

* Please refer to "Precautions and Guidelines for Aluminum Electrolytic Capacitors" section in Lelon's catalog for further details.

Publication Date	November 09, 2021	Approval Signatures:	Approved	Checked	Designed
Revision Date			研發部	研發部	研發部
Version No.	1	Please return one copy with your approval	NOV 09 2021 蕭正浩	NOV 09 2021 张 陆	NOV 0.9 2021 蔡麗華

Diagram of Dimensions:


Unit: mm

ϕ D	L	Α	В	С	W	P ± 0.2
4	4.5 ± 0.2	4.3	4.3	5.1	0.5 ~ 0.8	1.0
5	4.5 ± 0.2	5.3	5.3	5.9	0.5 ~ 0.8	1.5
6.3	4.5 ± 0.2	6.6	6.6	7.2	0.5 ~ 0.8	2.0

Marking:

Each capacitor shall be marked with the following information.

Description of Date Code:

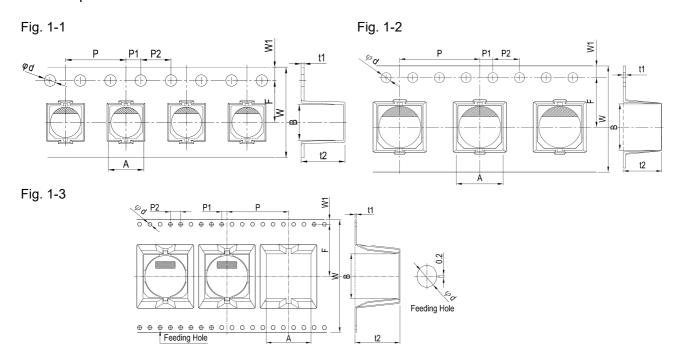
 $1 \longrightarrow 2021$, January

► The last digit of A. D.

Month of manufacture

Month	1	2	3	4	5	6
Code	Α	В	С	D	Е	F
Month	7	8	9	10	11	12
Code	G	Н	I	J	K	L

Origin code:


Huizhou: A1 , B1 , ... , K1 , L1 Suzhou: 1A , 1B , ... , 1K , 1L

Marking Color: Black

LELON ELECTRONICS CORP. PAC-SMD

Taping Specification for SMD Type

1. Carrier Tape

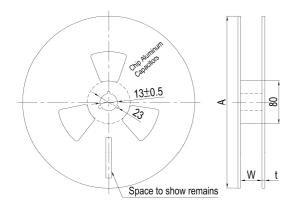
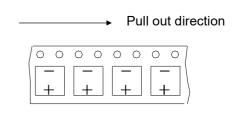
												Unit: mm		
φD×L	Α	В	ϕ d	F	Р	P1	P2	t1	t2	W	W1	Fig. No.		
3~4 ×4.5 ~ 5.3	4.7	4.7			8				5.8			1-1		
4 ×5.7 / 5.8	4.7	4.7			0				6.2			1-1		
5 ×4.5 ~ 5.3				5.5					5.8	12.0				
5 ×5.7 ~ 5.8	5.7	5.7			12				6.2					
5 ×7.0									7.6					
6.3 ×4.5 ~ 5.3								0.4	5.8					
6.3 ×5.7 / 5.8								0.4	6.2					
6.3 ×7.0	7.0	7.0		7.5	40				7.6	40.0				
6.3 ×7.7				7.5	12				8.3	16.0	1.75			
6.3 ×8.7									9.3			1-2		
8 ×6.5	0.7	0.7							6.8					
8 ×10	8.7	8.7		11 5	16				11.0					
8 ×10.5 (G)	9.2	9.2	4.5			2.0	4.0	0.5	11.2					
10 ×7.7	40.7	40.7	1.5			2.0	4.0	0.4	10.0	04.0	1.75			
10 ×10	10.7	10.7		11.5	16			0.4	11.0	24.0				
10 ×10.5 (G)	11.2	11.2							11.2					
10 ×12.5	10.7	10.7							13.0					
12.5 ×13.5	13.4	13.4							15.0					
12.5 ×13.5 (G)	13.7	13.7		110	24				15.0	32.0				
12.5 ×16	13.4	13.4		14.2	24				17.5					
12.5 ×16 (G)	13.7	13.7						0.5	18.0					
16 ×16.5									17.5			1-3		
16 ×16.5 (G)	17.5	17.5			28				20.0	1				
16 ×21.5				20.2					22.5	44.0				
18 ×16.5 / (G)	40.5	40.5			20	1			17.5					
18 ×21.5	19.5	19.5			32	32	32				22.5			
Tol.	± 0.2	± 0.2	+0.1/-0	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	± 0.2	± 0.3	± 0.15			

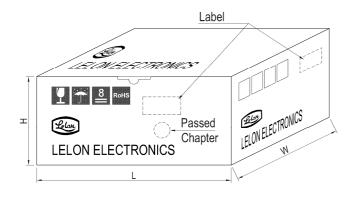
Note: Case size in mark of "G" are for "Anti-vibration".

LELON ELECTRONICS CORP. PAC-SMD

2. Reel Package

Fig. 2-1


Fig. 2-2 Reel Polarity

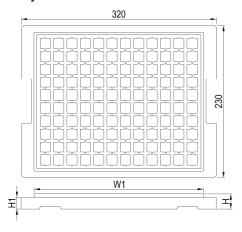
Case size	3 ~ 4 ¢	5φ	6.3ϕ	8 φ ×6.5	8 <i>φ</i> ×10	10 <i>φ</i>	12.5 <i>ϕ</i>	16 ~ 18 ¢				
W	14	14	18	18	26	26	34	46				
A+2 max.		380										
t		3.0										

3. Packing specification Fig. 3-1 Carrier Tape

Unit: pcs

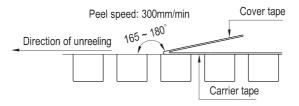
Q'ty / Reel	Q'ty / Box
2,000	20,000
2,000	20,000
1,000	10,000
1,500	15,000
1,000	10,000
1,000	10,000
500	5,000
500	5,000
400	4,000
200	1,600
200	1,600
200	1,600
100	800
150	1,200
100	800
	2,000 2,000 1,000 1,500 1,000 1,000 500 500 400 200 200 100 150

Unit: mm

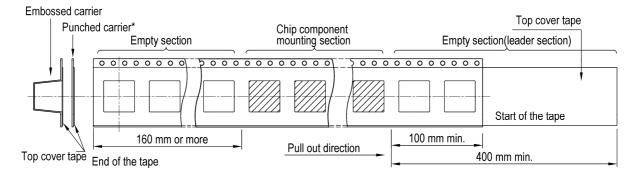

Case size	3 ~ 4 <i>φ</i>	5φ	6.3ϕ	8 φ × 6.5	8 <i>\phi</i> × 10	10 <i>φ</i>	12.5 ¢	16 ~ 18 φ
Н	210	210	250	250	330	330	340	430
W, L	395	395	395	395	395	395	395	395

LELON ELECTRONICS CORP. PAC-SMD

Fig. 3-2 Label


4. Chip Tray

Dimension and	d packa	ge quar	ntity		Unit: mm
Case size	W1	Н	H1	Q'ty / Tray	Q'ty / Box
12.5 φ ×13.5L	284	21	18.5	120	600
12.5 φ ×16L	284	21	18.5	120	600
16 φ ×16.5L	284	28	24.0	80	400
16 φ ×21.5L	284	28	24.0	80	400
18 φ ×16.5L	284	28	24.0	60	300
18 φ ×21.5L	284	28	24.0	60	300


5. Sealing Tape Reel Strength

- 5.1 Peel angle: 165 to 180°C refered to the surface on which the tape is glued.
- 5.2 Peel speed: 300mm per minutes
- 5.3 The peel strength must be 0.1 ~ 0.7N under these conditions.

6. Packing Method

- 6.1 The leader length of the tape shall not be less than 400 mm including 10 or more embossed sections in which no parts are contained.
- 6.2 The winding core is provided with an over 160mm long empty section; punched carrier is only suitable for ϕ D \leq 5 mm.

7. Other: Specifications stated above is in accordance with JIS C 0806-3.

Endurance characteristic:

No.	Item	Conditions Specification
1	Rotational	Capacitor is placed in an oven whose temperature Capacitance Within + 10% of initial value
	Temperature Test	follow specific regulation to change. The specific change
		regulation is "+25°C (3 min.) \rightarrow -40°C (30 min.) Tan δ Within specified value \rightarrow +25°C (3 min.) \rightarrow +85°C (30 min.) \rightarrow +25°C (3
		min.) ", and it is called a cycle. The test totals 10 Within specified value
		cycles, and then the capacitor shall be subjected to Physical No broken and undamaged
		standard atmospheric conditions for 4 hours, after which measurements shall be made.
2	High Temperature	1. Capacitors shall be placed in oven with Capacitance 1. 4 ~ 6.3V: Within ± 30% of initial
	Endurance Test	application of rated voltage for 2,000 +72 / -0 change value hours at 85° C. change 2. 10 ~ 50V: Within ± 25% of initial
		2. Then the capacitor shall be subjected to standard value
		atmospheric conditions for 4 hours, after which Tan δ Less than 300% of specified value
		measurements shall be made. Leakage Within specified value
		Current Physical No broken and undamaged
3	High Temperature	After 1,000 +48 / -0 hours test at 85°C without rated Capacitance 1. 4 ~ 6.3V: Within ± 30% of initial
	Unload Life Test	voltage. And then the capacitor shall be subjected to change value
		standard atmospheric conditions for 4 hours, after which measurements shall be made. 2. 10 ~ 50V: Within ± 25% of initial value
		Tan δ Less than 300% of specified value
		Leakage Current Within specified value
		Physical No broken and undamaged
4	Humidity Test	Capacitors shall be exposed for 1,000 +48 / -0 hours Capacitance in an atmosphere of 90 ~ 95% R. H. at 60 ± Within ± 10% of initial value
		$3^{\circ}\mathbb{C}$. Tan δ Less than 120% of specified value
		And then the capacitor shall be subjected to standard atmospheric conditions for 4 hours, after Leakage Current Within specified value
		which measurements shall be made. Physical No broken and undamaged
5	Low Temperature Test	Capacitors are placed at $-40 \pm 3^{\circ}$ C for 96 ± 4 hours. And then the capacitor shall be subjected to Capacitance change Within \pm 10% of initial value
		standard atmospheric conditions for 4 hours, after $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
		which measurements shall be made. Leakage Current Within specified value
		Physical No broken and undamaged
6	Vibration Test	1. Fix it at the point 4 mm or less from body. For ones of 12.5 mm or more in diameter or 25 mm Capacitance change Within ± 10% of initial value
		or more length, use separate fixture. Tan δ Within specified value
		2. Direction and during of vibration: 3 orthogonal directions mutually each for 2 hours Leakage Current Within specified value
		(total of 6 hours). Physical No broken and undamaged
		3. Frequency: 10 to 55 Hz reciprocation for 1 minute.
		4. Total amplitude: 1.5 mm
7	Surge Voltage Test	The capacitor shall be subjected to 1,000 cycles at $15 \sim 35^{\circ}$ C. Protective series resistor a $1K\Omega$ each Within $\pm 20\%$ of initial value
		consisting of a charge period of 30 \pm 5 seconds, Tan δ Less than 175% of specified value
		followed by discharge period of approximately 5.5 minutes. Leakage Current Within specified value
		Physical No broken and undamaged
		Applying voltage:
		Rated Voltage(V) 4 6.3 10 16 25 35 50
		Surge Voltage(V) 4.6 7.3 11.5 18.4 28.8 40.3 57.5

Precautions and Guidelines for Aluminum Electrolytic Capacitors

1. Guidelines for Circuit Design (General / Application guidelines for using electrolytic capacitors)

Selecting of a right capacitor is a key to a good circuit design.

(1) Polarity

Most of the aluminum electrolytic capacitors are polarized. Therefore, they must be installed with the correct polarity. Usage in the reverse polarity results into a short-circuit condition that may damage or even explode the capacitor. In addition, it may influence circuit functionality. A bi-polar electrolytic capacitor should be installed when polarity across a capacitor is unstable / reversible. It should be, however, noted that usage of both polar and bi-polar capacitors are limited to DC applications. They must NOT be used for AC application.

(2) Operating Voltage

Applied DC voltage must not exceed rated voltage of the capacitor. Applying higher voltage than its rated voltage across a capacitor terminals cause overheating due to higher leakage currents and capacitor dielectric/insulation deterioration that will ultimately affect a capacitor's performance. The device, however, is capable of working under short-time transient voltages such as DC transients and peak AC ripples. Reverse voltages higher than 1 Volt within a specified temperature limit or AC voltages are not permissible. Overall, using capacitors at recommended operating voltages can prolong its lifespan. Note that the result of DC voltage overlapped with peak ripple voltage should not exceed rated voltage.

(3) Ripple Current

One of the key functions of any capacitor is removal of the ripple current i.e. the RMS value of AC flowing through a capacitor. But, a ripple current higher than rated ripple current will drop resultant capacitance, cause undue internal heating and thus reduces life span of the capacitor. In extreme cases, internal high temperature will cause the pressure relief vent to operate while destroying the device. Overall, it is important to note that an electrolytic capacitor must be used within a permissible range of ripple current. Indicators like temperature coefficient of allowable ripple current are generally used to determine life expectancy of the capacitor, but to avoid related complex calculations and for the sake of simplicity, we haven't provided temperature coefficient in the catalogue. But it offers key indicators like maximum operating temperature for calculation of life expectancy at a given temperature.

(4) Operating Temperature

Capacitors should be used within a permissible range of operating temperatures. Using capacitor at a higher temperature than maximum rated temperature will considerably shorten its life. In the worst-case scenario, high temperature can cause pressure relief vent to operate and the device will get destroyed. Using capacitors at an ambient room temperature assure their longer life.

(5) Leakage Current

Leakage current flows through a capacitor when DC voltage is applied across it. Leakage current varies with changes in ambient temperature and applied DC voltage level and its time of application. Overvoltage situation, presence of moisture, and thermal stresses, especially occurring during the soldering process can enhance leakage current. Initial leakage current is usually higher and does not decrease until voltage is applied for a certain period of time. It is recommended to keep initial leakage current within specified levels.

(6) Charge and Discharge

Regular electrolytic capacitors are not suitable for rapid charging/discharging circuits. Such usage may either cause reduction in overall capacitance or damage due to overheating. Lelon provides special assistance for selecting appropriate capacitors for rapid charging/discharging circuits.

(7) Surge Voltage

The Surge voltage rating is referred as the maximum DC overvoltage that may be applied to an electrolytic capacitor for a short time interval of 30 seconds at infrequent time intervals not exceeding 5.5minutes with a limiting resistance of $1k\Omega$. Unless otherwise described on the catalogue or product specifications, please do not apply a voltage exceeding the capacitor's voltage rating. The rated surge voltages corresponding to rated voltages of electrolytic capacitors are presented as follows:

Rated Voltage(V)	4	6.3	10	16	25	35	50
Surge Voltage(V)	4.6	7.3	11.5	18.4	28.8	40.3	57.5
Datad Valtage(V)	63	80	100	160	180	200	250
Rated Voltage(V)	03	00	100	100	100	200	250
Surge Voltage(V)	72.5	92	115	184	207	230	288
Rated Voltage(V)	315	350	400	420	450	500	525
Surge Voltage(V)	347	385	440	462	495	550	578

(8) Condition of Use

The capacitors shall NOT be exposed to:

- (a) Fluids including water, saltwater spray, oil, fumes, highly humid or condensed climates, etc.
- (b) Ambient conditions containing hazardous gases/fumes like hydrogen sulfide, sulfurous acid, nitrous acid, chlorine or bromine gas, ammonia, etc.
- (c) Exposed to ozone, ultraviolet rays and radiation.
- (d) Severe vibrations or physical shocks that exceeds the specifications mentioned in this catalogue.

(9) Circuit Design Consideration

- (a) Please ensure whether application, operating and mounting conditions satisfy the conditions specified in the catalog before installation of a capacitor. Please consult Lelon, if any of the conditions are beyond the conditions specified in the catalog.
- (b) Heat-generating components or heat sinks should not be placed closer to Aluminum electrolytic capacitors on the PCB to avoid their premature failure. A cooling system is recommended to improve their reliable working.
- (c) Electrical characteristics and performance of aluminum electrolytic capacitors are affected by variation of applied voltage, ripple current, ripple frequency and operating temperature. Therefore, these parameters shall not exceed specified values in the catalog.
- (d) Aluminum capacitors may be connected in the parallel fashion for increasing total capacitance and/or for achieving higher ripple current capability. But, such design may cause unequal current flow through each of the capacitors due to differences in their impedances.
- (e) When two or more capacitors are connected in series, voltage across each capacitor may differ and fall below the applied voltage. A resistor should be placed across each capacitor so as to match applied voltage with voltage across a capacitor.
- (f) Please consult Lelon while selecting a capacitor for highfrequency switching circuit or a circuit that undergoes rapid charging/ discharging
- (g) Standard outer sleeve of the capacitor is not a perfect electrical insulator therefore is unsuitable for the applications that requires perfect electrical insulation. Please consult Lelon, if your application requires perfect electrical insulation.
- (h) Tilting or twisting capacitor body is not recommended once it is soldered to the PCB.

