

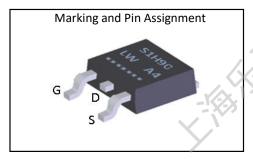
General Description:

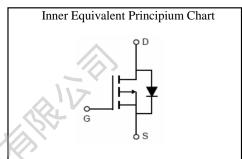
The LWS1H90A4 uses advanced SGT technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications. The package form is TO-252, which accords with the ROHS standard and Halogen Free standard.

Features:

- Fast Switching
- Low Gate Charge and R_{DS(ON)}
- Low Reverse transfer capacitances

Applications:


- DC-DC Converter
- Portable Equipment
- Power Management


100% DVDS Tested 100% Avalanche Tested

V_{DSS} -100 V I_{D} -25 A P_{D} 80 W $R_{DS(ON) TYPE}$ 72 mΩ

Package Marking and Ordering Information:

Marking	Part Number	Package	Packing	Qty.
S1H90/LW A4/D.C.	LWS1H90A4	TO-252	Reel	2500 Pcs

Absolute Maximum Ratings:

Symbol	Parameter		Value	Units
$V_{ m DSS}$	Drain-to-Source Voltage		-100	V
ī	Continuous Drain Current	$T_{\rm C}$ =25 $^{\circ}{\rm C}$	-25	A
I_D	Continuous Drain Current	$T_{C}=100^{\circ}C$	-15.8	A
I_{DM}^{a1}	Pulsed Drain Current		-100	A
E_{AS}^{a2}	Single pulse avalanche energy		200	mJ
V_{GS}	Gate-to-Source Voltage		±20	V
P_{D}	Power Dissipation		80	W
T_{J}, T_{STG}	Operating Junction and Storage Temp	perature Range	150, -55 to 150	°C
TL	Maximum Temperature for Solderin	ng	260	C

Thermal Characteristics:

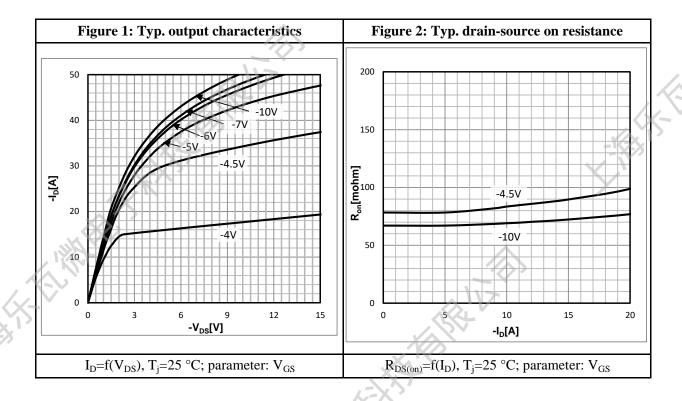
Symbol	Parameter	Value	Units
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case	1.56	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction-to-Ambient	91	°C/W

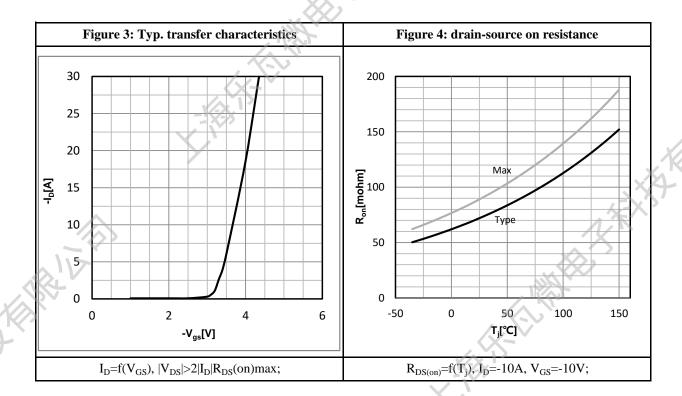
Electrical Characteristic ($T_C = 25$ °C, unless otherwise specified):

