
LDTC114EET1G S-LDTC114EET1G

Bias Resistor Transistor NPN Silicon Surface Mount Transistor with Monolithic Bias Resistor Network

1. FEATURES

- Simplifies circuit design
- Reduces board space and component count
- We declare that the material of product compliance with RoHS requirements and Halogen Free.
- S- prefix for automotive and other applications requiring unique site and control change requirements; AEC-Q101 qualified and PPAP capable.

2. DEVICE MARKING AND RESISTOR VALUES

Device	Marking	R1(K)	R2(K)	Shipping
LDTC114EET1G	8A	10	10	3000/Tape&Reel
LDTC114EET3G	8A	10	10	10000/Tape&Reel

3. MAXIMUM RATINGS(Ta = 25°C)

Parameter	Symbol	Limits	Unit
Collector–Emitter Voltage	VCEO	50	Vdc
Collector-Base Voltage	VCBO	50	Vdc
Collector Current — Continuous	IC	100	mAdc

4. THERMAL CHARACTERISTICS

Parameter	Symbol	Limits	Unit
Total Device Dissipation,	PD		
FR-5 Board (Note 1) @ TA = 25°C		200	mW
Derate above 25°C		1.6	mW/ºC
Thermal Resistance,	RΘJA	600	°C/W
Junction-to-Ambient(Note 1)			
Junction and Storage temperature	TJ,Tstg	-55~+150	°C

1. FR-5 @ Minimum Pad.

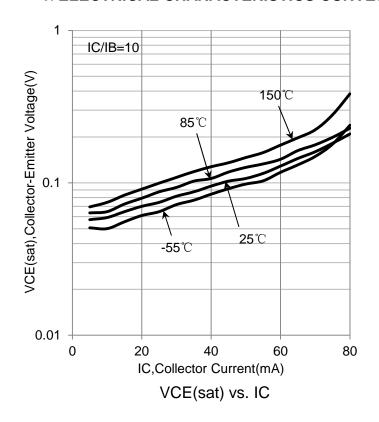
5. ELECTRICAL CHARACTERISTICS (Ta= 25°C)

