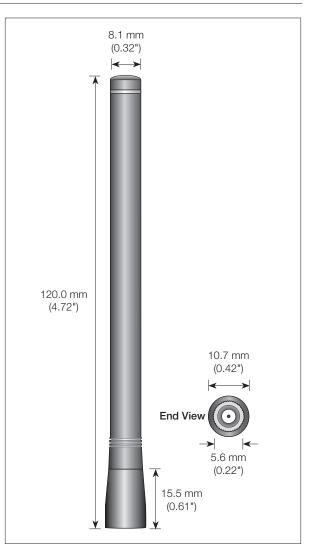
ANT-418-CW-HW Data Sheet

Product Description

HW Series antennas deliver outstanding performance in a rugged and cosmetically attractive package. The 315, 418 and 433MHz monopole versions have a straight whip ¼-wave element. The straight whip element delivers wide bandwidth and consistent performance. The antennas attach via a standard SMA or Part 15 compliant RP-SMA connector. Custom colors and connectors are available for volume OEM customers.

Features

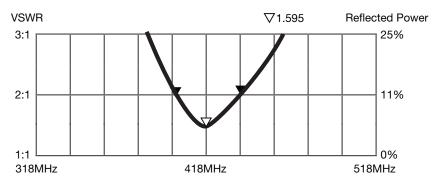
- Low cost
- Excellent performance
- Omni-directional pattern
- Outstanding VSWR
- Rugged & damage-resistant
- Standard SMA or Part 15 compliant RP-SMA connector
- Custom colors and terminators for volume
 OEMs
- Use with plastic* or metal enclosures
- Internal O-ring seal on connector
- * Requires proximity ground plane


Electrical Specifications

Center Frequency:	418MHz
Recmd. Freq. Range:	403-433MHz
Wavelength:	1/4-wave
VSWR:	\leq 2.0 typical at center
Peak Gain:	0dBi
Impedance:	50-ohms
Connection:	SMA or RP-SMA
Oper. Temp. Range:	–20°C to +85°C

Electrical specifications and plots measured with a 10.16 cm x 10.16 cm (4.00" x 4.00") reference ground plane.

Ordering Information


ANT-418-CW-HW (with RP-SMA connector) ANT-418-CW-HW-SMA (with SMA connector)

Counterpoise

Quarter-wave or monopole antennas require an associated ground plane counterpoise for proper operation. The size and location of the ground plane relative to the antenna will affect the overall performance of the antenna in the final design. When used in conjunction with a ground plane smaller than that used to tune the antenna, the center frequency typically will shift higher in frequency and the bandwidth will decrease. The proximity of other circuit elements and packaging near the antenna will also affect the final performance. For further discussion and guidance on the importance of the ground plane counterpoise, please refer to Linx Application Note AN-00501: Understanding Antenna Specifications and Operation.

VSWR Graph

What is VSWR?

The Voltage Standing Wave Ratio (VSWR) is a measurement of how well an antenna is matched to a source impedance, typically 50-ohms. It is calculated by measuring the voltage wave that is headed toward the load versus the voltage wave that is reflected back from the load. A perfect match will have a VSWR of 1:1. The higher the first number, the worse the match, and the more inefficient the system. Since a perfect match cannot ever be obtained, some benchmark for performance needs to be set. In the case of antenna VSWR, this is usually 2:1. At this point, 88.9% of the energy sent to the antenna by the transmitter is radiated into free space and 11.1% is either reflected back into the source or lost as heat on the structure of the antenna. In the other direction, 88.9% of the energy recovered by the antenna is transferred into the receiver. As a side note, since the ":1" is always implied, many data sheets will remove it and just display the first number.

How to Read a VSWR Graph

VSWR is usually displayed graphically versus frequency. The lowest point on the graph is the antenna's operational center frequency. In most cases, this will be different than the designed center frequency due to fabrication tolerances. The VSWR at that point denotes how close to 50-ohms the antenna gets. Linx specifies the recommended bandwidth as the range where the typical antenna VSWR is less than 2:1.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Antennas category:

Click to view products by Linx Technologies manufacturer:

Other Similar products are found below :

 GAN30084EU
 930-033-R
 GW17.07.0250E
 1513563-1
 EXE902SM
 APAMPG-117
 MAF94383
 W3908B0100
 W6102B0100
 YE572113

 30RSMM
 108-00014-50
 66089-2406
 SPDA17RP918
 A09-F8NF-M
 A09-F5NF-M
 RGFRA1903041A1T
 W3593B0100
 W3921B0100

 SIMNA-868
 SIMNA-915
 SIMNA-433
 W1044
 W1049B090
 A75-001
 WTL2449CQ1-FRSMM
 CPL9C
 EXB148BN
 0600-00060

 TRA9020S3PBN-001
 GD5W-28P-NF
 MA9-7N
 GD53-25
 GD5W-21P-NF
 EXB144SM
 C37
 MAF94051
 GD35-17P-NF
 P1744
 MA9-5N

 EXD420PL
 B1322NR
 QWFTB120
 MAF94271
 MAF94300
 GPSMB301
 FG4403
 A0-AGSM-OM54
 5200232
 MIKROE-2349

 WCM.01.0111
 W
 MAF94271
 MAF94300
 GPSMB301
 FG4403
 A0-AGSM-OM54
 5200232
 MIKROE-2349