

Current Transducer LAH 50-P

For the electronic measurement of currents: DC, AC, pulsed ..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

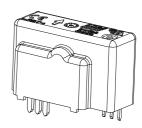
Electrical data

I _{PN}	Primary nominal curre	ent rms		50			Α
I _{PM}	Primary current, meas	suring range 1)		0	110		Α
R _M	Measuring resistance	@	$T_A =$	70°C	T _A	= 85°C	
			\mathbf{R}_{Mmir}	\mathbf{R}_{Mmax}	$R_{\text{M mir}}$	\mathbf{R}_{Mmax}	
	with ± 12 V	$@ I_{PN}[\pm A_{DC}]$	0	221	0	214	Ω
		@ I _{PN} [A _{RMS}] ²⁾	0	115	0	108	Ω
	with ± 15 V	@ I _{PN} [± A _{DC}]	0	335	0	327	Ω
		@ $I_{PN} [A_{RMS}]^{2}$	0	195	0	188	Ω

I _{SN}	Secondary nominal current rms	25	mΑ
K _N	Conversion ratio	1:2000	
V _C	Supply voltage (± 5 %)	± 12 15	V
I _C	Current consumption	10 (@ ± 15V) + I	_s mA

Accuracy - Dynamic performance data

	, , ,		
X	Accuracy ³⁾ @ I _{PN} T _A = 25°C	± 0.25	%
$\mathbf{e}_{\scriptscriptstyle L}$	Linearity error	< 0.15	%
		Typ Max	
I _o	Offset current @ T _A = 25°C	Typ Max ± 0.15	mΑ
I _{OM}	Magnetic offset current @ $I_p = 0$ and specified R_M ,		
	after an overload of 5 x I _{PN}	± 0.10 ± 0.15	mΑ
I_{OT}	Temperature variation of I _o 0°C + 70°C	± 0.10 ± 0.30	mΑ
	- 25°C + 85°C	$\pm 0.10 \pm 0.40$	mΑ
t _{ra}	Reaction time @ 10 % of I _{PN}	< 200	ns
t,	Response time 4) to 90 % of I _{PN} step	< 500	ns
di/dt	di/dt accurately followed	> 200	A/µs
BW	Frequency bandwidth (- 1 dB)	DC 200	kHz
_			


General data

T_A	Ambient operating temperature		- 25 + 85	°C
T _s	Ambient storage temperature		- 40 + 90	°C
\mathbf{R}_{s}	Secondary coil resistance	@ $T_A = 70^{\circ}C$	115	Ω
-		@ $T_A = 85^{\circ}C$	121	Ω
m	Mass		22	g
	Standards		EN 50178: 1997	7

 $^{1)}$ For 10 s, with $R_{_{M}} \leq 71~\Omega$ (V $_{_{C}}$ = $\pm~15~V)$ Notes:

- 2) 50 Hz Sinusoidal
- $^{3)}$ Without ${\rm I}_{\rm O}\&~{\rm I}_{\rm OM}$ $^{4)}$ With a di/dt of 100 A/µs.

$I_{PN} = 50 \, A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- · Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

• Industrial.

Current Transducer LAH 50-P

Iso	Isolation characteristics					
V _d	Rms voltage for AC isolation test, 50/60 Hz, 1 mn	5	kV			
$\hat{\mathbf{V}}_{w}^{d}$	Impulse withstand voltage 1.2/50 µs	12	kV			
V _e	Partial discharge extinction voltage rms @ 10pC	>2	kV			
		Min				
dCp	Creepage distance 5)	11.75	m m			
dCl	Clearance distance 5)	11.75	m m			
CTI	Comparative Tracking Index (Group I)	175				

Application examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
dCp, dCl	Rated isolation voltage	Nominal voltage
Single isolation	1000 V	1000 V
Reinforced isolation	500 V	500 V

Note: 5) On PCB with soldering pattern UTEC93-703.

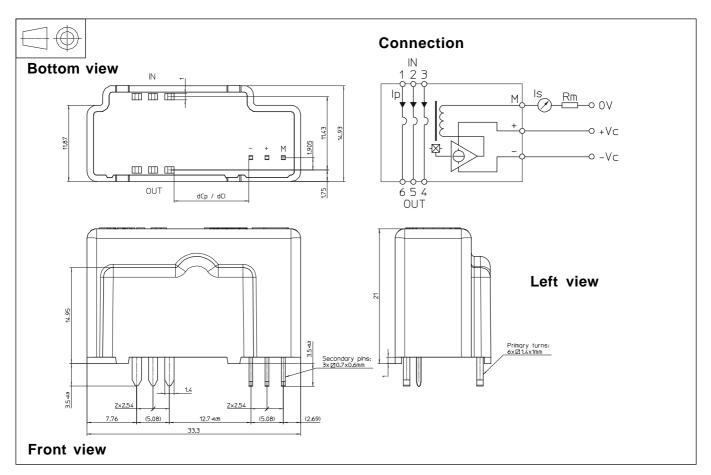
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a built-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LAH 50-P (in mm. 1 mm = 0.0394 inch)

Number of primary	Primary nominal	current maximum	Nominal output current	Turns ratio		Primary insertion
turns	I _{PN} [A]	I _P [A]	I _{SN} [mA]	K _N	$\mathbf{R}_{P} \; [m\Omega]$	L _P [μΗ]
1	50	110	25	1 : 2000	0.12	0.008

Mechanical characteristics

- General tolerance
- Fastening & connection of primary Recommended PCB hole
- Fastening & connection of secondary Recommended PCB hole
- ± 0.2 mm
- 6 pins 1.4 x 1 mm 2 mm
- 3 pins 0.7 x 0.6 mm 1.2 mm

Remarks

- \bullet I_s is positive when I_D flows from terminals "IN" to terminals
- The jumper temperature and PCB should not exceed 100°C.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Board Mount Current Sensors category:

Click to view products by Lem manufacturer:

Other Similar products are found below:

CSDD1FR CSNP661-007 SCL15 10006 T60404-B4658-X030 LA02P021S03 LA01M041S05 CSNE151-003 SIC830AED-T1-GE3
F03P006S05L F03P050S05L CT-05 CT-07-100 CT-07-50 L18P020S05 MR-1 T60404-N4646-X400 T60404-N4646-X661 T60404-N4646-X662 ACS710KLATR-6BB-NL-T ACS711KEXLT-31AB-T ACS726LLFTR-40B-T ACS758KCB-150B-PFF-T ACS770LCB-100B-PFF-T ACS718KMATR-10B-T ACS711KEXLT-15AB-T ACS724LLCTR-30AB-T ACS770ECB-200B-PFF-T ACS770KCB-150B-PFF-T ACS770LCB-050B-PFF-T S23P50/100D15M1 CSNR161005 CSNJ481-001 L37S200D15M MR-3 T60404-N4644-X400 T60404-N4644-X410 T60404-N4644-X410 T60404-N4646-X411 T