Current Transducer LF 210-S

$$
I_{\mathrm{PN}}=200 \mathrm{~A}
$$

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

Features

- Bipolar and insulated current measurement
- Current output
- Closed loop (compensated) current transducer
- Panel mounting.

Advantages

- High accuracy
- Very low offset drift over temperature.

Applications

- Windmill inverters
- Test and measurement
- AC variable speed and servo motor drives
- Static converters for DC motors drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Standards

- IEC 61010-1: 2010
- IEC 61800-5-1: 2007
- IEC 62109-1: 2010
- UL 508: 2013.

Application Domain

- Industrial.

LF 210-S

Absolute maximum ratings

Parameter	Symbol	Unit	Value
Maximum supply voltage (working) $\left(-40^{\circ} \mathrm{C} \ldots 85^{\circ} \mathrm{C}\right)$	$\pm U_{\mathrm{C} \max }$	V	± 15.75
Maximum primary conductor temperature	$T_{\mathrm{B} \text { max }}$	${ }^{\circ} \mathrm{C}$	100
Maximum steady state primary current $\left.\left(-40^{\circ} \mathrm{C} \ldots 85^{\circ} \mathrm{C}\right)\right)$	$I_{\mathrm{P} N \max }$	A	200

Stresses above these ratings may cause permanent damage.
Exposure to absolute maximum ratings for extended periods may degrade reliability.

UL 508: Ratings and assumptions of certification

File \# E189713 Volume: 2 Section: 9

Standards

- USR indicates investigation to the Standard for Industrial Control Equipment UL 508
- CNR indicates investigation to the Canadian standard for Industrial Control Equipment CSA C22.2 No. 14-13.

Ratings

Parameter	Unit	Value
Primary involved potential	V AC/DC	1500
Maximum surrounding air temperature	${ }^{\circ} \mathrm{C}$	85
Primary current	A	$0 \ldots 200$
Secondary supply voltage	V DC	$0 \ldots \pm 15.75$
Secondary current	mA	$0 \ldots 100$

Conditions of acceptability

When installed in the end-use equipment, with primary feedthrough potential involved of 1500 V AC/DC, consideration shall be given to the following:

1 - These products must be mounted in a suitable end-use enclosure.
2 - The secondary pin terminals have not been evaluated for field wiring.
3 - Low voltage control circuit shall be supplied by an isolating source (such as transformer, optical isolator, limiting impedance or electro-mechanical relay).

4 - Based on the temperature test performed on LF 210-S series, the primary bar or conductor shall not exceed 100 ${ }^{\circ} \mathrm{C}$ in the end use application.

5 - LF 210-S series shall be used in a pollution degree 2.

Marking

Only those products bearing the UL or UR Mark should be considered to be Listed or Recognized and covered under UL's FollowUp Service. Always look for the Mark on the product.

LF 210-S
Insulation coordination

Parameter	Symbol	Unit	Value	Comment
RMS voltage for AC insulation test, $50 \mathrm{~Hz}, 1 \mathrm{~min}$	U_{d}	kV	3.5	Type test
Impulse withstand voltage $1.2 / 50 \mu \mathrm{~s}$	U_{Ni}	kV	8.8	According to IEC 61800-5-1
Partial discharge RMS test voltage (qm < 10 pC)	U_{t}	kV	1.65	Test carried out with a non insulated bar and completely filling the primary hole. According to IEC 61800-5-1
Clearance (pri. - sec.)	d_{Cl}	mm	10.2	Shortest distance through air
Creepage distance (pri. - sec.)	d_{Cp}	mm	11	Shortest path along device body
Application example Rated insulation RMS voltage	U_{Nm}	V	1000	Basic insulation according to IEC 61800-5-1, CAT III, PD2
Application example Rated insulation RMS voltage	U_{Nm}	V	600	Reinforced insulation according to IEC 61800-5-1, CAT III, PD2
Case material	-	-	V 0	According to UL 94
Comparative tracking index	$C T I$	600		

Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Typ	Max	Comment
Ambient operating temperature	T_{A}	${ }^{\circ} \mathrm{C}$	-40		85	
Ambient storage temperature	T_{S}	${ }^{\circ} \mathrm{C}$	-50		90	
Mass	m	g		75		

LEM

Electrical data

At $T_{\mathrm{A}}=25^{\circ} \mathrm{C}, \pm U_{\mathrm{C}}= \pm 15 \mathrm{~V}, R_{\mathrm{M}}=1 \Omega$, unless otherwise noted.
Lines with a * in the conditions column apply over the $-40 \ldots 85^{\circ} \mathrm{C}$ ambient temperature range.

