LTC4446

features

- Bootstrap Supply Voltage Up to 114V
- Wide Vcc Voltage: 7.2 V to 13.5 V
- 2.5A Peak Top Gate Pull-Up Current
- 3A Peak Bottom Gate Pull-Up Current
- 1.2Ω Top Gate Driver Pull-Down
- 0.55Ω Bottom Gate Driver Pull-Down
- 5ns Top Gate Fall Time Driving 1nF Load
- 8ns Top Gate Rise Time Driving 1nF Load
- 3ns Bottom Gate Fall Time Driving 1nF Load
- 6ns Bottom Gate Rise Time Driving 1nF Load
- Drives Both High and Low Side N-Channel MOSFETs
- Undervoltage Lockout
- Thermally Enhanced 8-Pin MSOP Package

APPLICATIONS

- Distributed Power Architectures
- Automotive Power Supplies
- High Density Power Modules
- Telecommunication Systems
$\boldsymbol{\Sigma}$, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.
Protected by U.S. Patents including 6677210.

DESCRIPTION

The LTC ${ }^{\circledR} 4446$ is a high frequency high voltage gate driver that drives two N-channel MOSFETs in a DC/DC converter with supply voltages up to 100 V . The powerful driver capability reduces switching losses in MOSFETs with high gate capacitance. The LTC4446's pull-up for the top gate driver has a peak output current of 2.5 A and its pull-down has an output impedance of 1.2Ω. The pull-up for the bottom gate driver has a peak output current of 3 A and the pull-down has an output impedance of 0.55Ω.

The LTC4446 is configured for two supply-independent inputs. The high side input logic signal is internally level-shifted to the bootstrapped supply, which may function at up to 114 V above ground.

The LTC4446 contains undervoltage lockout circuits that disable the external MOSFETs when activated.

The LTC4446 is available in the thermally enhanced 8-lead MSOP package.
The LTC4446 does not have adaptive shoot-through protection. For similar drivers with adaptive shoot-through protection, please refer to the chart below.

PARAMETER	LTC4446	LTC4444	LTC4444-5
Shoot-Through Protection	No	Yes	Yes
Absolute Max TS	100 V	100 V	100 V
MOSFET Gate Drive	7.2 V to 13.5 V	7.2 V to 13.5 V	4.5 V to 13.5 V
$\mathrm{~V}_{\text {CC }}$ UV $^{+}$	6.6 V	6.6 V	4 V
$\mathrm{~V}_{\text {CC }} \mathrm{UV}^{-}$	6.15 V	6.15 V	3.55 V

TYPICAL APPLICATION

Two Switch Forward Converter

LTC4446 Driving a 1000pF Capacitive Load

ABSOLUTE MAXIMUM RATIOGS

(Note 1)
Supply Voltage
VCC... -0.3 V to 14 V
BOOST - TS
TINP Voltage .
BINP Voltage .. -2 V to 14 V
BOOST Voltage -0.3 V to 114 V
TS Voltage.. 5 V to 100 V

Operating Temperature Range (Note 2).... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Junction Temperature (Note 3) $125^{\circ} \mathrm{C}$ Storage Temperature Range................... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PIn COnfiGURATIOn

$T_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=40^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{JC}}=10^{\circ} \mathrm{C} / \mathrm{W}$ (NOTE 4) EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB

ORDER InFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC4446EMS8E\#PBF	LTC4446EMS8E\#TRPBF	LTDPZ	8 -Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC4446IMS8E\#PBF	LTC4446IMS8E\#TRPBF	LTDPZ	8 -Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {BOOST }}=12 \mathrm{~V}, \mathrm{~V}_{T S}=\mathrm{GND}=\mathrm{OV}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Gate Driver Supply, V ${ }_{\text {CC }}$							
$\mathrm{V}_{\text {c }}$	Operating Voltage			7.2		13.5	V
IVCC	DC Supply Current	TINP $=$ BINP $=0 \mathrm{~V}$			350	550	$\mu \mathrm{A}$
UVLO	Undervoltage Lockout Threshold	$V_{C C}$ Rising VCC Falling Hysteresis	\bullet	$\begin{aligned} & 6.00 \\ & 5.60 \end{aligned}$	$\begin{aligned} & 6.60 \\ & 6.15 \\ & 450 \end{aligned}$	$\begin{aligned} & 7.20 \\ & 6.70 \end{aligned}$	V V $m V$
Bootstrapped Supply (BOOST - TS)							
$\mathrm{I}_{\text {B00ST }}$	DC Supply Current	TINP $=$ BINP $=0 \mathrm{~V}$			0.1	2	$\mu \mathrm{A}$
Input Signal (TINP, BINP)							
$\mathrm{V}_{\text {IH(BG) }}$	BG Turn-On Input Threshold	BINP Ramping High	\bullet	2.25	2.75	3.25	V
$\mathrm{V}_{\text {IL(BG) }}$	BG Turn-Off Input Threshold	BINP Ramping Low	\bullet	1.85	2.3	2.75	V
$\mathrm{V}_{\text {IH(TG) }}$	TG Turn-On Input Threshold	TINP Ramping High	\bullet	2.25	2.75	3.25	V
$\mathrm{V}_{\text {IL(TG) }}$	TG Turn-Off Input Threshold	TINP Ramping Low	\bullet	1.85	2.3	2.75	V
ITINP(BINP)	Input Pin Bias Current				± 0.01	± 2	$\mu \mathrm{A}$
High Side Gate Driver Output (TG)							
$\mathrm{V}_{\text {OH(TG) }}$	TG High Output Voltage	$\mathrm{I}_{\mathrm{TG}}=-10 \mathrm{~mA}, \mathrm{~V}_{\text {OH(TG) }}=\mathrm{V}_{\text {BOOST }}-\mathrm{V}_{\text {TG }}$			0.7		V
$\mathrm{V}_{\text {OL(TG) }}$	TG Low Output Voltage	$\mathrm{I}_{\mathrm{TG}}=100 \mathrm{~mA}, \mathrm{~V}_{0 L(T G)}=\mathrm{V}_{\text {TG }}-\mathrm{V}_{\text {TS }}$	\bullet		120	220	mV
IPU(TG)	TG Peak Pull-Up Current		\bullet	1.7	2.5		A
$\underline{\mathrm{R}_{\text {DS(TG) }}}$	TG Pull-Down Resistance		\bullet		1.2	2.2	Ω
							44466

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BOOST}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{TS}}=\mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	
Low Side Gate Driver Output (BG)							
$\mathrm{V}_{\text {OH(BG) }}$	BG High Output Voltage	$\mathrm{I}_{\mathrm{BG}}=-10 \mathrm{~mA}, \mathrm{~V}_{\text {OH(} \mathrm{BG})}=\mathrm{V}_{C C}-\mathrm{V}_{\mathrm{BG}}$			0.7		V
$\mathrm{V}_{\text {OL(BG) }}$	BG Low Output Voltage	$\mathrm{I}_{\mathrm{BG}}=100 \mathrm{~mA}$	\bullet		55	110	V
$\underline{\mathrm{P} U(\mathrm{BG})}$	BG Peak Pull-Up Current		\bullet	2	3		A
$\mathrm{R}_{\text {DS(BG) }}$	BG Pull-Down Resistance		\bullet		0.55	1.1	Ω

Switching Time (BINP (TINP) is Tied to Ground While TINP (BINP) is Switching. Refer to Timing Diagram)

tplH(TG)	TG Low-High (Turn-On) Propagation Delay		\bullet	25	45	ns
$\mathrm{t}_{\text {PHL (TG) }}$	TG High-Low (Turn-Off) Propagation Delay		\bullet	22	40	ns
tPLH(BG)	BG Low-High (Turn-On) Propagation Delay		\bullet	19	35	ns
$t_{\text {PHL }}(\mathrm{BG})$	BG High-Low (Turn-Off) Propagation Delay		\bullet	14	30	ns
$\mathrm{t}_{\text {DM(BGTG) }}$	Delay Matching BG Turn-Off and TG Turn-On		\bullet	-15 10	35	ns
$\mathrm{t}_{\text {DM(TGBG) }}$	Delay Matching TG Turn-Off and BG Turn-On		\bullet	-25 -3	25	ns
$\mathrm{tr}_{\text {(}(T G)}$	TG Output Rise Time	$\begin{aligned} & 10 \%-90 \%, C_{L}=1 n F \\ & 10 \%-90 \%, C_{L}=10 n F \end{aligned}$		$\begin{gathered} \hline 8 \\ 80 \end{gathered}$		ns ns
$\mathrm{t}_{\mathrm{f} \text { (TG) }}$	TG Output Fall Time	$\begin{aligned} & 10 \%-90 \%, C_{L}=1 n F \\ & 10 \%-90 \%, C_{L}=10 n F \end{aligned}$		$\begin{gathered} 5 \\ 50 \end{gathered}$		ns ns
$\mathrm{tr}_{\text {(} \mathrm{BG})}$	BG Output Rise Time	$\begin{aligned} & 10 \%-90 \%, C_{L}=1 n F \\ & 10 \%-90 \%, C_{L}=10 n F \\ & \hline \end{aligned}$		$\begin{gathered} \hline 6 \\ 60 \end{gathered}$		ns ns
$\mathrm{t}_{\text {f(} \mathrm{BG})}$	BG Output Fall Time	$\begin{aligned} & 10 \%-90 \%, C_{L}=1 n F \\ & 10 \%-90 \%, C_{L}=10 n F \end{aligned}$		$\begin{gathered} \hline 3 \\ 30 \end{gathered}$		ns ns

