

Current Transducer HXS 10-NP/SP3

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

All Data are given with a \mathbf{R}_{L} = 10 k Ω

Electrical data

I _{PN}	Primary nominal curre	ent rms	Serial Parallel	
			± 10 ± 20	Α
I _{PM}	Primary current, mea	suring range	Serial Parallel	
			± 30 ± 60	Α
\mathbf{V}_{OUT}	Analog Output voltage	e @ I _P	$V_{OE} \pm (0.625. I_{P}/$	I_{PN}) V
\mathbf{G}_{TH}	Theoretical sensitivity	,	0.625	V/I _{PN}
V_{REF}	Reference voltage 1)	Ouput voltage	2.5 ± 0.025	V
		Ouput impedance	typ. 200	Ω
		Load impedance	≥ 200	$k\Omega$
$R_{\scriptscriptstyle L}$	Load resistance		≥ 2	$k\Omega$
R _{OUT}	Output internal resista	ance	< 5	Ω
C	Capacitive loading (±	20 %)	= 4.7	nF
V c	Supply voltage (± 5 %	(o) ²⁾	5	V
I _c	Current consumption	@ V _C = 5V	19	mΑ

Accuracy - Dynamic performance data

X	Accuracy ³⁾ @ I _{PN} , T _A = 25°C	≤ ± 1	%
$\mathcal{E}_{\scriptscriptstyle L}$	Linearity error 0 I _{PN}	≤ ± 0.5	%
_	0 3 x I _{PN}	≤ ± 1	%
TCV _{OE}	Temperature coefficient of V _{OF} (+25 85°C)	≤ ± 0.4	mV/K
02	(-40 +25°C)	\leq ± 0.525	mV/K
TCV_{REF}	Temperature coefficient of V _{RFF} (+25 85°C)	\leq ± 0.01	%/K
IXEI	(-40 +25°C)	\leq ± 0.015	%/K
TCV_E/V_R	FTemperature coefficient of V OE /VREE	≤ ± 0.15	mV/K
TCG	Temperature coefficient of G	≤ ±0.05 % of re	ading/K
V_{OF}	Electrical offset voltage @ $I_p = 0$, $T_A = 25$ °C	$V_{RFF} \pm 0.0125$	V
V _{OM}	Magnetic offset voltage @ I _P = 0		
0	after an overload of 3 x I _{PN}	± 0.7	%
\mathbf{t}_{ra}	Reaction time to 10 % of I _{PN} step	< 3	μs
t,	Response time to 90 % of I _{PN} step	< 5	μs
di/dt	di/dt accurately followed	> 50	A/µs
\mathbf{V}_{no}	Output voltage noise (DC 10 kHz)	< 20	mVpp
	(DC 1 MHz)	< 40	mVpp
BW	Frequency bandwidth (- 3 dB) 4)	DC 50	kHz

General data

	Contrai data		
T _A	Ambient operating temperature	- 40 + 85	°C
T _s	Ambient storage temperature	- 40 + 85	°C
m	Mass	10	g
	Standards	EN 50178: 1997	


Notes: 1) It is possible to overdrive **V**_{REF} with an external reference voltage between 1.5 - 2.8 V providing its ability to sink or source approximately 5 mA.

²⁾Maximum supply voltage (not operating) < 6.5V

³⁾Excluding Offset and Magnetic offset voltage.

⁴⁾ Small signal only to avoid excessive heatings of the magnetic core

I_{PN} =10, 20 A DUAL PHASE

Features

- · Hall effect measuring principle
- Multirange current transducer through PCB pattern lay-out
- Galvanic isolation between primary and secondary circuit
- Isolation test voltage 3500 V between Primary and Secondary
- Low power consumption
- Extremely low profile < 11 mm
- Single power supply + 5 V
- · Fixed offset & sensitivity
- Isolated plastic case recognized according to UL 94-V0.

Special feature

 Two separate primary windings for dual phase measurement.

Advantages

- · Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference
- Internal & external reference.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

Industrial.

Current Transducer HXS 10-NP/SP3

Isolation characteristics				
V _d	Rms voltage for AC isolation test, 50 Hz, 1 min			
u	Primary to secondary	3.5	kV	
	Primary 1 to primary 2	2.5	kV	
dCp	Creepage distance	> 5.5	mm	
dCl	Clearance distance	> 5.5	mm	
CTI	Comparative Tracking Index (group I)	> 600	V	

Applications examples

According to EN 50178, IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
Single isolation	600 V	600 V
Reinforced isolation	300 V	150 V

According to UL508 standard and following conditions: Max. Voltage 600V

- Over voltage category OV 3
- Pollution degree PD2

Safety

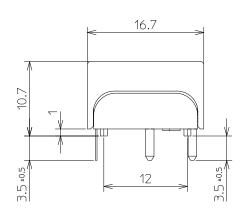
This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

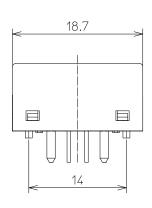
Caution, risk of electrical shock

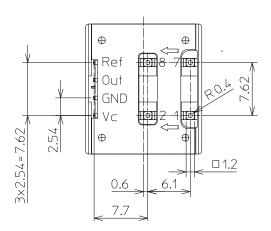
When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

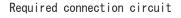
Ignoring this warning can lead to injury and/or cause serious damage.

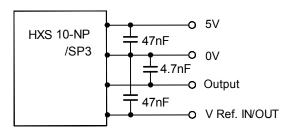
This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

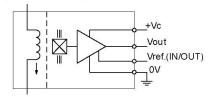

A protective housing or additional shield could be used.


Main supply must be able to be disconnected.




Dimensions HXS 10-NP/SP3 (in mm)





Operation Principle

Primary connections	Primary	current	Primary	esistance inductance Recommended PCB connections		
	nominal I _{PN} [A]	maximum I _P [A]	resistance inductan			
Serial	10	30	0.2	0.1	IN 1 7 0 0 0 0 0 2 8 OUT	
Parallel	20	60	0.05	0.025	IN 1 7 0	

Mechanical characteristics

General tolerance

± 0.2 mm

Transducer fastening & connection of primary jumper

4 pins ☐ 1.2 mm (corner R 0.4mm)

• Transducer fastening & connection of secondary

4 pins 0.5 x 0.25 mm

Recommended PCB hole

Primary PCB hole

Ø 1.5 mm

• Secondary PCB hole

Ø 0.7 mm

Remarks

- V_{OUT} is positive when I_p flows from terminals 1, 7 (IN) to terminals 2, 8 (OUT).
- Temperature of the primary conductor should not exceed 100°C.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Interface - Specialized category:

Click to view products by Lem manufacturer:

Other Similar products are found below:

CY7C910-51LMB MC33689DPEWR2 MC33975TEKR2 MEC1632-AUE MC33978AEK NVT4555UKZ TJA1081TS,112 RKSAS4

HMC677G32 LPC47N207-JV FTP-637DSL633R MAX7348AEP+ SM712GX04LF04-BA DS2413P+T&R NCN5193MNTWG

MC34978AEK MC33689DPEW MC33889BPEG NCV7381DP0R2G PCA9704PWJ S6BT112A01SSBB202 MAX7347AEE+ DS8113
RNG+T&R DS8024-RJX+T&R NCN5192MNRG DS8023-RRX+T&R DS8024-RRX+T&R ST8034HCQR XP71055

TC7PCI3212MT,LF(S ASI4UE-F-G1-ST HOA6241-001 MEC1310-NU SC74HC4066ADTR2G TDA8035HNC1S1QL TNY380PN

RMT3PB080 AS3935-BQFT 0714300268 MAX9924UAUB/V+ MAX3120CUA+ MAX3171CAI NCN8025MTTBG DS8023-RRX

DS2406P+T&R DS8007-ENG+ DS8007A-EAG+ DS2482X-101T DS1886T+ DG407AK/883B