Parameter	Symbol	Unit	Min	Typ	Max		Conditions
Primary nominal RMS current	$I_{\text {PN }}$	A			200	*	
Primary current, measuring range	$I_{\text {PM }}$	A	-420		420	*	With $\pm U_{\mathrm{c}}= \pm 15 \mathrm{~V}$ For other conditions, see Figure 1
Measuring resistance	$R_{\text {M }}$	Ω	0			*	Max value of R_{M} is given in Figure 1
Secondary nominal RMS current	$I_{\text {S N }}$	A	-0.1		0.1	*	
Resistance of secondary winding	$R_{\text {S }}$	Ω			27		$R_{\mathrm{S}}\left(T_{\mathrm{A}}\right)=R_{\mathrm{S}} \times\left(1+0.004 \times\left(T_{\mathrm{A}}+\Delta\right.\right.$ temp -25$\left.)\right)$ Estimated temperature increase $@ I_{\mathrm{PN}}$ is Δ temp $=15^{\circ} \mathrm{C}$
Secondary current	$I_{\text {S }}$	A	-0.21		0.21	*	
Number of secondary turns	$N_{\text {s }}$			2000			
Nominal sensitivity	$S_{\text {N }}$	mA/A		0.5			
Supply voltage	$\pm U_{\mathrm{C}}$	V	± 11.4		± 15.75	*	
Current consumption	$I_{\text {C }}$	mA		$\begin{aligned} & 33+I_{\mathrm{S}} \\ & 35+I_{\mathrm{S}} \end{aligned}$			$\begin{aligned} & \pm U_{\mathrm{C}}= \pm 12 \mathrm{~V} \\ & \pm U_{\mathrm{C}}= \pm 15 \mathrm{~V} \end{aligned}$
Offset current, referred to primary	I_{0}	A	-0.15		0.15		
Temperature variation of I_{0}, referred to primary	I_{0}	A	-0.2		0.2	*	
Magnetic offset current (@ $3 \times I_{\text {PN }}$), referred to primary	$I_{\text {О M }}$	A		± 0.2			
Sensitivity error	ε_{s}	\%	-0.1		0.1	*	
Linearity error	ε_{L}	$\%$ of $I_{\text {PN }}$	-0.05		0.05	*	
Total error at I_{PN}	$\varepsilon_{\text {tot }}$	$\%$ of $I_{\text {P N }}$	$\begin{aligned} & -0.2 \\ & -0.2 \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	*	$\begin{aligned} & 25 \ldots 85^{\circ} \mathrm{C} \\ & -40 \ldots 85^{\circ} \mathrm{C} \end{aligned}$
RMS noise current referred to primary	$I_{\text {no }}$	mA		20			1 Hz to 100 kHz (see Figure 4)
Delay time @ 10% of $I_{\text {PN }}$	$t_{\text {D } 10}$	$\mu \mathrm{s}$		<0.5			0 to $200 \mathrm{~A}, 75 \mathrm{~A} / \mu \mathrm{s}, R_{\mathrm{M}}=10 \Omega$
Delay time @ 90% of $I_{\text {PN }}$	$t_{\text {D } 90}$	$\mu \mathrm{s}$		<0.5			0 to $200 \mathrm{~A}, 75 \mathrm{~A} / \mu \mathrm{s}, R_{\mathrm{M}}=10 \Omega$ (see Figure 2)
Frequency bandwidth	$B W$	kHz		100			$R_{\mathrm{M}}=50 \Omega ;-3 \mathrm{~dB}$

Definition of typical, minimum and maximum values

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as well as values shown in "typical" graphs. On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval. Unless otherwise stated (e.g. "100 \% tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73%. For a normal (Gaussian) distribution, this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 $\%$, corresponding to an interval between -sigma and +sigma for a normal distribution. Typical, minimum and maximum values are determined during the initial characterization of the product.

LF 210-S

Typical performance characteristics

Figure 1: Maximum measuring resistance

$$
R_{\mathrm{M} \max }=N_{\mathrm{s}} \times \frac{U_{\mathrm{C} \min }-0.3 \mathrm{~V}}{I_{\mathrm{P}}}-R_{\mathrm{S} \max }-4.1 \Omega
$$

Figure 2: Typical step response (0 to $200 \mathrm{~A}, 75 \mathrm{~A} / \mathrm{\mu s}$, with $R_{\mathrm{M}}=10 \Omega$)

Figure 3: RMS noise voltage referred to primary $U_{\text {no }}$ with

$$
R_{\mathrm{M}}=10 \Omega
$$

To calculate the noise in a frequency band f_{1} to f_{2}, the formula is:

$$
I_{\mathrm{no}}\left(f_{1} \ldots f_{2}\right)=\sqrt{I_{\mathrm{no}}\left(f_{2}\right)^{2}-I_{\mathrm{no}}\left(f_{1}\right)^{2}}
$$

with $I_{\text {no }}(f)$ read from figure 4 (typical, RMS value).
Example:
What is the noise from 10^{3} to $10^{6} \mathrm{~Hz}$?
Figure 4 gives $I_{\mathrm{no}}\left(10^{3} \mathrm{~Hz}\right)=3 \mathrm{~mA}$
and $I_{\mathrm{no}}\left(10^{6} \mathrm{~Hz}\right) \stackrel{\text { no }}{=} 50 \mathrm{~mA}$.
The output RMS noise current is therefore:

$$
\sqrt{\left(50 \times 10^{-3}\right)^{2}-\left(3 \times 10^{-3}\right)^{2}}=50 \mathrm{~mA} \text { referred to primary }
$$