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LTC4446E is guaranteed to meet specifications from $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range are assured by design, characterization and correlation
with statistical process controls. The LTC4446I is guaranteed over the full $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range.
Note 3: T_{J} is calculated from the ambient temperature T_{A} and power dissipation P_{D} according to the following formula:

$$
T_{J}=T_{A}+\left(P_{D} \cdot \theta_{J A}{ }^{\circ} \mathrm{C} / \mathrm{W}\right)
$$

Note 4: Failure to solder the exposed back side of the MS8E package to the PC board will result in a thermal resistance much higher than $40^{\circ} \mathrm{C} / \mathrm{W}$.

TYPICAL PERFORMANCE CHARACTERISTICS

4446601

BOOST-TS Supply Quiescent
Current vs Voltage

$V_{\text {cc }}$ Supply Current vs

 Temperature

TYPICAL PERFORMANCE CHARACTERISTICS

Input Thresholds (TINP, BINP) vs Supply Voltage

446 G07
Input Thresholds (TINP, BIIP) Hysteresis vs Temperature

Output Low Voltage (Vol) vs Supply Voltage

Input Thresholds (TINP, BINP) vs Temperature

$V_{\text {cc }}$ Undervoltage Lockout
Thresholds vs Temperature

Output High Voltage (V_{OH}) vs Supply Voltage

Input Thresholds (TINP, BINP) Hysteresis vs Voltage

Rise and Fall Time vs

$V_{\text {CC }}$ Supply Voltage

TYPICAL PERFORMANCE CHARACTERISTICS

Rise and Fall Time vs Load Capacitance

Peak Driver (TG, BG) Pull-Up
Current vs Temperature

Output Driver Pull-Down Resistance vs Temperature

Propagation Delay vs $V_{\text {cc }}$ Supply Voltage

4444 G16

Propagation Delay vs Temperature

Switching Supply Current vs Load Capacitance

PIn functions

TINP (Pin 1): High Side Input Signal. Input referenced to GND. This input controls the high side driver output (TG).

BINP (Pin 2): Low Side Input Signal. This input controls the low side driver output (BG).
$V_{\text {CC }}$ (Pin 3): Supply. This pin powers input buffers, logic and the low side gate driver output directly and the high side gate driver output through an external diode connected between this pin and BOOST (Pin 6). A low ESR ceramic bypass capacitor should be tied between this pin and GND (Pin 9).
BG (Pin 4): Low Side Gate Driver Output (Bottom Gate). This pin swings between $V_{C c}$ and $G N D$.
NC (Pin 5): No Connect. No connection required.

BOOST (Pin 6): High Side Bootstrapped Supply. An external capacitor should be tied between this pin and TS (Pin 8). Normally, a bootstrap diode is connected between $V_{C C}$ (Pin 3) and this pin. Voltage swing at this pin is from $V_{C C}-V_{D}$ to $V_{I N}+V_{C C}-V_{D}$, where V_{D} is the forward voltage drop of the bootstrap diode.
TG (Pin 7): High Side Gate Driver Output (Top Gate). This pin swings between TS and BOOST.
TS (Pin 8): High Side MOSFET Source Connection (Top Source).
Exposed Pad (Pin 9): Ground. Must be soldered to PCB ground for optimal thermal performance.

BLOCK DIAGRAM

TIMING DIAGRAM

OPERATION

Overview

The LTC4446 receives ground-referenced, Iow voltage digital input signals to drive two N -channel power MOSFETs in a synchronous buck power supply configuration. The gate of the low side MOSFET is driven either to V_{CC} or GND, depending on the state of the input. Similarly, the gate of the high side MOSFET is driven to either BOOST or TS by a supply bootstrapped off of the switching node (TS).

