

General Purpose Transistors

PNP Silicon

- We declare that the material of product compliance with RoHS requirements.
- S- Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

ORDERING INFORMATION

Device	Package	Shipping
L2SA1576AQLT1G Series S-L2SA1576AQLT1G Series	SC-70	3000/Tape & Reel
L2SA1576AQLT3G Series S-L2SA1576AQLT3G Series	SC-70	10000/Tape & Reel

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector-Emitter Voltage	V _{CEO}	– 50	V	
Collector-Base Voltage	V _{CBO}	-60	V	
Emitter-Base Voltage	V _{EBO}	-6.0	V	
Collector Current — Continuous	I _c	-150	mAdc	
Collector power dissipation	Рc	0.15	W	
Junction temperature	T j	150	°C	
Storage temperature	T _{stg}	-55 ~ +150	°C	

L2SA1576AQT1G Series S-L2SA1576AQT1G Series

DEVICE MARKING

L2SA1576AQT1G =FQ L2SA1576ART1G=FR L2SA1576AST1G =FS

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Collector–Emitter Breakdown Voltage	V _{(BR)CEO}	V (BRICEO - 50		_	V
$(I_C = -1 \text{ mA})$	(SIN)OLO				
Emitter–Base Breakdown Voltage	V _{(BR)EBO}	-6	_	_	V
$(I_E = -50 \mu\text{A})$	(=:-)===				
Collector–Base Breakdown Voltage	V _{(BR)CBO}	- 60	_	_	V
$(I_C = -50 \mu\text{A})$	(=:,,===				
Collector Cutoff Current	I _{CBO}	_	_	- 0.1	μΑ
$(V_{CB} = -60 \text{ V})$					•
Emitter cutoff current	I _{FBO}	_	_	- 0.1	μΑ
$(V_{EB} = -6 \text{ V})$					<u> </u>
Collector-emitter saturation voltage	V _{CE(sat)}	_	_	-0.5	V
$(I_{\rm C}/I_{\rm B} = -50 \text{mA} / -5 \text{m A})$	OL(out)				
DC current transfer ratio	h _{FE}	120		560	
$(V_{CE} = -6 \text{ V}, I_{C} = -1 \text{mA})$					
Transition frequency	f _T		140		MHz
$(V_{CE} = -12 \text{ V}, I_{E} = 2\text{mA}, f = 30\text{MHz})$	·				
Output capacitance	C _{ob}		4.0	5.0	pF
$(V_{CB} = -12 \text{ V}, I_{E} = 0\text{A}, f = 1\text{MHz})$	00				•

h_{FE} values are classified as follows:

12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
*	Q	R	S	
hFE	120~270	180~390	270~560	

L2SA1576AQT1G Series S-L2SA1576AQT1G Series

Fig.1 Grounded emitter propagation characteristics

Fig.2 Grounded emitter output characteristics([)

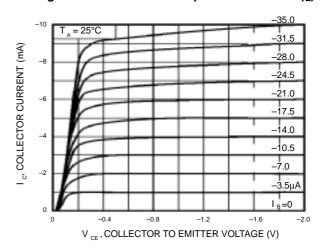


Fig.3 Grounded emitter output characteristics(1)

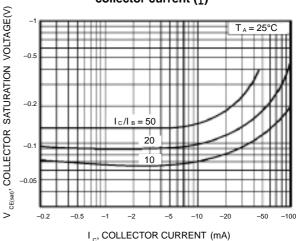

Fig.4 DC current gain vs. collector current ([)

Fig.5 DC current gain vs. collector current (1)

Fig.6 Collector-emitter saturation voltage vs. collector current ([)

L2SA1576AQT1G Series S-L2SA1576AQT1G Series

Fig.7 Collector-emitter saturation voltage vs. collector current (II)

Fig.8 Gain bandwidth product vs. emitter current

Fig.9 Collector output capacitance vs.collector-base voltage Emitter inputcapacitance vs. emitter-base voltage

L2SA1576AQT1G Series S-L2SA1576AQT1G Series

SC-70/SOT-323

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	MON	MAX	
Α	0.80	0.90	1.00	0.032	0.035	0.040	
A1	0.00	0.05	0.10	0.000	0.002	0.004	
A2	0.7 REF			0.028 REF			
b	0.30	0.35	0.40	0.012	0.014	0.016	
С	0.10	0.18	0.25	0.004	0.007	0.010	
D	1.80	2.10	2.20	0.071	0.083	0.087	
Е	1.15	1.24	1.35	0.045	0.049	0.053	
е	1.20	1.30	1.40	0.047	0.051	0.055	
e1	0.65 BSC			0.026 BSC			
L	0.425 REF			0.017 REF			
HE	2.00	2.10	2.40	0.079	0.083	0.095	

GENERIC MARKING DIAGRAM

XX M = Specific Device Code = Date Code

= Pb-Free Package

SOLDERING FOOTPRINT*

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " •", may or may not be present.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Leshan manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B