Figure 4: RMS noise current referred to primary with

$$
R_{\mathrm{M}}=10 \Omega
$$

Typical performance characteristics continued

Figure 5: Linearity

Performance parameters definition

Sensitivity and linearity

To measure sensitivity and linearity, the primary current (DC) is cycled from 0 to I_{PM}, then to $-I_{\mathrm{PM}}$ and back to 0 (equally spaced $I_{\mathrm{PM}} / 10$ steps).
The sensitivity S is defined as the slope of the linear regression line for a cycle between $\pm I_{\mathrm{PM}}$.
The linearity error $\varepsilon_{\llcorner }$is the maximum positive or negative difference between the measured points and the linear regression line, expressed in \% of the maximum measured value.

Magnetic offset

The magnetic offset I_{O} is the change of offset after a given current has been applied to the input. It is included in the linearity error as long as the transducer remains in its measuring range.

Electrical offset

The electrical offset current I_{OE} is the residual output current when the input current is zero.

Total error

The total error $\varepsilon_{\text {tot }}$ is the error at $\pm I_{\mathrm{PN}}$, relative to the rated value I_{PN}.
It includes all errors mentioned above.

Delay times

The delay time $t_{\mathrm{D} 10} @ 10 \%$ and the delay time $t_{\mathrm{D} 90} @ 90 \%$ with respect to the primary are shown in the next figure.
Both slightly depend on the primary current $\mathrm{d} i / \mathrm{d} t$.
They are measured at nominal current.

Figure 6: $t_{\mathrm{D} 10}$ (delay time @ 10%) and $t_{\mathrm{D} 90}$ (delay time @ 90%)

Dimensions（in mm）

Mechanical characteristics

－General tolerance
－Transducer fastening Vertical position

Recommended fastening torque
－Transducer fastening Horizontal position

Recommended fastening torque
－Connection of secondary
－Primary through hole
$\pm 0.3 \mathrm{~mm}$

2 holes $\varnothing 4.3 \mathrm{~mm}$ 2 M4 steel screws
$2.1 \mathrm{~N} \cdot \mathrm{~m}(\pm 10 \%)$
4 holes $\varnothing 4.3 \mathrm{~mm}$ 4 M4 steel screws $2.1 \mathrm{~N} \cdot \mathrm{~m}(\pm 10 \%)$
MOLEX 6410
$\varnothing 15.59 \mathrm{~mm}$

Remarks

－I_{S} is positive when I_{P} flows in the direction of arrow．
－The secondary cables also have to be routed together all the way．
－Installation of the transducer is to be done without primary current or secondary voltage present．
－Maximum temperature of primary conductor：see page 2.
－This is a standard model．For different versions（supply voltages，turns ratios，unidirectional measurements．．．）， please contact us．
－Installation of the transducer must be done unless otherwise specified on the datasheet，according to LEM Transducer Generic Mounting Rules．Please refer to LEM document N° ANE120504 available on our Web site： https：／／www．lem．com／en／file／3137／download．

Safety

This transducer must be used in limited－energy secondary circuits according to IEC 61010－1．

This transducer must be used in electric／electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer＇s operating instructions．

Caution，risk of electrical shock
When operating the transducer，certain parts of the module can carry hazardous voltage（e．g．primary connection，power supply）．
Ignoring this warning can lead to injury and／or cause serious damage．
This transducer is a build－in device，whose conducting parts must be inaccessible after installation．
A protective housing or additional shield could be used．
Main supply must be able to be disconnected．

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Industrial Current Sensors category:
Click to view products by Lem manufacturer:
Other Similar products are found below :
CSNS181 S28S500D24ZM CSNS300M-001 L05Z800S15 5SHT-151-E 5SHT-500-E T60404-B4658-X030 T60404-B4658-X029 SAOQ1N SAO-Q2N CSNS300F-002 CSCA0075A000U12J01 SAO-S1N L34S1T5D15T L34S500D15T L34S1T0D15T CSNS300M-500 LA200-P ACS724LLCTR-10AB-T ACS711KEXLT-15AB-T 20310200202 ACS770LCB-050U-PFF-T LCS10T12 20320500101 20310508201 CCT354571-300-24-00 20320300101 S29S1T0D24Z CCT272440-80-10-02 DCSA20 S21S180D15JN L31S300S05FS T60404-N4644-X021 ECSL61AH ISB-300-A-802 ISB-300-A-604 ISB-175-A-802 ISB-175-A-800 ISB-175-A-604 ISB-100-A-802 LPMG12 ECS41BC ECS41BD SAO-S5N DCSA50 ECS21BC ACS726LLFTR-20B-T A-CS010B A-CS050B A-CS100B

