ANT-433-FPC-UFL-100 Flexible Embedded 433 MHz Antenna

The Linx 433-FPC antenna is a flexible embedded 433 MHz antenna for Sub-1 GHz and lowpower, wide-area (LPWA) applications including LoRaWAN ${ }^{\circledR}$ and remote control applications. The 433-FPC also performs well in LTE cellular bands 87 and 88 at 410 MHz and 450 MHz , respectively.

The 433-FPC provides a ground plane independent dipole embedded antenna solution comparable in performance to an external antenna. The flexibility and adhesive backing makes the 433-FPC antenna easy to mount in unique and custom enclosures, while enabling an environmentally sealed enclosure and protection from tampering or accidental antenna damage.

Connection is made to the radio via a 100 mm (3.94 in) long, 1.13 mm coaxial cable terminated in a U.FL-type plug (female socket).

Features

- Performance at 433 MHz
- VSWR: ≤ 2.5
- Peak Gain: -6.0 dBi
- Efficiency: 9\%
- Ground plane independent dipole antenna
- Compact, low-profile
- $47 \mathrm{~mm} \times 17 \mathrm{~mm} \times 0.2 \mathrm{~mm}$
- U.FL-type plug (female socket) Compatible with MHF1, AMC, UMCC
- Adhesive backing permanently adheres to nonmetal enclosures using 3M 467MPTM/200MP adhesive
- Flexible to fit in challenging enclosures

Applications

- Low-power, wide-area (LPWA) applications - LoRaWAN ${ }^{\circledR}$
- Internet of Things (loT) devices
- Smart Home networking
- Remote control, monitoring and sensing
- 410 MHz LTE band 87 cellular
- 450 MHz LTE band 88 cellular

Ordering Information

| Part Number | |
| :---: | :---: | :---: |
| ANT-433-FPC-UFL-100 | 433 MHz antenna with 100 mm of 1.13 mm coaxial cable and U.FL-type plug (female socket) |

Available from Linx Technologies and select distributors and representatives.

Electrical Specifications

ANT-433-FPC-UFL	410 MHz	433 MHz	450 MHz
Frequency Range	410 MHz to 430 MHz	430 MHz to 435 MHz	450 MHz to 470 MHz
VSWR (max.)	4.1	2.5	3.4
Peak Gain (dBi)	-5.4	-6.0	-2.4
Average Gain (dBi)	-10.5	-10.8	-10.8
Efficiency (\%)	10	9	15
Polarization	Linear		
Radiation	Omnidirectional		
Max Power	2 W		
Wavelength	1/2-wave		
Electrical Type	Dipole		
Impedance	50Ω		
Connection	U.FL-type plug (female socket) on $100 \mathrm{~mm}(3.94 \mathrm{in})$ of 1.13 mm coaxial cable.		
Weight	$0.6 \mathrm{~g}(0.02 \mathrm{oz})$		
Dimensions	$47.0 \mathrm{~mm} \times 17.0 \mathrm{~mm} \times 0.2 \mathrm{~mm}$ (1.85 in $\times 0.67 \mathrm{in} \times 0.01 \mathrm{in}$)		
Operating Temp. Range	$-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$		

Product Dimensions

Figure 1. ANT-433-FPC-UFL-100 Dimensions

Antenna Mounting

The ANT-433-FPC-UFL-100 is a flexible, adhesive backed antenna that allows it to be permanently installed onto non-metallic surfaces. The adhesive backing is 3 M 467 MP ™ $/ 200 \mathrm{MP}$, which provides outstanding adhesion to high surface energy plastics. The adhesive delivers excellent shear strength to resist slippage and edge lifting, but can be repositioned temporarily to allow for repositioning. This adhesive is highly resistant to solvents, humidity and moisture, as well as heat up to $204^{\circ} \mathrm{C}\left(400^{\circ} \mathrm{F}\right)$ for short periods.
The antenna should never be bent to the point of creating a crease or allowing the angle of the bend to fall below 90 degrees (i.e. become acute) as this will impair function and may cause permanent damage.

Packaging Information

The ANT-433-FPC-UFL-100 antennas are individually sealed in a clear plastic sleeve. Individual sleeves are packed in a bags of 100 pcs. Distribution channels may offer alternative packaging options.

VSWR

Figure 2 provides the voltage standing wave ratio (VSWR) across the antenna bandwidth. VSWR describes the power reflected from the antenna back to the radio. A lower VSWR value indicates better antenna performance at a given frequency. Reflected power is also shown on the right-side vertical axis as a gauge of the percentage of transmitter power reflected back from the antenna.

Figure 2. 433-FPC Antenna VSWR with Frequency Band Highlights

Return Loss

Return loss (Figure 3), represents the loss in power at the antenna due to reflected signals. Like VSWR, a lower return loss value indicates better antenna performance at a given frequency.

Figure 3. 433-FPC Antenna Return Loss with Frequency Band Highlights

Peak Gain

The peak gain across the antenna bandwidth is shown in Figure 4. Peak gain represents the maximum antenna input power concentration across 3-dimensional space, and therefore peak performance, at a given frequency, but does not consider any directionality in the gain pattern.

Figure 4. 433-FPC Antenna Peak Gain with Frequency Band Highlights

Average Gain

Average gain (Figure 5), is the average of all antenna gain in 3-dimensional space at each frequency, providing an indication of overall performance without expressing antenna directionality.

Figure 5. 433-FPC Antenna Average Gain with Frequency Band Highlights

Radiation Efficiency

Radiation efficiency (Figure 6), shows the ratio of power delivered to the antenna relative to the power radiated at the antenna, expressed as a percentage, where a higher percentage indicates better performance at a given frequency.

Figure 6. 433-FPC Antenna Radiation Efficiency with Frequency Band Highlights

Radiation Patterns

Radiation patterns provide information about the directionality and 3-dimensional gain performance of the antenna by plotting gain at specific frequencies in three orthogonal planes. Antenna radiation patterns (Figure 7), are shown using polar plots covering 360 degrees. The antenna graphic above the plots provides reference to the plane of the column of plots below it. Note: when viewed with typical PDF viewing software, zooming into radiation patterns is possible to reveal fine detail.

YZ-Plane Gain

XY-Plane Gain

Radiation Patterns

XZ-Plane Gain

YZ-Plane Gain

430 MHz to $435 \mathrm{MHz}(433 \mathrm{MHz})$

Radiation Patterns

450 MHz to $470 \mathrm{MHz}(460 \mathrm{MHz})$

Figure 7. Radiation Patterns for ANT-433-FPC-FPC-100 Antenna

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Antennas category:
Click to view products by Linx Technologies manufacturer:

Other Similar products are found below :
GAN30084EU 930-033-R GW17.07.0250E 1513563-1 EXE902SM APAMPG-117 MAF94383 W3908B0100 W6102B0100 YE57211330RSMM 108-00014-50 66089-2406 A09-F8NF-M A09-F5NF-M RGFRA1903041A1T W3593B0100 W3921B0100 SIMNA-868 SIMNA915 SIMNA-433 W1044 W1049B090 A75-001 WTL2449CQ1-FRSMM CPL9C EXB148BN 0600-00060 TRA9020S3PBN-001 GD5W-28P-NF MA9-7N GD53-25 GD5W-21P-NF EXB144SM C37 MAF94051 GD35-17P-NF P1744 MA9-5N EXD420PL B1322NR QWFTB120 MAF94271 MAF94300 GPSMB301 FG4403 AO-AGSM-OM54 5200232 MIKROE-2349 WCM.01.0111 MIKROE-2393