Input Stage

The LTC4446 employs CMOS compatible input thresholds that allow a low voltage digital signal to drive standard power MOSFETs. The LTC4446 contains an internal voltage regulator that biases both input buffers for high side and low side inputs, allowing the input thresholds $\left(\mathrm{V}_{\mathrm{IH}}=2.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=2.3 \mathrm{~V}\right)$ to be independent of variations in $\mathrm{V}_{\text {CC }}$. The 450 mV hysteresis between $\mathrm{V}_{\text {IH }}$ and $\mathrm{V}_{\text {IL }}$ eliminates false triggering due to noise during switching transitions. However, care should be taken to keep both input pins (TINP and BINP) from any noise pickup, especially in high frequency, high voltage applications. The LTC4446 input buffers have high input impedance and draw negligible input current, simplifying the drive circuitry required for the inputs.

Output Stage

A simplified version of the LTC4446's outputstage is shown in Figure 1. The pull-up devices on the BG and TG outputs are NPN bipolar junction transistors (Q1 and Q2). The BG and TG outputs are pulled up to within an NPN VBE $(\sim 0.7 \mathrm{~V})$ of their positive rails (VCC V_{CC} and BOOST, respectively). Both BG and TG have N-channel MOSFET pull-down devices (M1 and M2) which pull BG and TG down to their negative rails, GND and TS. The large voltage swing of the BG and TG output pins is important in driving external power MOSFETs, whose $\mathrm{R}_{\mathrm{DS}(0 \mathrm{~N})}$ is inversely proportional to the gate overdrive voltage ($\left.\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right)$.

Figure 1. Capacitance Seen by BG and TG During Switching

Rise/Fall Time

The LTC4446's rise and fall times are determined by the peak current capabilities of Q1 and M1. The predriver that drives Q1 and M1 uses a nonoverlapping transition scheme to minimize cross-conduction currents. M1 is fully turned off before Q1 is turned on and vice versa.

Since the power MOSFET generally accounts for the majority of the power loss in a converter, it is important to quickly turn it on or off, thereby minimizing the transition time in its linear region. An additional benefit of a strong pull-down on the driver outputs is the prevention of crossconduction current. For example, when BG turns the low side (synchronous) power MOSFET off and TG turns the high side power MOSFET on, the voltage on the TS pin will rise to $\mathrm{V}_{\text {IN }}$ very rapidly. This high frequency positive voltage transient will couple through the C_{GD} capacitance of the low side power MOSFET to the BG pin. If there is an insufficient pull-down on the BG pin, the voltage on the BG pin can rise above the threshold voltage of the low side power MOSFET, momentarily turning it back on. With

OPERATION

both the high side and low side MOSFETs conducting, significant cross-conduction current will flow through the MOSFETs from $\mathrm{V}_{\text {IN }}$ to ground and will cause substantial power loss. A similar effect occurs on $T G$ due to the $C_{G S}$ and C_{GD} capacitances of the high side MOSFET.
The powerful output driver of the LTC4446 reduces the switching losses of the power MOSFET, which increase with transition time. The LTC4446's high side driver is capable of driving a 1 nF load with 8 ns rise and 5 ns fall times using a bootstrapped supply voltage $\mathrm{V}_{\text {BOOST-TS }}$ of 12 V while its low side driver is capable of driving a 1 nF
load with 6 ns rise and $3 n s$ fall times using a supply voltage $V_{C C}$ of 12 V .

Undervoltage Lockout (UVLO)

The LTC4446 contains an undervoltage lockout detector that monitors $V_{C C}$ supply. When $V_{C C}$ falls below 6.15 V , the output pins BG and TG are pulled down to GND and TS, respectively. This turns off both external MOSFETs. When $\mathrm{V}_{\text {CC }}$ has adequate supply voltage, normal operation will resume.