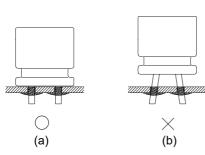
2. Caution for Assembling Capacitors

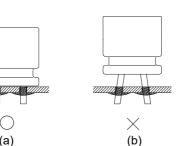
(1) Mounting

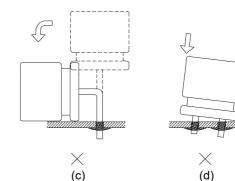
(a) Aluminum electrolytic capacitors are not recommended to reuse in other circuits once they are mounted and powered in a circuit.

- (b) Aluminum electrolytic capacitors may hold static charge between its anode and cathode, which is recommended to be discharged through a $1k\Omega$ resistor before re-use.
- (c) A long storage of capacitors may result into its insulation deterioration. This can lead to a high leakage current when voltage is applied that may damage the capacitor. Capacitors following a long storage period must undergo voltage treatment/re-forming.
 - Capacitors are charged by applying rated DC voltage through a resistor of $1k\Omega$ in series at least for an hour. It is recommended to increase applied voltage gradually using a voltage regulator unit once capacitors are assembled on the board. The charging should be followed by discharging through a $1K\Omega$ resistor.
- (d) Please check capacitor rated voltage before mounting.
- (e) Please check capacitor polarity before mounting.
- (f) Please don't drop capacitor on the floor / hard object.
- (g) Please don't deform the capacitor during installation.
- (h) Please confirm whether the lead spacing of the capacitors match with its pad spacing / footprint on PCB prior to installation.
- Please avoid excessive mechanical shocks to capacitor during the auto-insertion process, inspection or centering
- Please don't place any wiring or circuit over the capacitor's pressure relief vent. The pressure relief vent may fail to open if adequate clearance space is not provided. Following table shows minimum clearance space required for different case diameters

Case Diameter	φ6.3 ~ φ16	φ 18 ~ φ 35	ϕ 40 or above
Clearance (min)	2 mm	3 mm	5 mm


(2) Soldering


- (a) Please confirm that soldering conditions, especially temperature and contact time are within our specifications. Dip or flow soldering temperature should be limited at 260 \pm 5 °C for 10 ± 1 sec while manual soldering using soldering iron should be limited at 350 \pm 5°C for 3 +1/-0 seconds. Please do not dip capacitor body into molten solder. A capacitor's life will be negatively affected if these conditions are violated
- (b) Storage of capacitors in high humidity conditions is likely to affect the solder-ability of lead wires and terminals.


- (c) Reflow soldering should NOLY be used for SMD type capacitors. The temperature and duration shall not exceed the specified temperature and duration in the specification. If the temperature or duration is higher than the value specified, please consult Lelon before usage.
- (d) Standard aluminum electrolytic capacitors are not designed to withstand multiple reflow processes. Please consult Lelon if repeated reflowing is unavoidable.
- (e) Incorrect mounting on PCB with improper external strength applied on its lead wires or capacitor body after soldering may damage a capacitor's internal structure, cause short circuit, or lead to high leakage current issues. Do not bend or twist the capacitor body after soldering. Referring to the drawings below only case (i) is recommended.
 - Correct soldering
 - Hole-to-hole spacing on PCB differs from the lead space of lead wires.
 - (iii) Lead wires are bent after soldering.
 - (iv) Capacitor body doesn't stand vertical on PCB after soldering.

(3) Cleaning Circuit Boards after Soldering

- (a) Following chemicals are not recommended for cleaning: Solvent containing halogen ions, Alkaline solvent, Xylene, Acetone, Terpene, petro-based solvent.
- (b) Recommended cleaning conditions: Fatty-alcohol - Pine Alpha ST-100S, Clean Through-750H and IPA (isopropyl alcohol) are examples of the most acceptable cleaning agents. Temperature of the cleaning agent must not exceed 60°C. Flux content in the cleaning agents should be limited to 2 Wt. %. Overall length of cleaning process (e.g., immersion, ultrasonic or other) shall be within 5 minutes (5 ~ 7mm height within 3 minutes). CFC substitute cleaning agents such as AK225AES can also be used for cleaning. In this case, its temperature shall not exceed 40 C and cleaning process (e.g., immersion, ultrasonic or other) shall be completed within 2 ~ 3 minutes. After cleaning capacitors should be dried with hot air for at least 10 minutes along with the PCB. Temperature of hot air shall not exceed maximum category temperature of the capacitor. Insufficient drying may cause appearance defects, sleeve shrinkage, and bottom-plate bulging. However, usage of this CFC substitute must completely regulated for protection of environment.