Static Characteristics							
Crumb ol	Damanastan	Test Conditions		Value	T.L:4.		
Symbol	Parameter	Test Colluttions	Min.	Тур.	Max.	Units	
V_{DSS}	Drain to Source Breakdown Voltage	V_{GS} =0V, I_{D} =-250 μ A	-100			V	
I_{DSS}	Drain to Source Leakage Current	$V_{DS} = -100V, V_{GS} = 0V$			1.0	μΑ	
$I_{GSS(F)}$	Gate to Source Forward Leakage	V_{GS} =-20V, V_{DS} =0V			100	nA	
$I_{GSS(R)}$	Gate to Source Reverse Leakage	V_{GS} =+20V, V_{DS} =0V			-100	nA	
$V_{\text{GS(TH)}}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-1.5	-2	-2.5	V	
$R_{DS(ON)1}$	Drain-to-Source On-Resistance	V_{GS} =-10V, I_{D} =-10A		72	89	mΩ	
$R_{DS(ON)2}$	Drain-to-Source On-Resistance	V_{GS} =-4.5V, I_{D} =-5.0A		87	105	mΩ	

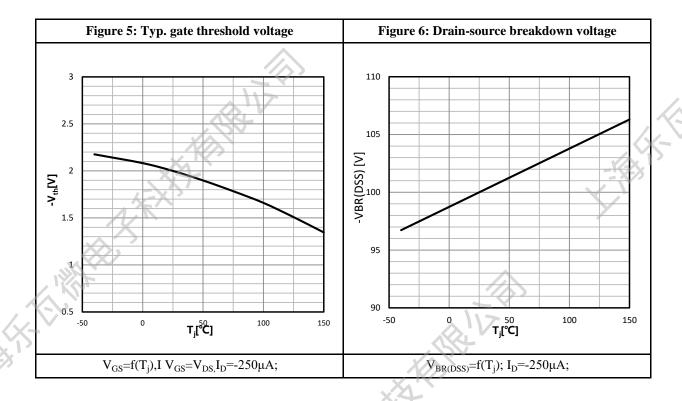
Dynamic	Dynamic Characteristics							
S. M. D.		Test Conditions	Value			Units		
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units		
C_{iss}	Input Capacitance	$V_{GS} = 0V$	Z	1305				
C _{oss}	Output Capacitance	$V_{\rm DS} = -50 V$	180	97.5		pF		
C_{rss}	Reverse Transfer Capacitance	f = 1.0MHz	())-	9.1		1		
R_{g}	Gate resistance	$V_{GS} = 0V, V_{DS} Open$		75		Ω		
		-1.7.7						

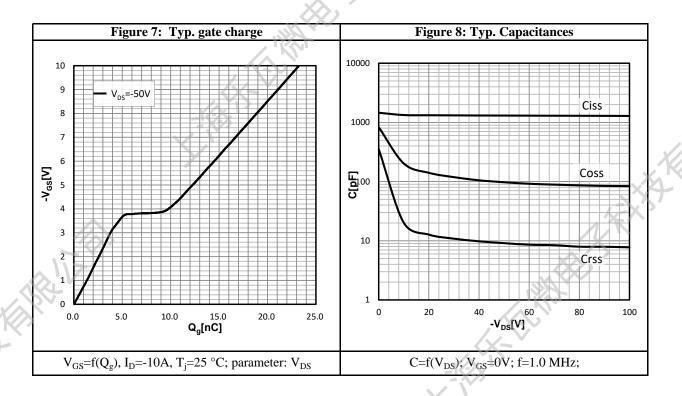
Resistive	Switching Characteristics	1.4				
Symbol	Parameter	Test Conditions		Value		Units
Symbol	Farameter	Test Collutions	Min.	Тур.	Max.	Offics
$t_{d(ON)}$	Turn-on Delay Time	$I_{D} = -10A$		8.8		
t_r	Rise Time	$V_{DS} = -50V$		16		ns
$t_{d(OFF)}$	Turn-Off Delay Time	$V_{GS} = -10V$		60		ns
$t_{\rm f}$	Fall Time	$R_G = 5.0\Omega$		41		
Q_{g}	Total Gate Charge	$V_{GS} = -10V$		23.27		
Q_{gs}	Gate Source Charge	$V_{DS} = -50V$		4.59		nC
Q_{gd}	Gate Drain Charge	$I_D = -10A$		4.53		