APPLICATIONS INFORMATION

Power Dissipation

To ensure proper operation and long-term reliability, the LTC4446 must not operate beyond its maximum temperature rating. Package junction temperature can be calculated by:

$$
\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\mathrm{P}_{\mathrm{D}}\left(\theta_{\mathrm{JA}}\right)
$$

where:

$$
\mathrm{T}_{\mathrm{J}}=\text { Junction temperature }
$$

$T_{A}=$ Ambient temperature
$P_{D}=$ Power dissipation
$\theta_{\mathrm{JA}}=$ Junction-to-ambient thermal resistance
Power dissipation consists of standby and switching power losses:

$$
P_{D}=P_{D C}+P_{A C}+P_{Q G}
$$

where:
$P_{D C}=$ Quiescent power loss
$P_{A C}=$ Internal switching loss at input frequency, f_{IN}
$P_{Q G}=$ Loss due turning on and off the external MOSFET
with gate charge $Q G$ at frequency $f_{I N}$

The LTC4446 consumes very little quiescent current. The DC power loss at $\mathrm{V}_{C C}=12 \mathrm{~V}$ and $\mathrm{V}_{\text {BOOST-TS }}=12 \mathrm{~V}$ is only $(350 \mu \mathrm{~A})(12 \mathrm{~V})=4.2 \mathrm{~mW}$.

At a particular switching frequency, the internal power loss increases due to both AC currents required to charge and discharge internal node capacitances and cross-conduction currents in the internal logic gates. The sum of the quiescent current and internal switching current with no load are shown in the Typical Performance Characteristics plot of Switching Supply Current vs Input Frequency.
The gate charge losses are primarily due to the large AC currents required to charge and discharge the capacitance of the external MOSFETs during switching. For identical pure capacitive loads $C_{\text {LOAD }}$ on TG and BG at switching frequency f_{IN}, the load losses would be:

$$
P_{\text {CLOAD }}=\left(C_{\text {LOAD }}\right)(f)\left[\left(V_{\text {BOOSTTTS }}\right)^{2}+\left(V_{C C}\right)^{2}\right]
$$

In a typical synchronous buck configuration, $\mathrm{V}_{\text {BOOST-TS }}$ is equal to $V_{C C}-V_{D}$, where V_{D} is the forward voltage drop across the diode between $V_{C C}$ and BOOST. If this drop is small relative to V_{CC}, the load losses can be approximated as:

$$
P_{\text {CLOAD }}=2\left(C_{\text {LOAD }}\right)\left(f_{I N}\right)\left(V_{C C}\right)^{2}
$$

APPLICATIONS INFORMATION

Unlike a pure capacitive Ioad, a power MOSFET's gate capacitance seen by the driver output varies with its V_{GS} voltage level during switching. A MOSFET's capacitive load power dissipation can be calculated using its gate charge, Q_{G}. The Q_{G} value corresponding to the MOSFET's $V_{G S}$ value ($V_{C C}$ in this case) can be readily obtained from the manufacturer's Q_{G} vs $V_{G S}$ curves. For identical MOSFETs on TG and BG :

$$
P_{Q G}=2\left(V_{C C}\right)\left(Q_{G}\right)\left(f_{I N}\right)
$$

To avoid damage due to power dissipation, the LTC4446 includes a temperature monitor that will pull BG and TG low if the junction temperature rises above $160^{\circ} \mathrm{C}$. Normal operation will resume whenthe junctiontemperature cools to less than $135^{\circ} \mathrm{C}$.

Bypassing and Grounding

The LTC4446 requires proper bypassing on the V_{CC} and $V_{\text {BOOST-Ts }}$ supplies due to its high speed switching (nanoseconds) and large AC currents (Amperes). Careless component placement and PCB trace routing may cause excessive ringing.

To obtain the optimum performance from the LTC4446:
A. Mount the bypass capacitors as close as possible between the $\mathrm{V}_{C C}$ and GND pins and the BOOST and TS pins. The leads should be shortened as much as possible to reduce lead inductance.
B. Use a low inductance, low impedance ground plane to reduce any ground drop and stray capacitance. Remember that the LTC4446 switches greater than 3A peak currents and any significant ground drop will degrade signal integrity.
C. Plan the power/ground routing carefully. Know where the large load switching current is coming from and going to. Maintain separate ground return paths for the input pin and the output power stage.
D. Keep the copper trace between the driver output pin and the load short and wide.
E. Be sure to solder the Exposed Pad on the back side of the LTC4446 package to the board. Correctly soldered to a $2500 \mathrm{~mm}^{2}$ doublesided $10 z$ copper board, the LTC4446 has a thermal resistance of approximately $40^{\circ} \mathrm{C} / \mathrm{W}$ for the MS8E package. Failure to make good thermal contact between the exposed back side and the copper board will result in thermal resistances far greater than $40^{\circ} \mathrm{C} / \mathrm{W}$.