3. Maintenance Inspection

Periodical inspection of aluminum capacitors is absolutely necessary, especially when they are used with industrial equipment. The following items should be checked:

- (1) Appearance: Bloated, vent operated, leaked, etc.
- (2) Electrical characteristic: Capacitance, Tan δ , leakage current, and other specified items listed in specification.

Lelon recommend replacing the capacitors if any of the abovementioned items fail to meet specifications.

4. Storage

- (1) The most suitable conditions for aluminum capacitor storage are 5 °C ~ 35°C and indoor relative humidity less than 75%. High temperature and/or humidity storage is detrimental to the capacitors.
- (2) Capacitors shall not be stored in wet or damp atmospheres containing water, brine, fumes or oil.
- (3) Capacitors storage area shall neither be exposed to hazardous gases such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine, ammonium, etc. nor to acidic or alkaline solutions.
- (4) Capacitors shall not be exposed to ozone, ultraviolet rays or radiation.

LELON ELECTRONICS CORP. VSS-APR-14

5. Estimation of life time

 $L_r = L_0 \times 2^{\frac{T_{0\text{max}} - T_{r\text{max}}}{10}}$

L_r: Estimated lifetime (hours)

 L_0 : Base lifetime specified at maximum operating temperature with applied the DC voltage (hours)

 $T_{0\,\text{max}}$: The core temperature that rated ripple current applied at maximum operating temperature.

 $T_{r\,\text{max}}$: The core temperature that applied actual ripple current at ambient temperature.

6. Disposal

Please consult with a local industrial waste disposal specialist when disposing of aluminum electrolytic capacitors

7. Environmental Consideration

Lelon already have received IECQ QC 080000 certificate. Cadmium (Cd), Lead (Pb), Mercury (Hg), Hexavalent Chromium (Cr^{+6}), PBB, PBDE, DEHP, BBP, DBP and DIBP have never been using in capacitor. If you need "Halogen-free" products, please consult with us.

8. AEC-Q200 Compliance

Automotive Electronics Counsel (AEC) has established various electronic component qualification/reliability standards in order to serve automotive electronics industry. AEC-Q200 standard is dedicated for passive components like capacitors, inductors, etc. and is widely adopted domestically as well as internationally. Lelon offers compliant product designs and support services to satisfy customers' product requirements, including the AEC-Q200 required criteria of the reliability tests. Lelon's capacitors are professionally designed to outperform all requirements of AEC-Q200.

For further details, please refer to

IEC 60384-4- Fixed capacitors for use in electronic equipment – Part 4: Sectional specification – Aluminum electrolytic capacitors with solid (MnO₂) and non-solid electrolyte (Established in January 1995, Revised in March 2007), and

JEITA RCR-2367D- Safety application guide for fixed aluminum electrolytic capacitors for use in electronic equipment (Established in March 1995, Revised in October 2017)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Electrolytic Capacitors - SMD category:

Click to view products by Lelon manufacturer:

Other Similar products are found below:

ULV2H4R7MNL1GS ULV2H1R8MNL1GS EMZA500ARA221MJA0G MAL214099813E3 CA025M4R70REB-0405

UCX1V471MNQ1MS 10SVP120M DV100M050C055ETR RVJ-50V101MH10U-R AEH1012471M016R MAL213967339E3

GVT1C337M0608CNVC EMK1EM331FB0D00R EMF1CM221FB0D00R EMF1CM331FB0D00R EMF1CM471FB0D00R

EMK1JM101GB0D00R EMK1AM102GB0D00R EMK1HM221GB0D00R DV221M6R3E055ETR DV221M025E077ETR

RV331M025F105ETR RVT1A101M0505 GVZ1H101M0607 CK1E100M0405 GVM1E331M0607 VT10UF100V167RV0127

VT100UF16V167RV0124 CS100UF35V167RV0155 CK220UF16V167RV0142 VT10UF16V167RV0128 VT22UF35V167RV0131

CS470UF10V167RV0150 CK100UF16V167RV0138 CK220UF10V167RV0141 RVT330UF25V167RV0055 VT470UF16V167RV0135

CS100UF10V167RV0144 126RV0017 VT47UF35V167RV0137 CS220UF35V167RV0148 126RV0010 126RV0009

VT220UF25V167RV160 VT220UF16V167RV0088 126RV0012 126RV0011 126RV0013 126RV0018 126RV0008