Current Transducer LF 1005-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Accuracy - Dynamic performance data

X	Accuracy @ $\mathrm{I}_{\text {PN }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 0.4		\%
$\varepsilon_{\text {L }}$	Linearity error	< 0.1		\%
	Offset current @ $\mathbf{I}_{\text {P }}=0, \mathbf{T}_{\text {a }}=25^{\circ} \mathrm{C}$	Typ	Max	
10			± 0.4	mA
$\mathrm{I}_{\text {о }}$	Magnetic offset current @ $\mathbf{I}_{\mathrm{p}}=0$ and specified \mathbf{R}_{M}, after an overload of $3 \times \mathrm{I}_{\mathrm{PN}}$		± 0.2	mA
$\mathrm{I}_{\text {OT }}$	Temperature variation of $\mathrm{I}_{0} \quad-10^{\circ} \mathrm{C} . .+85^{\circ} \mathrm{C}$	± 0.3	± 0.5	mA
	$-40^{\circ} \mathrm{C} . .-10^{\circ} \mathrm{C}$		± 0.8	mA
t_{r}	Response time ${ }^{1)}$ to 90% of $\mathbf{I P N}$ step di/dt accurately followed	< 1		$\mu \mathrm{s}$
di/dt		> 100		A/ $\mu \mathrm{s}$
BW	Frequency bandwidth (-1 dB)	DC .. 150		kHz

General data

\mathbf{T}_{A}	Ambient operating temperature		$-40 . .+85$	${ }^{\circ} \mathrm{C}$
\mathbf{T}_{S}	Ambient storage temperature		$-45 \ldots+100$	${ }^{\circ} \mathrm{C}$
\mathbf{R}_{S}	Secondary coil resistance @	$\mathbf{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	48	Ω
		$\mathbf{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	51	Ω
\boldsymbol{m}	Mass		550	g
	Standards		EN 50178: 1997	

[^0]
$I_{P N}=1000 \mathrm{~A}$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application Domain

- Industrial.

Current Transducer LF 1005-S

Isolation characteristics

\mathbf{V}_{d}	Rms voltage for AC isolation test, $50 \mathrm{~Hz}, 1 \mathrm{mn}$	3.8	kV
$\widehat{\mathbf{V}}_{\mathrm{w}}$	Impulse withstand voltage $1.2 / 50 \mu \mathrm{~s}$	16	kV
		Min	
dCp	Creepage distance	20.6	mm
dCI	Clearance distance	19.6	mm
CTI	Comparative Tracking Index (Group IIIa)	175	

Application examples

According to EN 50178 and CEI 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	CEI 61010-1
$d C p, d C I, \hat{\mathbf{V}}_{\mathrm{w}}$	Rated isolation voltage	Nominal voltage
Single isolation	1500 V	2000 V
Reinforced isolation	1000 V	1000 V

Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock
When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).
Ignoring this warning can lead to injury and/or cause serious damage.
This transducer is a built-in device, whose conducting parts must be inaccessible after installation.
A protective housing or additional shield could be used.
Main supply must be able to be disconnected.

Dimensions LF 1005-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance $\pm 0.5 \mathrm{~mm}$
- Transducer fastening Vertical position

2 holes $\varnothing 5.3 \mathrm{~mm}$ 2 M5 steel screws
Recommended fastening torque 4 Nm or 2.96 Lb . - Ft. or $\quad 4$ holes $\varnothing 4.2 \mathrm{~mm}$ 4 M4 steel screws
Recommended fastening torque 3.2 Nm or 2.37 Lb . - Ft. or 4 holes $\varnothing 2.25 \mathrm{~mm}$ depth 10 mm $4 \times$ PT KA30 screws long 10 mm
Recommended fastening torque 0.9 Nm or 0.66 Lb . - Ft.

- Transducer fastening Horizontal position

4 holes $\varnothing 5.3 \mathrm{~mm}$
4 M5 steel screws
Recommended fastening torque 4 Nm or 2.96 Lb . Ft . or

Fastening torque, maxi

- Primary through-hole or
- Connection of secondary

4 holes $\varnothing 2.25 \mathrm{~mm}$ depth 16 mm $4 \times$ PT KA30 screws long 16 mm 1 Nm or 0.74 Lb . Ft.
$40.5 \times 13 \mathrm{~mm}$
$\varnothing 38 \mathrm{~mm}$
Molex 6410
3 Tin plated pins.

Remarks

- \mathbf{I}_{S} is positive when \mathbf{I}_{P} flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed $100^{\circ} \mathrm{C}$.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Lem manufacturer:
Other Similar products are found below :
$\underline{\text { AP } 50 \mathrm{~B} 10}$ AP 50 B 420 L AT100B10 AT100B420L AT10B420L AT150B420L AT50B10 AT50B420L CAS 50-NP CASR 15-NP CASR15-NP CKSR 25-NP CKSR 50-NP CKSR 6-NP CTSR 0.6-P CTSR 1-P DHR 1000 C420 DHR 100 C420 DHR 200 C420 DHR 600 C10 DVC 1000-P HAIS 100-P HAIS 400-P HAIS 50-P HAIS 50-TP HAL 100-S HAL 400-S HAS 100-S HAS 200-S HAS300-S HAS 400-S HAS 50-S HLSR 20-P HLSR40-P HO 10-P/SP33 HO 180-P-0100 HO 25-P HO 6-P HO 6-P/SP33 HO 8-NP-0000 HO 8-NSM-0000 HTB100-TP HTB 50-TP HTFS 200-P HTFS 400-P HTFS 800-P/SP2 HX 03-P/SP2 HX 05-NP HX 05-P HX 05-P/SP2

[^0]: Note : ${ }^{1)}$ With a di/dt of $100 \mathrm{~A} / \mu \mathrm{s}$.

