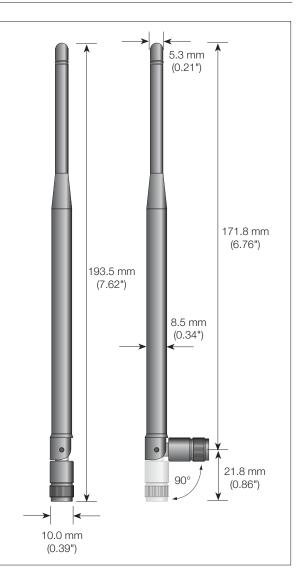
ANT-916-OC-LG-XXX Data Sheet

Product Description

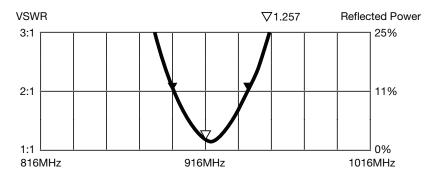
The OC Series ½-wave dipole antennas provide higher gain than a standard whip antenna for increased range and reliability of wireless links. Using loaded coil technology, the OC Series antennas minimize the length that would typically be required to achieve omnidirectional gain. The articulating base allows the antenna to tilt 90 degrees and rotate 360 degrees. The antenna's internal counterpoise eliminates external ground plane dependence and maximizes performance. OC Series antennas attach via a standard SMA or Part 15 compliant RP-SMA connector.

Features

- Low cost
- Compact size
- Tilts and rotates
- Internal counterpoise
- Omnidirectional pattern
- Increased gain versus standard whip antennas
- Standard SMA or Part 15 compliant RP-SMA connector


Electrical Specifications

Center Freq.:	916MHz
Rec. Freq. Range:	895–935MHz
Wavelength:	1/2-wave
VSWR:	≤2.0 typ. at center
Peak Gain:	2.2dBi
Impedance:	50-ohms
Connector:	RP-SMA or SMA
Oper. Temp. Range:	–20°C to +85°C


Electrical specifications and plots measured on 10.16 cm x 10.16 cm (4.00" x 4.00") reference ground plane

Ordering Information

ANT-916-OC-LG-RPS (with RP-SMA connector) ANT-916-OC-LG-SMA (with SMA connector)

VSWR Graph

What is VSWR?

The Voltage Standing Wave Ratio (VSWR) is a measurement of how well an antenna is matched to a source impedance, typically 50-ohms. It is calculated by measuring the voltage wave that is headed toward the load versus the voltage wave that is reflected back from the load. A perfect match will have a VSWR of 1:1. The higher the first number, the worse the match, and the more inefficient the system. Since a perfect match cannot ever be obtained, some benchmark for performance needs to be set. In the case of antenna VSWR, this is usually 2:1. At this point, 88.9% of the energy sent to the antenna by the transmitter is radiated into free space and 11.1% is either reflected back into the source or lost as heat on the structure of the antenna. In the other direction, 88.9% of the energy recovered by the antenna is transferred into the receiver. As a side note, since the ":1" is always implied, many data sheets will remove it and just display the first number.

How to Read a VSWR Graph

VSWR is usually displayed graphically versus frequency. The lowest point on the graph is the antenna's operational center frequency. In most cases, this will be different than the designed center frequency due to fabrication tolerances. The VSWR at that point denotes how close to 50-ohms the antenna gets. Linx specifies the recommended bandwidth as the range where the typical antenna VSWR is less than 2:1.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Antennas category:

Click to view products by Linx Technologies manufacturer:

Other Similar products are found below :

 GAN30084EU
 930-033-R
 GW17.07.0250E
 1513563-1
 EXE902SM
 APAMPG-117
 MAF94383
 W3908B0100
 W6102B0100
 YE572113

 30RSMM
 108-00014-50
 66089-2406
 A09-F8NF-M
 A09-F5NF-M
 RGFRA1903041A1T
 W3593B0100
 W3921B0100
 SIMNA-868
 SIMNA

 915
 SIMNA-433
 W1044
 W1049B090
 A75-001
 WTL2449CQ1-FRSMM
 CPL9C
 EXB148BN
 0600-00060
 TRA9020S3PBN-001
 GD5W

 28P-NF
 MA9-7N
 GD53-25
 GD5W-21P-NF
 EXB144SM
 C37
 MAF94051
 GD35-17P-NF
 P1744
 MA9-5N
 EXD420PL
 B1322NR

 QWFTB120
 MAF94271
 MAF94300
 GPSMB301
 FG4403
 AO-AGSM-OM54
 5200232
 MIKROE-2349
 WCM.01.0111
 MIKROE-2393