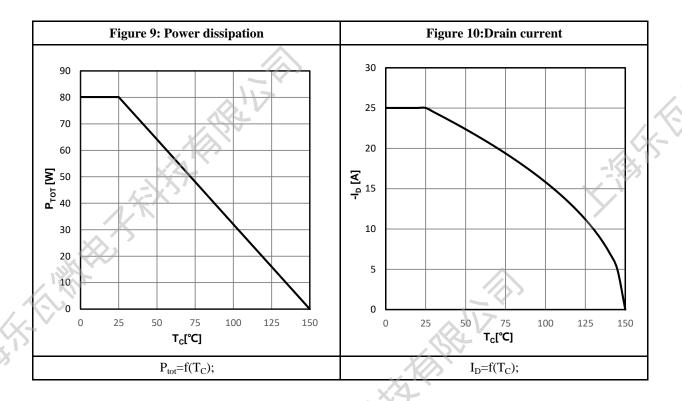

Source-Di	rain Diode Characteristics					\
Symbol	Parameter	Test Conditions		Value		Units
Symbol	r at afficted	Test Collutions	Min.	Тур.	Max.	Onits
I_{S}	Diode Forward Current	$T_C = 25 ^{\circ}C$			-25	A
V_{SD}	Diode Forward Voltage	I_{S} =-10A, V_{GS} =0V	-		-1.2	V
t _{rr}	Reverse Recovery time	IS=-10A, VDD=-50V	-	30	//	ns
Q_{rr}	Reverse Recovery Charge	dI/dt=100A/μs		61		nC

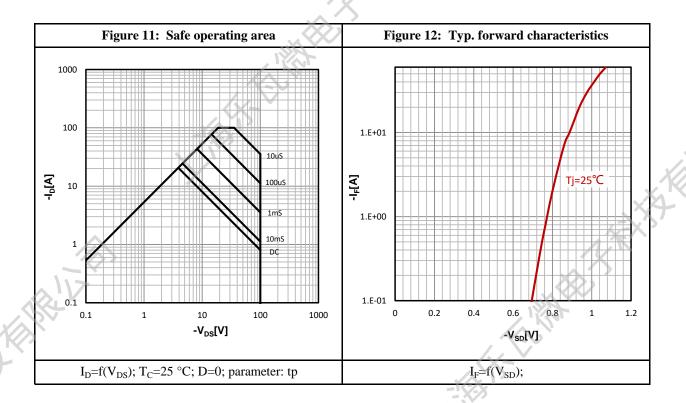

a1: Repetitive rating; pulse width limited by maximum junction temperature

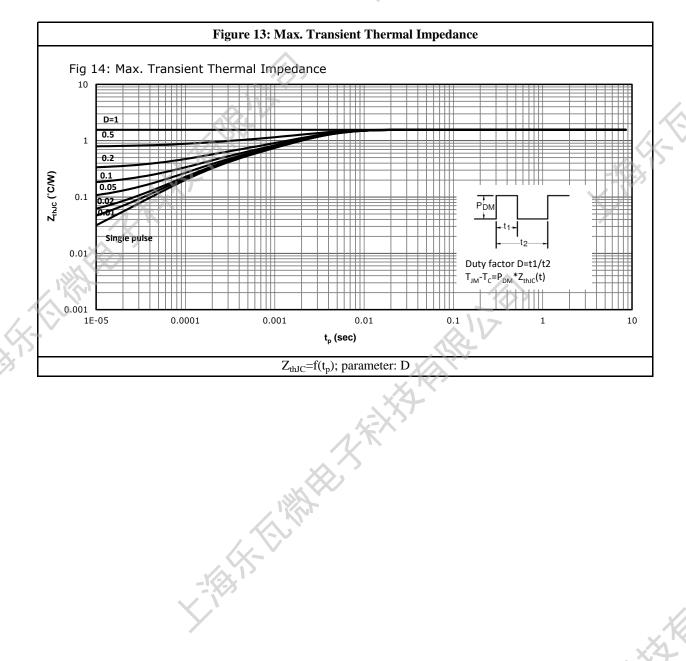
a2: V_{DD} =-50V,L=5.0mH, R_g =25 Ω , Starting T_J =25 °C




Characteristics Curve:







A XXX KINGELIA

Test Circuit & Waveform:

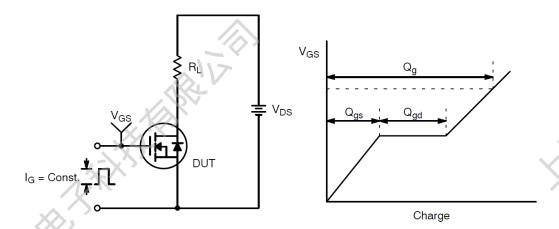


Figure 14: Gate Charge Test Circuit & Waveform

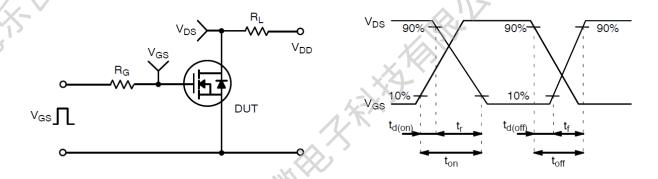


Figure 15: Resistive Switching Test Circuit & Waveforms

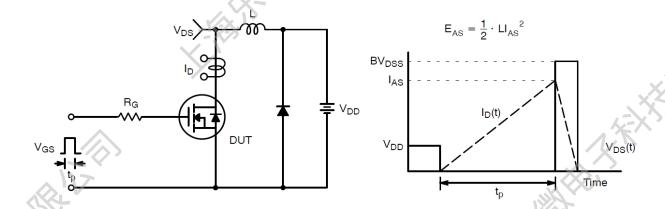
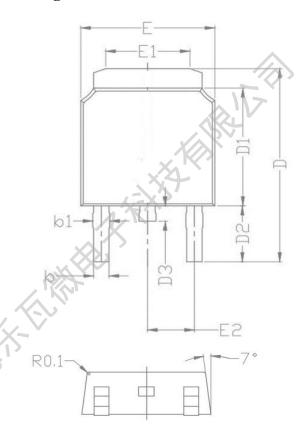
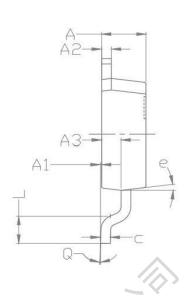




Figure 16: Unclamped Inductive Switching Test Circuit & Waveforms

Package Outline:

14	COMMON					
PKG		TO-252-2L				
Symbol	MIN	NOM	MAX			
A	2.200	2.300	2.400			
A1	0.000	0.075	0.150			
A2	0.500	0.508	0.550			
A3	0.960	1.010	1.060			
b	0.740	0.760	0.800			
b1	0.880	0.900	0.950			
C	0.500	0.508	0.550			
D	9.800	10.025	10.350			
D1	6.050	6.100	6.180			
D2	2.850	2.900	2.950			
D3	0.600	0.800	1.000			
E	6.550	6.600	6.700			
E 1	4.050	4.130	4.200			
E2	2.250	2.286	2.300			
L	1.400	1.500	1.600			
e		_1 - 7°	•			
Q	0°	2°	5°			

KXXX KARLIVA

Revision History:

Revison	Date		Descriptions	
Rev 1.0	Feb.2023	Initial Version		
		117		
	1	Q'V		/
		3/		//-
	×. X(?			
	X			-1(-)
	ÆX,		,	Λ,
X),	>			
Du.				
			117	
(X-			A COLOR	
-%			180	
/*				
			X	
		, –	\^ `	

A NATIONAL DESIGNATION OF THE PARTY OF THE P

Disclaimer:

The information in this document is believed to be accurate and reliable. However, no responsibility is assumed by LW-Micro for its use. All operating parameters must be designed, validated and tested to ensure they meet the requirements of your application. LW-Micro reserves the right to make any specification and/or circuitry changes without prior notification. Before starting a brand-new project, please contact LW-Micro Sales to get the most recent relevant information.

Mailing Address: Room 301, Building 2, No.1690 CaiLun Road, China (Shanghai) Pilot Free Trade Zone Shanghai Lewa Micro-electronics Technology Co., Ltd

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Lewa Micro manufacturer:

Other Similar products are found below:

IRFD120 IRFY240C JANTX2N5237 2SK2267(Q) BUK455-60A/B MIC4420CM-TR VN1206L NDP4060 SI4482DY

IPS70R2K0CEAKMA1 SQD23N06-31L-GE3 TK16J60W,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG

DMN1053UCP4-7 SQJ469EP-T1-GE3 NTE2384 DMC2700UDMQ-7 DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR

DMN31D5UDJ-7 DMP22D4UFO-7B DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 IRF40H233XTMA1 STU5N65M6

DMN6022SSD-13 DMN13M9UCA6-7 DMTH10H4M6SPS-13 DMN2990UFB-7B IPB80P04P405ATMA2 2N7002W-G MCAC30N06Y
TP MCQ7328-TP NTMC083NP10M5L NVMFS2D3P04M8LT1G BXP7N65D BXP4N65F AOL1454G WMJ80N60C4 BXP2N20L

BXP2N65D BXT1150N10J BXT1700P06M TSM60NB380CP ROG RQ7L055BGTCR DMNH15H110SK3-13