LTC4446

TYPICAL APPLICATIO

PACKAGE DESCRIPTION

MS8E Package
8-Lead Plastic MSOP, Exposed Die Pad
(Reference LTC DWG \# 05-08-1662 Rev D)

TYPICAL APPLICATION

LTC4446 Fast Turn-On/Turn-Off DC Switch

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1693 Family	High Speed Dual MOSFET Drivers	1.5A Peak Output Current, $4.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 13.2 \mathrm{~V}$
LT ${ }^{\text {1952/LTC3900 }}$	36V to 72V Input Isolated DC/DC Converter Chip Sets	Synchronous Rectification; Overcurrent, Overvoltage, UVLO Protection; Power Good Output Signal; Compact Solution
LT3010/LT3010-5	50mA, 3 V to 80V Low Dropout Micropower Regulators	Low Quiescent Current ($30 \mu \mathrm{~A}$), Stable with Small ($1 \mu \mathrm{~F}$) Ceramic Capacitor
LTC3703	100V Synchronous Switching Regulator Controller	No R SENSE $^{\text {TM }}$, Synchronizable Voltage Mode Control
$\begin{aligned} & \text { LTC3722-1/ } \\ & \text { LTC3722-2 } \end{aligned}$	Synchronous Dual Mode Phase Modulated Full-Bridge Controllers	Adaptive Zero Voltage Switching, High Output Power Levels (Up to Kilowatts)
$\begin{aligned} & \text { LTC3723-1/ } \\ & \text { LTC3723-2 } \end{aligned}$	Synchronous Push-Pull PWM Controllers	Current Mode or Voltage Mode Push-Pull Controllers
LTC3780	High Power Buck-Boost Controller	Four Switch, $4 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 36 \mathrm{~V}, 0.8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 30 \mathrm{~V}$, High Efficiency
LTC3785	Buck-Boost Controller	High Efficiency, Four Switch, $2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 10 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 10 \mathrm{~V}$
LTC3810	100V Current Mode Synchronous Step-Down Switching Regulator Controller	No RSENSE, Synchronizable Tracking, Power Good Signal
LTC3813	100V Current Mode Synchronous Step-Up Controller	No R RENSE, On-Board 1Ω Gate Drivers, Synchronizable
LT3845	High Power Synchronous DC/DC Controller	Current Mode Control, $\mathrm{V}_{\text {IN }}$ Up to 60V, Low I_{Q}
LTC3901	Secondary Side Synchronous Driver for Push-Pull and Full-Bridge Converters	Programmable Time Out, Reverse Inductor Current Sense
LTC4440/ LTC4440-5	High Speed, High Voltage, High Side Gate Drivers	Wide Operating $\mathrm{V}_{\text {IN }}$ Range: Up to 80V DC, 100V Transient
LTC4441	6A MOSFET Driver	Adjustable Gate Drive from 5V to 8V, $5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 28 \mathrm{~V}$
LTC4442/LTC4442-1	High Speed Synchronous N-Channel MOSFET Drivers	5A Peak Output Current, 6V to 9.5V Gate Drive Supply, 38V Max Input Supply
LTC4443/LTC4443-1	High Speed Synchronous N-Channel MOSFET Driver with Integrated Schottky Diode	5A Peak Output Current, 6V to 9.5V Gate Drive Supply, 38V Max Input Supply
LTC4444	High Voltage Synchronous N-Channel MOSFET Driver	3A/2.5A Peak Output Current, 7.2V to 13.5V Gate Drive Supply, 100V Max Input Supply, Adaptive Shoot-Through Protection
LTC4444-5	High Voltage Synchronous N-Channel MOSFET Driver	1.75A/1.5A Peak Output Current, 4.5V to 13.5V Gate Drive Supply, 100V Max Input Supply, Adaptive Shoot-Through Protection

No R RENSE is a trademark of Linear Technology Corporation.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by Linear Technology manufacturer:
Other Similar products are found below :
$\underline{00028} \underline{00053 \mathrm{P} 0231} \underline{8967380000} 56956$ CR7E-30DB-3.96E(72) 57.404.7355.5 LT4936 57.904.0755.0 5801-0903 5803-0901 5811-0902

1003W-10/32-15 LTILA6E-1S-WH-RC-FN12VXCR1 0131700000 00-2240 LTP70N06 LVP640 0158-624-00 5J0-1000LG-SIL 020017-13
LY1D-2-5S-AC120 LY2-0-US-AC120 LY2-US-AC240 LY3-UA-DC24 00-5150 00576P0020 00600P0010 LZNQ2M-US-DC5 LZNQ2-
US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8609-RDPP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP

