

LW Silicon P+P Channel Power MOSFET

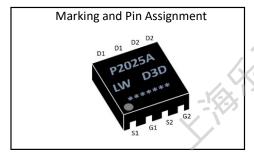
General Description:

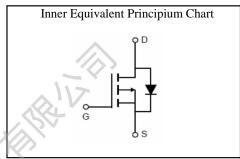
The LWP2025AD3D uses trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications. The package form is PDFN3.3*3.3-8L, which accords with the ROHS standard and Halogen Free standard.

Features:

- Fast Switching
- Low Gate Charge and R_{DS(ON)}
- Low Reverse transfer capacitances

Applications:


- Power switching application
- Hard switched and high frequency circuits
- Power Management


100% DVDS Tested 100% Avalanche Tested

V_{DSS} -20 V I_{D} -21 A P_{D} 22 W $R_{DS(ON) TYPE}$ 20 mΩ

Package Marking and Ordering Information:

Marking	Part Number	Package	Packing	Qty.
P2025A/LW D3D/D.C.	LWP2025AD3D	PDFN3.3*3.3-8L	Reel	5000 Pcs

Absolute Maximum Ratings:

Symbol	Parameter		Value	Units
$V_{ m DSS}$	Drain-to-Source Voltage		-20	V
I_{D}	Continuous Drain Current	$T_{\rm C}$ =25°C	-21	A
I _D	Continuous Drain Current	T _C =100°C	-13	A
$I_{\mathrm{DM}}^{}a1}$	Pulsed Drain Current		-62	A
E_{AS}^{a2}	Single pulse avalanche energy		72	mJ
V_{GS}	Gate-to-Source Voltage		±12	V
P_{D}	Power Dissipation		22	W
T_{J}, T_{STG}	Operating Junction and Storage Tem	perature Range	150, -55 to 150	°C
TL	Maximum Temperature for Solderi	ng	260	%) °C

Thermal Characteristics:

Symbol	Parameter	Value	Units
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case	5.6	°C/W

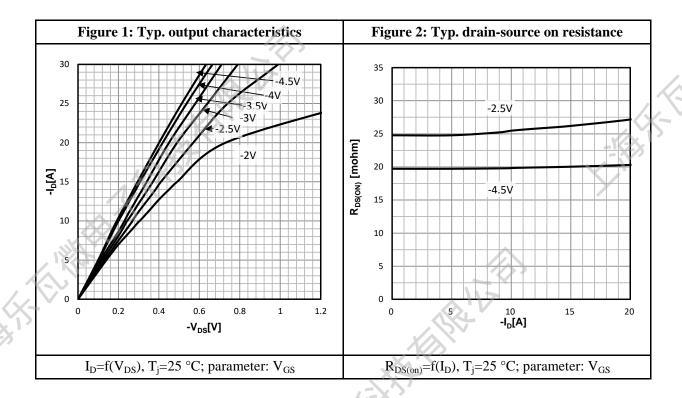
LW Silicon P+P Channel Power MOSFET

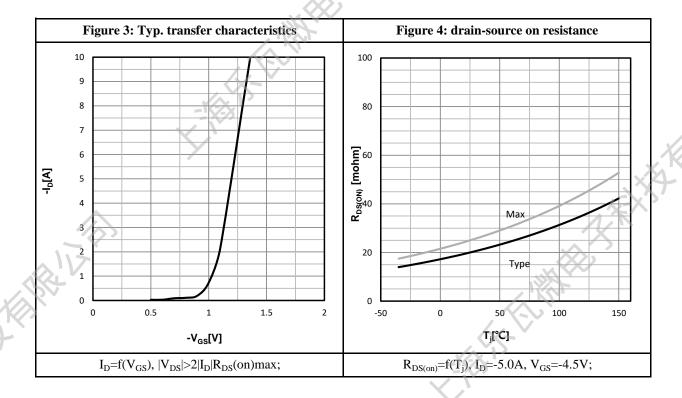
Electrical Characteristic ($T_C = 25$ °C, unless otherwise specified):

Static Ch	aracteristics					
Cranh ol	D	Test Conditions	Value			T T : 4 -
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V_{DSS}	Drain to Source Breakdown Voltage	V_{GS} =0V, I_{D} =-250 μ A	-20			V
I_{DSS}	Drain to Source Leakage Current	V_{DS} =-20V, V_{GS} =0V			1.0	μΑ
$I_{GSS(F)}$	Gate to Source Forward Leakage	V_{GS} =-10V, V_{DS} =0V			100	nA
$I_{GSS(R)}$	Gate to Source Reverse Leakage	$V_{GS}=+10V, V_{DS}=0V$			-100	nA
$V_{\text{GS(TH)}}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-0.4	-0.6	-1.0	V
$R_{DS(ON)1}$	Drain-to-Source On-Resistance	V_{GS} =-4.5V, I_{D} =-5.0A		20	25	mΩ
R _{DS(ON)2}	Drain-to-Source On-Resistance	V_{GS} =-2.5V, I_{D} =-5.0A		25	40	mΩ

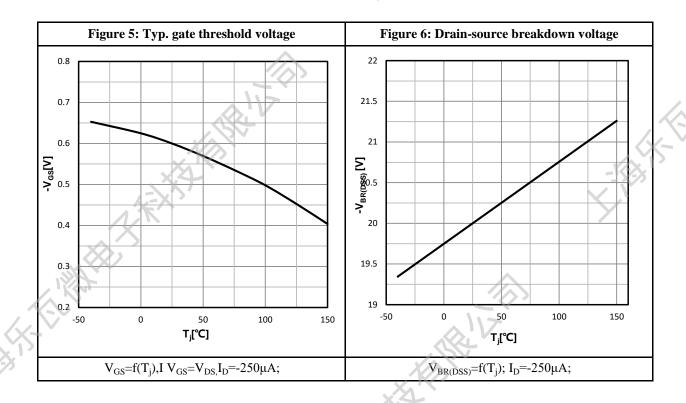
Dynamic	Characteristics					
Symbol	Parameter	Test Conditions		Value		Units
Symbol	rarameter	Test Collations	Min.	Тур.	Max.	Ullits
C_{iss}	Input Capacitance	$V_{GS} = 0V$.Z.).	1012		
C_{oss}	Output Capacitance	$V_{DS} = -10V$	Ba	165		pF
C_{rss}	Reverse Transfer Capacitance	f = 1.0MHz	(/)- <u>-</u>	159		

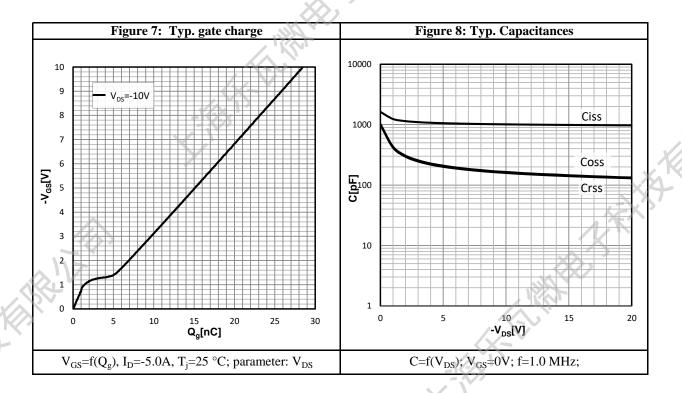
Resistive	Switching Characteristics	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
Symbol	Parameter	Test Conditions		Value		Units
Symbol	Farameter	Test Collections	Min.	Тур.	Max.	Omts
$t_{d(ON)}$	Turn-on Delay Time	$I_{\rm D} = -5.0 {\rm A}$		25		
t _r	Rise Time	$I_D = -5.0A$ $V_{DS} = -10V$		30		200
$t_{d(OFF)}$	Turn-Off Delay Time	$V_{GS} = -4.5V$		60		ns
$t_{\rm f}$	Fall Time	$R_G = 3.0\Omega$		45		
Q_{g}	Total Gate Charge	$V_{GS} = -10V$		29		
Q_{gs}	Gate Source Charge	$V_{DS} = -10V$		1.7		nC
Q_{gd}	Gate Drain Charge	$I_{\rm D} = -5.0 A$		3.3		