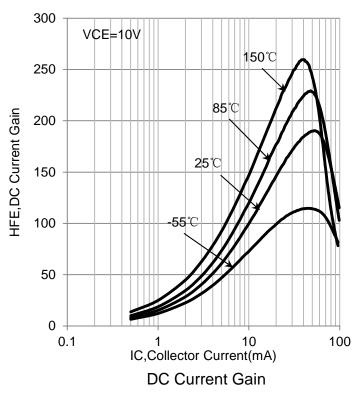
OFF CHARACTERISTICS

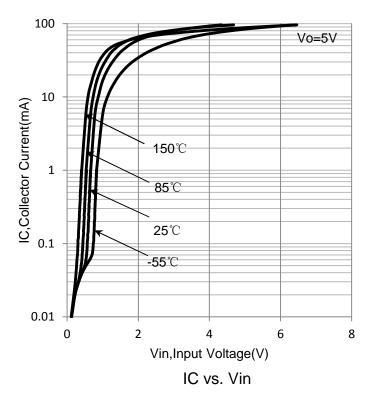
Resistor Ratio

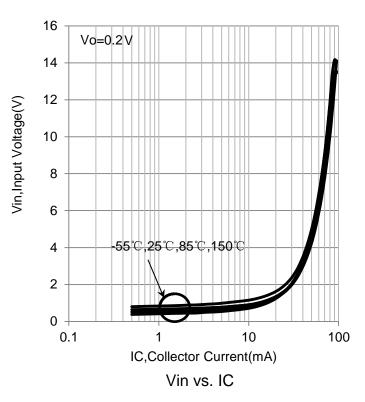
Characteristic	Symbol	Min.	Тур.	Max.	Unit
Collector–Emitter Breakdown Voltage	VBR(CEO)				V
(IC = 2.0 mAdc, IB = 0)	VBIX(CLO)	50	-	-	
Collector–Base Breakdown Voltage	VBR(CBO)				V
(IC = 10 μAdc, IE = 0)	VBIX(CBO)	50	-	-	
Collector-Base Cutoff Current	ICBO				nA
(VCB = 50 V, IE = 0)	ЮВО	-	-	100	
Collector-Emitter Cutoff Current	ICEO				nA
(VCE = 50 V, IB = 0)	ICEO	-	-	500	
Emitter-Base Cutoff Current	IEBO				mA
(VEB = 6.0 V, IC = 0)	ILBO	-	-	0.5	
ON CHARACTERISTICS (Note 2.)	-		-		
DC Current Gain	HFE				
(IC = 5.0 mAdc, VCE = 10 Vdc)		35	60	-	
Collector–Emitter Saturation Voltage	VCE(sat)				V
(IC = 10 mAdc, IB = 0.3 mAdc)		-	-	0.25	
Output Voltage (on)	VOL				V
$(VCC = 5.0 \text{ V}, \text{VB} = 2.5 \text{ V}, \text{RL} = 1.0 \text{K}\Omega)$		-	-	0.2	
Output Voltage (on)	VOH				V
$(VCC = 5.0 \text{ V}, \text{VB} = 0.5 \text{ V}, \text{RL} = 1.0 \text{K}\Omega)$		4.9	-	-	
Input Resistor	R1	7	10	13	ΚΩ

R1/R2

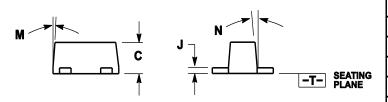

8.0


1.2


^{2.} Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%

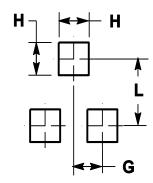


6. ELECTRICAL CHARACTERISTICS CURVES



7.OUTLINE AND DIMENSIONS

A -X 3 B-Y S K D 3 PL 0.08 (0.003) (M) X Y



Notes:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	1.50	1.60	1.70	0.059	0.063	0.067	
В	0.75	0.85	0.95	0.030	0.034	0.040	
C	0.60	0.70	0.80	0.024	0.028	0.031	
О	0.23	0.28	0.33	0.009	0.011	0.013	
G	0.50BSC			0.020BSC			
Η	0.53REF			0.021REF			
J	0.10	0.15	0.20	0.004	0.006	0.008	
K	0.30	0.40	0.50	0.012	0.016	0.02	
L	1.10REF			0.043REF			
М			10°			10°	
Ν			10°			10°	
S	1.50	1.60	1.70	0.059	0.063	0.067	

8.SOLDERING FOOTPRINT

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - Pre-Biased category:

Click to view products by Leshan manufacturer:

Other Similar products are found below:

RN1607(TE85L,F) DRC9A14E0L DTA124GKAT146 DTA144WETL DTA144WKAT146 DTC113EET1G DTC115TETL

DTC115TKAT146 DTC124TETL DTC144VUAT106 MUN5241T1G NSBA114TDP6T5G SMUN5330DW1T1G SSVMUN5312DW1T2G

RN1303(TE85L,F) RN1306(TE85L,F) RN4605(TE85L,F) TTEPROTOTYPE79 EMH15T2R SMUN2214T3G SMUN5335DW1T1G

NSBC143ZPDP6T5G NSVMUN5113DW1T3G SMUN5230DW1T1G SMUN2214T1G FMA7AT148 DTC114EUA-TP

NSVDTA114EET1G SMUN5237DW1T1G SMUN5213DW1T1G SMUN5114DW1T1G SMUN2111T1G DTC124ECA-TP

DTC123TM3T5G DTA114ECA-TP DTA113EM3T5G DTC113EM3T5G NSVMUN5135DW1T1G NSVMUN2237T1G

NSVDTC143ZM3T5G SMUN5335DW1T2G SMUN5216DW1T1G NSVMUN5316DW1T1G NSVMUN5215DW1T1G

NSVMUN5213DW1T3G NSVMUN2112T1G NSVIMD10AMT1G NSVEMC2DXV5T1G NSVDTC144WET1G NSVDTC123JET1G