

Current Transducer HAS 50 .. 600-S

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

Electrical data

	Type	Primary nominal	Primary current,	RoHS since
		rms current	measuring range	1) date code
		$I_{\scriptscriptstyle{PN}}(A)$	$I_{\scriptscriptstyle{\mathrm{PM}}}\left(A\right)$	
	HAS 50-S	50	±150	45217
	HAS 100-S	100	±300	45325
	HAS 200-S	200	±600	45166
	HAS 300-S	300	±900	45326
	HAS 400-S	400	±900	45333
	HAS 500-S	500	±900	45201
	HAS 600-S	600	±900	45260
$U_{\rm c}$	Supply voltage (±5 %)	1)	±15	V
$I_{_{ m C}}$	Current consumption		±15	mA
$R_{\rm IS}$	Insulation resistance (@ 500 V DC	>10	00 MΩ
V_{out}	Output voltage (Analo	g) @ $\pm I_{PN}$, $R_i = 10 \text{ k}$	α , $T_{\Delta} = 25 ^{\circ}$ C ±4	V
R_{out}	Output internal resista			Ω
R.	Load resistance 2)		>1	kΩ

Accuracy - Dynamic performance data

X	Accuracy @ I_{PN} , T_A = 25 °C (excluding offset)		<±1	% of $I_{\scriptscriptstyle{PN}}$
$\boldsymbol{\varepsilon}_{_{\!\scriptscriptstyle \parallel}}$	Linearity error $\stackrel{\circ}{}_{3)}$ (0 $\pm I_{PN}$)		<±1	% of $I_{\scriptscriptstyle \mathrm{PN}}$
V_{OE}	Electrical offset voltage, $T_{\Delta} = 25 ^{\circ}\text{C}$		<±20	mV
$V_{\rm OH}$	Hysteresis offset voltage $\textcircled{0}$ I_{P} = 0,			
	after an e	excursion of $1 \times I_{PN}$	<±20	mV
TCV_{OF}	Temperature coefficient of V_{OE}	HAS 50-S	<±2	mV/K
		HAS 100 600-S	<±1	mV/K
TCV _{out}	Temperature coefficient of V_{out} (% of reading)		<±0.1	%/K
t _r	Step response time to 90 % of I_{PN}		<3	μs
di/dt	di/dt accurately followed		>50	A/µs
BW	Frequency bandwidth (-3 dB) 4)		DC 50	kHz

General data

T _A T _S m	Ambient operating temperature Ambient storage temperature Mass Standards	арргох	-10 +80 -25 +80 60 EN 50178: 1997 UL 508: 2010	°C °C g
			0_00000.0	

Notes: 1) Operating at $\pm 12 \text{ V} \le U_{\text{C}} < \pm 15 \text{ V}$ will reduce the measuring range

- $^{2)}$ If the customer uses 1 k Ω of the load resistor, the primary current has to be limited as the nominal; To measure the full defined measuring range, the load resistor should be at minimum 10 k Ω
- 3) Linearity data exclude the electrical offset
- ⁴⁾ Please refer to derating curves in the technical file to avoid excessive core heating at high frequency.

$I_{_{\mathrm{PN}}}$ = 50 .. 600 A

Features

- · Hall effect measuring principle
- Insulating plastic case made of polycarbonate PBT recognized according to UL 94-V0.

Advantages

- Easy mounting
- Low power consumption
- · Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.

Applications

- AC variable speed drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

Industrial.

Current Transducer HAS 50 .. 600-S

Insulation coordination			
U_{d}	Rms voltage for AC insulation test, 50 Hz/1 min	3.6	kV
$\hat{U_{w}}$	Impulse withstand voltage 1.2/50 µs	>6.6	kV
**		Min	
d_{Cn}	Creepage distance	7.08	mm
$oldsymbol{d}_{ extsf{CP}}$	Clearance	6.23	mm
CTI	Comparative tracking index (group IIIa)	275	

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- · Non-uniform field

	EN 50178	IEC 61010-1
$d_{Cp}, d_{Cl}, \hat{U}_{W}$	Rated insulation voltage	Nominal voltage
Basic insulation	600 V	600 V
Reinforced insulation	300 V	300 V

Safety

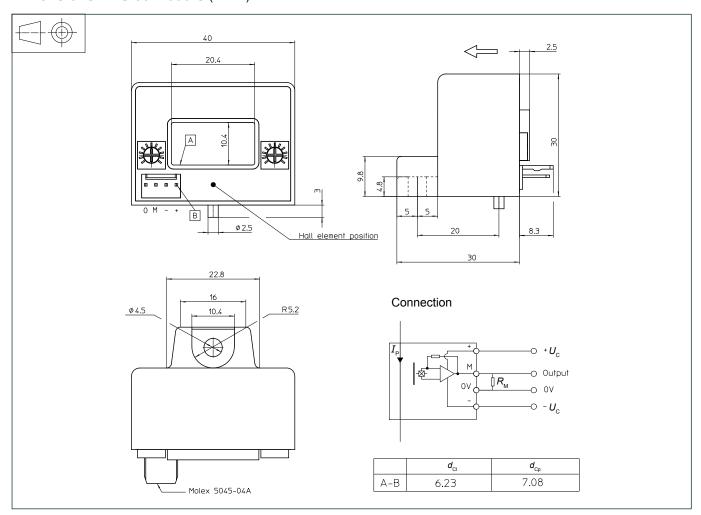
This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions HAS 50 .. 600-S (in mm)

Mechanical characteristics

General tolerance

Transducer fastening

Recommended fastening torque 0.75 N·m (±10 %)

· Connection of secondary

±0.5 mm

1 hole ø 4.5 mm 1 M4 steel screw

Molex 5045-04A

Remarks

- $\bullet \ \ V_{\rm out}$ is positive when $I_{\rm P}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C.
- Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: **Products/Product Documentation.**
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Industrial Current Sensors category:

Click to view products by Lem manufacturer:

Other Similar products are found below:

CSNS181 S28S500D24ZM CSNS300M-001 L05Z800S15 5SHT-151-E 5SHT-500-E T60404-B4658-X030 T60404-B4658-X029 SAO-Q1N SAO-Q2N CSNS300F-002 CSCA0075A000U12J01 SAO-S1N L34S1T5D15T L34S500D15T L34S1T0D15T CSNS300M-500 LA200-P ACS724LLCTR-10AB-T ACS711KEXLT-15AB-T 20310200202 ACS770LCB-050U-PFF-T LCS10T12 20320500101 20310508201 CCT354571-300-24-00 20320300101 S29S1T0D24Z CCT272440-80-10-02 DCSA20 S21S180D15JN L31S300S05FS T60404-N4644-X021 ECSL61AH ISB-300-A-802 ISB-300-A-604 ISB-175-A-802 ISB-175-A-800 ISB-175-A-604 ISB-100-A-802 LPMG12 ECS41BC ECS41BD SAO-S5N DCSA50 ECS21BC ACS726LLFTR-20B-T A-CS010B A-CS050B A-CS100B