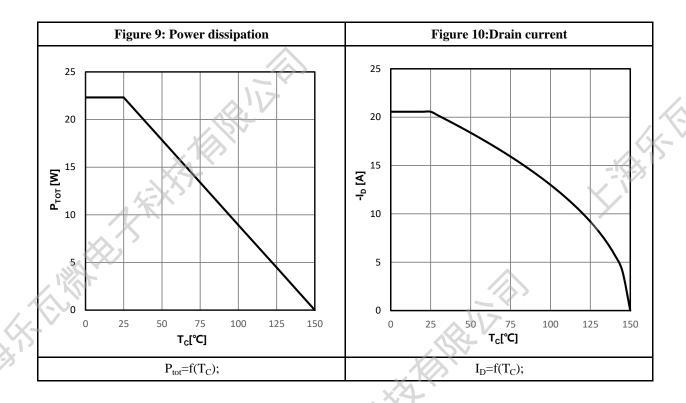

Source-Dr	rain Diode Characteristics					
Symbol	Parameter	Test Conditions		Value		Units
Symbol	rarameter	Test Collutions	Min.	Тур.	Max.	Omis
I_{S}	Diode Forward Current	$T_A = 25 ^{\circ}C$			-21	A
V_{SD}	Diode Forward Voltage	I_{S} =-5.0A, V_{GS} =0V			-1.2	V

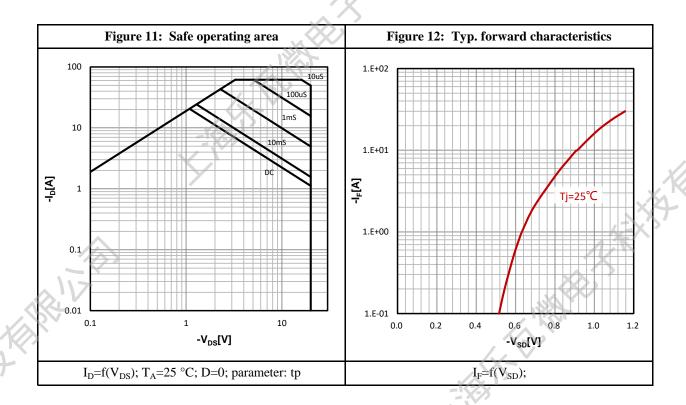

a1: Repetitive rating; pulse width limited by maximum junction temperature

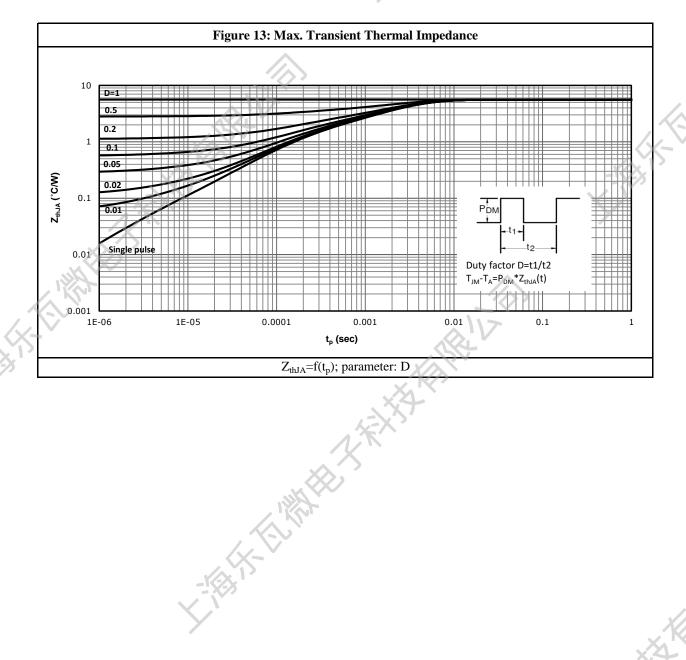
a2: V_{DD} =-10V,L=1.0mH, R_G =25 Ω , Starting T_j =25°C




Characteristics Curve:







KXXX KINELIA

Test Circuit & Waveform:

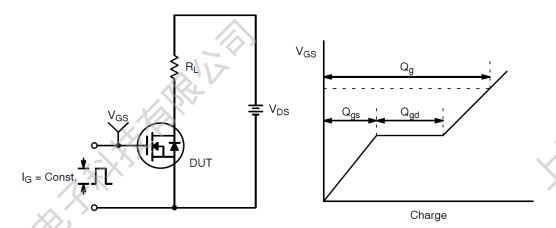


Figure 14: Gate Charge Test Circuit & Waveform

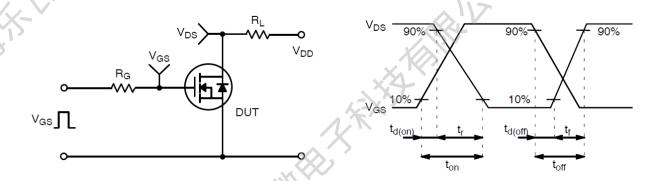
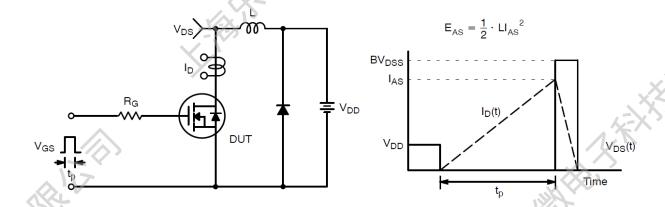
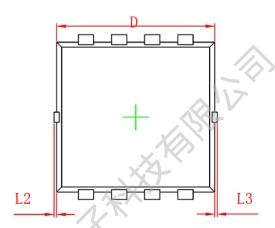
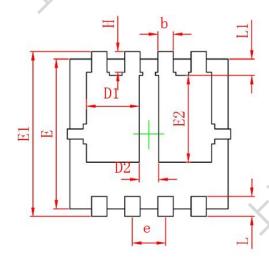
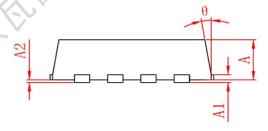


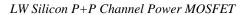
Figure 15: Resistive Switching Test Circuit & Waveforms


Figure 16: Unclamped Inductive Switching Test Circuit & Waveforms

Package Outline:

Symbol	MILLIMETER					
	MIN	MIN				
A	0.700	0.900				
A1	0.152	2 REF				
A2	()~().05				
D	3.000	3.200				
D1	0.935	1.135				
D2	0.280	0.480				
E	2.900	3.100				
E1	3.150	3.450				
E2	1.535	1.935				
b	0.200	0.400				
e	0.550	0.750				
L	0.300	0.500				
L1	0.180	0.480				
L2	0~0	.100				
L3	0~0	.100				
Н	0.315	0.515				
θ	-8°	12°				



LW Silicon P+P Channel Power MOSFET

Revision History:

	Revison	Date		Descriptions	
	Rev 1.0	Feb.2024	Initial Version		
_					
			117		_1
					. (-)
			~		X-
		YXT.			-1(-)
		L=XX			\
	1	7			Y
, <				112	
152					
				XXX	
				X	
			. 4	£X,	

Disclaimer:

The information in this document is believed to be accurate and reliable. However, no responsibility is assumed by LW-Micro for its use. All operating parameters must be designed, validated and tested to ensure they meet the requirements of your application. LW-Micro reserves the right to make any specification and/or circuitry changes without prior notification. Before starting a brand-new project, please contact LW-Micro Sales to get the most recent relevant information.

Mailing Address: Room 301, Building 2, No.1690 CaiLun Road, China (Shanghai) Pilot Free Trade Zone Shanghai Lewa Micro-electronics Technology Co., Ltd

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Lewa Micro manufacturer:

Other Similar products are found below:

IRFD120 IRFY240C JANTX2N5237 2SK2267(Q) BUK455-60A/B MIC4420CM-TR VN1206L NDP4060 SI4482DY

IPS70R2K0CEAKMA1 SQD23N06-31L-GE3 TK16J60W,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG

DMN1053UCP4-7 SQJ469EP-T1-GE3 NTE2384 DMC2700UDMQ-7 DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR

DMN31D5UDJ-7 DMP22D4UFO-7B DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 IRF40H233XTMA1 STU5N65M6

DMN6022SSD-13 DMN13M9UCA6-7 DMTH10H4M6SPS-13 DMN2990UFB-7B IPB80P04P405ATMA2 2N7002W-G MCAC30N06Y
TP MCQ7328-TP NTMC083NP10M5L NVMFS2D3P04M8LT1G BXP7N65D BXP4N65F AOL1454G WMJ80N60C4 BXP2N20L

BXP2N65D BXT1150N10J BXT1700P06M TSM60NB380CP ROG RQ7L055BGTCR DMNH15H110SK3-13